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ABSTRACT

The present work aims at improving the image quality of low-cost cameras based on multiple exposures, machine
learning, and a perceptual quality measure. The particular implementation consists of two cameras, one being
a high-quality DSLR, the other part of a cell phone. The cameras are connected via USB. Since the system is
designed to take many exposures of the same scene, a stable mechanical coupling of the cameras and the use of
a tripod are required. Details on the following issues are presented: design aspects of the mechanical coupling of
the cameras, camera control via FCam and the Picture Transfer Protocol (PTP), further aspects of the design of
the control software, and post processing of the exposures from both cameras. The cell phone images are taken
with different exposure times and different focus settings and are simultaneously fused. By using the DSLR
image as a reference, the parameters of the fusion scheme are learned from examples and can be used to optimize
the design of the cell phone. First results show that the depth of field can be extended, the dynamic range can
be improved and the noise can be reduced.
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1. INTRODUCTION

Current digital cameras do not fully use their technological potential that would differentiate them from their
analog ancestors. For example, fast multiple exposures are possible even with low-cost cameras, and parameters
like exposure time and focus can be adjusted quickly. Computational photography is a strong trend that will
probably change the way pictures will be taken in the future.1–3 However, the focus of Computational Photogra-
phy is on topics that require non-standard hardware like for example coded apertures and arrays of micro-lenses
that can capture light fields. These computational cameras4 are fascinating devices and we are looking forward
to working with them in the near future. The focus of our current work, however, is on exploring ideas from
computational photography that can be implemented with current off-the-shelf hardware.

The goal is to obtain high-quality images with low-cost hardware by taking a series of images that are fused
to a single high-quality image. Image fusion is already in use, for example to expand the dynamic range of an
image by fusing images taken with different exposures5 or to extend the depth of field by fusing images taken
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Figure 1. Top-level overview of the suggested workflow. Once the fusion parameters have been optimized and fixed, the
DSLR is no longer required.

with different focus settings.6 It has also been shown that, at equal depth of field, the signal-to-noise ratio of
the image can be improved by fusing images taken with a large aperture and different focus settings instead of
taking just one image with a smaller aperture.7 Our approach extends previous work in several ways. First,
we vary not only one parameter when taking a series of images: currently focus and exposure time are varied.
Second, we jointly optimize the fusion parameters. Third, we use a reference image for optimization, i.e., we
apply supervised machine-learning techniques.

To add practical value, we implemented a system with a low-cost camera that must be optimized and a
high-end camera that serves as a reference. The first camera is a Nokia N900 mobile phone, which benefits from
the development of the Frankencamera.2 The second is a Nikon D7000, which has much better dynamic range
and signal-to-noise ratio, and offers a much more flexible depth of field. In this paper we describe the system
and the fusion algorithms, and present first results.

Note that the idea of optimizing low cost imaging hardware with respect to image quality by the use of a high
quality reference system poses new challenges regarding the modeling of subjective image quality. Currently we
only consider this problem by using the structural similarity measure (see below) but we believe that models of
image quality need to be further developed for these kinds of applications.

2. SYSTEM ARCHITECTURE, PRE- AND POSTPROCESSING

While the fusion of exposures in the wavelet domain is the key idea, technical effort has to be made in order to
try out the outlined ideas. This section describes a system, consisting of hard- and software, designed to provide
aligned exposures resp. exposure series with varied parameters.

2.1 Mechanical setup

The initial idea requires a facility to shoot exposures of the same scene simultaneously with two different cameras,
which by itself is an easy task. However, it becomes incomparably harder when requiring a correspondence of
pixels in all exposures, such that two corresponding pixels in different exposures belong to the same spatial
position in the scene. This correspondence requirement forced us to abandon all approaches for a mechanical
setup in which the cameras are mounted against each other with a parallax, such as attaching the cell phone
to the hot shoe or the tripod socket of the DLSR. In addition, the hot shoe mounting variant usually involves
having some play, which makes it unusable in the present setting.

2



Figure 3. Camera hardware and mounting used to produce image material. The accessory arm is turned by 180 degrees
after the first camera has completed shooting. The second camera can start shooting once it has taken the position of the
first camera. Bottom to top, the setup consists of: a sturdy tripod, a panorama head, an accessory arm with two heads,
a micropositioning plate for the DSLR, a cell phone car mount and standard small ironware for mounting the cell phone
on the accessory arm. The panorama head clicks into place at the opposite positions. All non-camera parts were chosen
based on their ruggedness and high load capacity. For example, the tripod is designed to carry weights up to 26 1/2 lbs
(12kg).

Figure 2. Exemplary view of the UI of
the client running on a desktop ma-
chine. The client controls the N900
server. The window displays the cur-
rent exposure parameters for both N900
and D7000, and has buttons to initiate
shooting and downloading. Independely
for both cameras the exposure count and
parameters for each exposure are given
as so-called configurations (XML).

The no parallax requirement implies that the second camera must
take the position of the first when shooting. A practical solution offering
high precision is shown in Figure 3. By rotating the accessory arm by
180 degrees one camera can take the position of the other. In the case of
ideal camera adjustment the entry pupils of both cameras are matched
by the rotation.

2.2 Camera hardware

For the prototype we had to choose particular makes of DSLR and cell
phone. The existence of the FCam API2 made us pick the Nokia N900
as low-cost camera. The N900 is one of Nokia’s 2009/2010 top-of-the-line
smart phones. Its operating system, Maemo, is from the Linux family.
The FCam API offers an easy and flexible way to control the camera
ingredients of the N900. The Nikon D7000 was chosen as a current upper
middle class DSLR make; it offers DX format and good interoperability
with the Picture Transfer Protocol (PTP).

Both cameras are able to produce RAW files and were configured to
do so. The D7000 produces NEF files (Nikon’s proprietary RAW format),
while the FCam API allows to save the sensor contents of the N900 as
DNG (Adobe’s non-proprietary RAW format). In the setting of this work,
shooting RAW is essential since it offers the greatest flexibility for any
kind of processing: the sensor data is roughly proportional to the amount
of incident light; it is linear data. The linearity is preserved during the
preprocessing step such that the fusion step can rely on it. For this reason
we were happy about the DNG feature of the FCam API.

The camera of the N900 is limited to changes of exposure time, focus,
and ISO sensitivity; there is no way to change zoom or aperture. There-
fore we restrict ourselves to changes of exposure time and focus. The
effect of focus changes is pronounced and obvious for small distance or
near focus, respectively. For larger distances, the N900 depth of field is
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so large such that these changes are difficult to spot. Therefore, we want to explore the near range in particular,
and the DSLR lens was chosen appropriately. In addition, the lens must deliver images with a similar angle of
view as the cell phone. A fast, wide-angle lens fulfills these requirements; we used a 20mm/f2.8 lens.

2.3 Capturing software

Due to the possibility of accidental shaking and movements, touching the tripod with the mounted camera
equipment during the shooting process is risky and must be avoided. On the other hand, parameters must be
changed between exposures. It is therefore suggesting to use tethered shooting and tethered parameter changes
for both the N900 and the D7000. Both are connected via a USB 2.0 cable which is visible in Figure 3. In order
to make this work and to let the N900 act as a USB master, both the N900’s operating system and libusb had
to be patched.

A server software was created for the N900, which is in charge of (a) controlling the N900’s camera via FCam,
(b) controlling the D7000 via PTP, and (c) communication with a client software running on a desktop machine.
Although controlling the server via the N900’s touch screen is conceivable, the operator interacts with the server
only through the client software to avoid shaking. Figure 2 shows the main windows of the client software. The
communication between server and client is done via Wireless LAN. The sustainable rate for continuous shooting
is approxmately two seconds per exposure, where we have taken up to 500 exposures in a single run. In order to
achieve said rate, we had to optimize memory strategies of the server software.

2.4 Pre- and postprocessing

As both cameras are configured to produce RAW files but we want to look at and evaluate the result of the fusion,
full raw development must take place. Apart from certain cropping and calibration steps the fusion module was
integrated in the raw development pipeline as shown in Figure 1.

2.4.1 Preprocessing related to raw development

The parts of the preprocessing step related to raw development include adjusting white balance, debayering,
and lens correction, cf. Figure 1. White balance, the scaling of the red and blue channels with respect to the
green channel, is determined by two constants. We use the as-shot white balance stored in the RAW files. For
both NEF and DNG file formats care must be taken to extract the correct white balance coefficients from the
metadata.

Since the sensor data carries the Bayer pattern, debayering must take place to produce linear RGB data.
Many debayering algorithms are available and offer sufficient quality. The algorithm due to Hirakawa and Parks
is one such example.8 Differences between various debayering algorithms can be told only from fine detail in
sharp images; in other areas such algorithms will produce more or less the same results.

The lens correction applied corrects distortion only; we do not use it to correct vignetting and chromatic
aberration. The distortion correction is responsible for re-establishing lines in the images, i.e. straight lines in
the scene should be reproduced as straight lines in the image after the lens correction step. After accurate lens
correction it can be expected that a line-preserving transformation with a larger number of free parameters,
such as a perspective transformation, is suitable for aligning the images. We used the lens correction algorithms
contained in OpenCV.9,10

2.4.2 Preprocessing due to many exposures

Spatial standardization of the exposures is required; therefore we perform camera calibration, alignment, and
cropping. To fulfill the correspondence requirement, all clamps and screws are tightened, and the cameras are
calibrated mechanically against each other. Moreover, in order to make up for image differences caused by
different focus distances, all N900 exposures are calibrated against each other. To this end we use the calibration
of OpenCV once more. As with the lens correction, printouts of a checkerboard are photographed and processed;
the result of the calibration is a perspective transformation which transforms the 2D exposure coordinate systems
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into each other. The transformation includes a central shrinking of about 1/2 of the D7000 exposure which takes
into account the different dimensions of DSLR and cell phone exposures.

To further standardize the image material, any exposure is cropped from 2584x1960 or 4928x3264 (for N900
and D7000, respectively) to 1024x1024. First, the rectangular shape of each exposure following the transformation
of the calibration steps must be re-established. Second, since the N900 produces heavy vignetting which remains
unchanged by the lens correction step, a desired side effect of the cropping is that the vignette is more or less
removed. Finally, exposures from both cameras have different aspect ratios; which is neutralized by the cropping
step.

2.4.3 Postprocessing

The main purpose of the postprocessing step is to transform the RGB data from the linear domain to a domain
which is visually pleasing to the human eye. This is done by applying a color transformation and a tone curve.
The resulting RGB data is assumed to be in a certain output color space, for example sRGB. Of course the
color transformation depends on the choice of output color space. Since currently we restrict to black and white
images the color transformation is of no importance.

3. IMAGE FUSION AND OPTIMIZATION OF PARAMETERS

Computing a single improved image from a series of exposures with lower quality is a task which is well-known
from focus stacking or high dynamic range (HDR) imaging. In the following we will describe our new fusion
framework, which is able to perform both tasks (and more) at once. Since even with low parameter counts manual
parameter tuning is not an option, we perform automatic parameter optimization by means of a reference-based
approach using the acquisition system described in Section 2.

3.1 Image representation

In image processing it is often advantageous to transform an image to a new basis. In this work we chose the 2D
dual-tree discrete wavelet transform (DDWT), denoted by W , which is due to Selesnick et al.11 The DDWT is two
times expansive; we use the filtering coefficients introduced by Farras, Selesnick and Kingsbury.12,13 Moreover,
the DDWT is insensitive to shifts, directionally selective in two and higher dimensions and was already applied
successfully for focus stacking.6

Suppose the exposure stack from the cell phone is given by In where n = 1, . . . , N . Let IR denote the reference
exposure from the DSLR. The wavelet transform W maps any image I to (ap)p∈P ∈ C

#P , which is a vector
of dimension #P of complex wavelet coefficients. We assume that the number M of resolutions of any wavelet
transform is the same; we use m = 1, . . . ,M to denote available resolutions. The band-pass wavelet coefficients
within each scale are enumerated by the sets

Qm = {m} × {1, 2, 3} × Sm ⊆ N
4, m = 1, . . . ,M,

where k = 1, 2, 3 denotes one of three directional subbands and Sm is the set of all spatial positions (u, v) within
subband k of resolution m. After preprocessing we may assume that the dimensions of all exposures coincide
such that also the dimension of the wavelet coefficient space is the same for all transforms. Finally, the set
Q = ∪M

m=1Qm indexes all wavelet high-pass coefficients. Joining P = Q ∪ R we get the whole wavelet domain,
where R = SM represents the DC component of the wavelet transform.

3.2 Fusion algorithms

During image fusion the images of an image stack have to be combined in that way, that the resulting image
reaches application specific quality requirements. In HDR imaging we are looking originally for images with
optimal dynamic range between lightest and darkest areas preserving all the relevant image details. Focus
stacking is aiming at enhancing the depth of field to visualize all relevant information in one image, which
cannot achieved by means of a digital camera and a certain lens.6
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Our fusion scheme works as follows: In a first step, each cell phone image is converted to the wavelet domain:
a(n) := W (In), the fusion then produces a single set of wavelet coefficients by b = F (a(1), . . . , a(N)), where F is
one of the fusion rules defined in what follows. The reconstructed image J — the result of the fusion — is then
obtained by J := W−1b, wherein W−1 denotes the inverse wavelet transform.

To define a fusion variant, values bp have to be prescribed for all p ∈ P = Q ∪ R. For r ∈ R we invariably

use averaging: br = 1
N

∑N

n=1 a
(n)
r . To fully define a fusion variant, it therefore suffices to prescribe bq for q ∈ Q.

An example of a simple fusion is the maximum rule. For fixed q ∈ Q it is given by

bq = a(l)
q , where l := argmax

{

|a(n)
q |

∣

∣

∣
n = 1, . . . , N

}

. (1)

The maximum rule works well with focus stacks; its goal is to create a depth of field which is as large as possible.
For arbitrary z ∈ C we define hard thresholding independently for each resolution m = 1, . . . ,M by

Tm(z) :=

{

z, if |z| > ǫm,
0, otherwise,

where ǫm ≥ 0 are suitably chosen real numbers. Then a second fusion example, governed by the mean, is given
by

bmkuv =
1

wm

N
∑

n=1

Tm(a
(n)
mkuv), where wm := #

N
⋃

n=1

{

q ∈ Qm

∣

∣

∣
Tm(a(n)

q ) 6= 0
}

. (2)

Differently set, the fusion result is the mean of wavelet coefficients not touched by the thresholding. Although
simple fusion rules like (1) or (2) produce satisfatory result, they are likely to fail if several camera parameters
are varied during image acquisition. Therefore, let us consider a further fusion variant given by

bmkuv =

N
∑

n=1

e−βm|a
(n)
mkuv

|

∑N

ñ=1 e−βm|a
(ñ)
mkuv

|
Tm(a

(n)
mkuv), (3)

where βm ∈ R, m = 1, . . . ,M are the parameters to be optimized. Formula (3) was chosen since it parametrizes
the transition between the fusion rules (1) for βm << 0, and (2) for βm = 0. Again, the advantage of (3) is that
its derivative with respect to βm can be given in a closed form. Note also that (3) is a pointwise operation; it
does not involve any neighborhoods.

3.3 Parameter Optimization

Due to the aforementioned disadvantages of (1) and (2) we turn to (3) and use it to model the fusion b of
exposures where both the focus and the shutter speed are varied simultaneously. Since manual parameter tuning
is inefficient, we need to be able to measure distances between images, more precisely, between the result of the
fusion and the reference exposure. Since fusion is conducted in the wavelet domain, for performance reasons
it is suggesting to have an image similarity measure defined in the wavelet domain as well. We introduce two
different similarity measures.

The first is the usual vector space norm, applied to a fixed resolution m. On this complex subspace 〈a, b〉m :=
∑

q∈Qm
aqbq and ‖a‖m :=

√

|〈a, a〉m| denote the associated scalar product and induced norm, respectively. The

wavelet coefficient space is a complex #Q-dimensional vector space with scalar product 〈a, b〉 :=
∑

q∈Q aqbq and

induced norm ‖a‖ :=
√

|〈a, a〉|, where ‖a‖2 =
∑M

m=1 ‖a‖
2
m by Parseval’s identity. Then we can perform a 1D

search to minimize

Em(βm) = ‖aR − b‖2
m =

3
∑

k=1

∑

(u,v)∈Sm

∣

∣aR
mkuv − bmkuv

∣

∣

2

for each m = 1, . . . ,M ; this minimizes also

E(β1, . . . , βM ) = ‖aR − b‖2 = E1(β1) + · · · + EM (βM )
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in M dimensions. Note that minimizing E is equivalent to minimizing the mean squared error of the wavelet
high-pass coefficients. Recall that b is defined as in (3).

The second approach is to use the structural similarity (SSI) due to Wang and Simoncelli,14,15 applied in the
wavelet coefficient space:

C(β1, . . . , βM ) = CWSSIM(aR, b) =
2|〈aR, b〉| + κ

‖aR‖2 + ‖b‖2 + κ
. (4)

Here κ > 0 is a scalar that stabilizes the result of the division when the denominator is small. Again, since we
prefer to optimize in 1D only, maximizing

Cm(βm) = CWSSIMm(aR, b) =
2|〈aR, b〉m| + κ

‖aR‖2
m + ‖b‖2

m + κ

for each m = 1, . . . ,M gives optimized values for βm. Also in this formula b is given by (3). Note however that
this time solving the 1D problem M times is not equivalent to maximizing (4).

4. RESULTS

In the following we present first results obtained with our fusion scheme. We are focussing on the following
two questions: (i) does fusion by means of wavelet coefficients and (3) work when both exposure and focus are
varied, and (ii) can parameter optimization be further improved using a perceptual quality measure instead of
the traditional mean squared error?

The results have been obtained with a resolution count of M = 3 for the wavelet transform. Therefore,
since the input images have dimension 1024x1024, the remaining DC component has dimension 128x128. To
parametrize hard thresholding by Tm, histograms of absolute values of wavelet coefficients of average images were
analyzed. A suitable ǫm was obtained by taking the 70–75th percentile values of such per-resolution histograms.
Images containing much detail result in higher values of ǫm, while images with a lot of homogeneous areas give
lower values.

To illustrate our fusion scheme we set up a table-top scene, took one reference image and four low-quality
input images with two different values of exposure and focus, see Figure 4. Note that the fused image and the
reference image are quite similar and that the quality of the fused image is comparable to that of the reference
image and better than that of the input images. Also note that the depth of field and the dynamic range are
both larger in the fused image than in the single input images. Moreover, the noise level is reduced. For better
illustration, in Figure 5 we show details cropped from the images in Figure 4. Note that, in some aspects, the
fused image is even better than the reference image, for example the toy pupil differentiates better from the iris.

However, in Figure 5 we illustrate two further important results. First, we show that the fusion parameters
obtained with the CWSSIM measure yield better results than those obtained with the mean squared error
(compare Figs. 5(f) and (g)). This is due to the fact that CWSSIM yields higher values of βm thus enhancing
the adaptive effect described below.

Second, we show that the fusion scheme is locally adaptive (Figure 5(e)). With the fusion entropy we

characterize the distribution of the fusion weights exp(−βm|a
(n)
mkuv|)/

∑N

ñ=1 exp(−βm|a
(ñ)
mkuv|) in (3). Maximum

entropy then corresponds to an equal distribution and this, in turn, to a fusion scheme in which the coefficients
are averaged as in (2). In case of low entropy, the larger coefficients are weighted stronger, which, in the extreme
case, corresponds to a maximum operation as in (1). Therefore, our scheme defined by (3) performs an adaptive
fusion such that uniform regions are averaged and structured regions are dominated by the most prominent
structure. This seems to work well for focus stacking but also implements a noise reduction.
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(a) I1 dark, focus far (b) I2 dark, focus near (c) I3 bright, focus far

(d) I4 bright, focus near (e) Fused image J , CWSSIM (f) Reference image IR

Figure 4. Results obtained for an image stack of N = 4 images, taken with two different exposure times and two different
focus settings for each exposure time. Note the improved image quality and the extended depth of focus in the fused
image

5. DISCUSSION

We have presented a method that can be used to improve the image quality of low-cost cameras. The current
hardware consists of a cell phone camera and a high quality digital camera, a DSLR. The cell phone can shoot an
image stack with different exposure values and focus settings and the DSLR takes a reference image of the same
scene. The image stack is fused with a novel fusion scheme that is locally adaptive and has parameters that are
optimized by using the reference image. The fusion is performed in the wavelet domain and the cost function for
the optimizer is based on the difference between the wavelet coefficients of the reference image and those of the
fused image. The difference is either the mean squared error or the perceptually motivated CWSSIM measure.

We did not present a systematic evaluation of the method but showed some interesting results. First, the
image quality of the fused image is much better than the quality of the single images: the depth of focus is
extended, the dynamic range is increased, and the noise level is lower. Second, the results are better when using
the perceptual CWSSIM measure.

Open questions remain, for example we are still working on a general solution for the problem of registering
the images within the stack and with respect to the reference image. This problem is encountered in many other
tasks and we have not elaborated on it here. However, we consider the approach presented in this paper as first
step towards more complex fusion schemes that can provide further image enhancements based on, for example,

8



(a) I1 dark, focus far (b) I2 dark, focus near (c) I3 bright, focus far (d) I4 bright, focus near

(e) Fusion entropy (f) Fused image J , MSE (g) Fused image J , CWSSIM (h) Reference image IR

Figure 5. Same results as in Figure 4 shown for a detail cropped from the images in Figure 4. In addition, in (e) we
show the entropy of the fused coefficients (for the CWSSIM case). Note that our fusion algorithm tends to pick the max
rule at edges and the mean rule at uniform regions (MSE case is similar but less pronounced). In (f) we show the result
obtained for the same stack, which is here fused with parameters learned by optimizing the mean squared error instead
of the CWSSIM.

spatial filtering and local gain control. Also, the way the image stack is obtained can be extended, for example
by using a larger number of different exposures or by varying other parameters like the gain. In a next step, not
only the fusion parameters but also the imaging parameters will be optimized.

The benefits of a method for optimizing the results obtained by low-cost hardware by using high-end hardware
as a reference seems obvious. But the method could be used for other applications, for example to create images
that just look like some reference images. By exploring various fusion schemes and parameter values, images
with a novel look could also be obtained. In such cases one would like to use no-reference models of perceptual
image quality. However, while models that can predict the visibility of artifacts are quite mature, the theory of
what makes a cool image is still missing.
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