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Abstract. In this paper we show that all images are topologically equiv-
alent. Nevertheless, one can define useful pseudo-topological properties
that are related to what is usually referred to as topological percep-
tion. The computation of such properties involves low-level structures,
which correspond to end-stopped and dot-responsive visual neurons. Our
results contradict the common belief that the ability for perceiving topo-
logical properties must involve higher-order, cognitive processes.
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1 Introduction

A fundamental issue of image analysis and understanding is the mathematical
description, or representation, of the input data. The basic representation of
an image and indeed the closest to the physical process of vision is that of a
graph of a function I : (x, y) → I(x, y) from a subset U of R2 to R; here U
is the retinal plane and I(x, y) is the light intensity at the point (x, y) ∈ U .
From a geometrical point of view, the graph of I is a Monge patch, that is a
surface L of the form L = {x, y, I(x, y)}. Alternatively, L can be considered
as the image of the mapping φ : (x, y) → (x, y, I(x, y)). Then, the process of
image formation can be seen as a mapping from the surface M of a physical
object to the Monge patch L representing the image. Let S be the surface of an
object in R3. Consider a coordinate system {x, y, z}, whose origin coincides with
the position of the viewer and let {x, y} be the image plane. The visible part
M of S can be given a Monge-patch representation M = (x, y, f(x, y)), where
z = f(x, y) is the distance of the point r = (x, y) on the image plane of the
observer to s = (x, y, z) in M . Note that, if orthographic projection is assumed,
f and I share the same domain U and there is a one-to-one correspondence
between p = (x0, y0, f(x0, y0)) ∈ M and q = (x0, y0, I(x0, y0)) ∈ L [8]. The
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extension to the case of perspective projection is immediate. If a surface M is
transformed by a continuous transformation into a surface M ′, a new image L′

will be generated by M ′; the relation between the transformation of the image
and the transformation of the underlying object has been made precise in [15].

The representation of images as surfaces has two advantages: first it is close
to the original data structure and does not require any high level process to be
generated, second it allows one to use the technical machinery of geometry to
investigate it. In particular the condition of differentiability allows to make use
of a very powerful theorem of differential geometry, the Gauss-Bonnet theorem,
which provides a link between global and local properties of surfaces. Surfaces
can be given a global classification based on the notion of topological invariants.
A property of a surface is called a topological invariant if it is invariant under
homeomorphism, that is under an one-to-one continuous transformation that
has a continuous inverse. Two surfaces are said to be topologically equivalent if
they can be transformed one in the other by a homeomorphism. For instance, the
number of holes in a surface is a topological invariant. In particular here we want
to investigate, how the topological properties of object surfaces are reflected in
the images. It will be shown in the next section that all images are topologically
equivalent, i.e. any two images can be transformed one into the other by means
of an homeomorphism. From this result it follows that the topological properties
of an object’s surface are not intrinsic properties of its image.

We shall show how topological properties of the object underlying the images
can be found by using 2D-operators, i.e. operators whose output is different
from zero only in case of 2D-features such as corners, line-ends, curved lines and
edges. These operators can be associated to the activity of nonlinear end-stopped
neurons. Mechanisms possibly underlying the activity of such neurons have been
investigated by a few authors, e.g. [7, 9, 14, 16]. A general theory for end-stopping
and 2D-operators, however, is still missing, but attempts to identify the basic
ingredients for such a theory have been made [16, 17].

Finally, we will show how 2D-operators can be used to provide an alter-
native explanation for some experimental findings [4, 5], which have suggested
that the human visual system might be quite sensitive to global, “topological”
characteristics of images.

2 The Gauss-Bonnet theorem

The Gauss-Bonnet theorem is one of the most important theorems in differential
geometry, in that it provides a remarkable relation between the topology of a
surface and the integral of its Gaussian curvature.

Let R be a compact region (e.g. a Monge patch) whose boundary ∂R is the
finite union of simple, closed, piecewise regular curves Ci. Consider a polygonal
decomposition of R, that is a collection of polygonal patches that cover R in a
way such that if any two overlap, they do so in either a single common vertex
or a single common edge [12].



Thus a polygonal decomposition D carries with it not only the polygonal
patches, called faces, but also the vertices and edges of these patches. Suppose
D has f faces, e edges and v vertices, then χ = f − e+ v is the Euler-Poincare’
characteristic of R and it is the same for all polygonal decompositions of R [12].
The Euler-Poincare characteristic can be extended, in a natural way, to regular,
compact surfaces. In Fig. 1 some examples of closed surfaces with different val-
ues of χ are shown. Two compact surfaces are topologically equivalent if and

Fig. 1. Surfaces with different Euler-Poincare’ characteristics (χ = 2, 0,−2 from left
to right).

only if they have the same Euler-Poincare’ characteristic χ [12, 6]. Here, we are
interested in Monge patches, that represent both the visible part of surfaces and
their images. If the Monge patch M is a simple region, that is is homeomorphic
to an hemisphere, χ = 1 [6] , if it has an hole χ = 0, and in general

χ = (1− nholes). (1)

Note that if, instead of regions, we consider regular surfaces, equation 1
becomes χ = 2(1 − nholes). The definition of χ holds for connected surfaces;
we shall now extend the definition of χ to the case of not connected surfaces.
Suppose there are n object in the scene, the global Euler-Poincare’ characteristic
χT is then simply χT =

∑n
j χj .

Consider a region R. The Euler-Poincare’ characteristic is related to the
curvature of R by the celebrated Gauss-Bonnet formula∫ ∫

R

KdA+
∑
i

∫
Ci

kgds+
∑
i

θi = 2πχ, (2)

here dA is the infinitesimal area element, Ci are regular curves forming the
boundary ∂R of R, kg is the geodetic curvature computed along the curve Ci
and θi are the external angles at the vertices of ∂R.

If S is a compact orientable surface then
∫ ∫

S
KdA = 2πχ(S) [12, 6].

This is a striking result: how is it possible that, when integrating a local
property of a surface, we obtain global topological invariants of that surface?
Let us consider the surface of a sphere S2 in R3. For a given radius r, the
Gaussian curvature is K = 1/r2 and

∫ ∫
S2 KdA = 4π. Note that this result does

not depend on r, since as r increases K decreases but the area of the surface
increases. More importantly, the result is the same for all surfaces topologically



equivalent to a sphere. Suppose S2 is transformed into a surface S by deforming
the sphere with a dent. In this case the area increases, and the elliptic part
of the dent gives additional positive values. At the same time, however, new
negative values of K are produced at the hyperbolic regions of the dent, and,
as a consequence, positive and negative curvatures cancel out and the total
curvature remains constant.

3 All images are topologically equivalent

In this section we give a formal proof that all images are topologically equivalent.
Topological equivalence of two images implies that, given any pair of images
with representation L = (x, y, I(x, y)) and N = (x, y, J(x, y)), there exists an
homeomorphism taking one into the other. First we prove the following

Lemma 1 Let I be a function from U to R and let φ : (x, y) → (x, y, I(x, y))
from U to R3. If I is continuous then φ is an homeomorphism.

Proof. The map φ is one-to-one and can be written as φ = i× I where × is the
Cartesian product and i is the identity map of U onto itself, which is obviously
continuous. Since I is continuous by hypothesis, then φ is continuous [6]. The
inverse of φ, is nothing else than the orthographic projection from M to U , which
is continuous [6] and the assertion follows.

From the lemma it follows that

Proposition 1 Let L and N be images defined as the graph of continuous func-
tions I and J respectively; then there exists an homeomorphism h : L → N .

Proof. Consider the maps φ : (x, y) → (x, y, I(x, y)) from U to L and ψ :
(x, y) → (x, y, J(x, y)) from U to N and define h = ψ ◦ φ−1, which is a map
from L to N . The map h is an homeomorphism being the composition of two
homeomorphisms φ and ψ.

If f is supposed to be smooth, that is to have continuous partial derivatives
of any order in a open set U in R2, then the surface is regular [6], and then it is
easy to prove that all surfaces, which are the graph of differentiable functions,
are diffeomorphically equivalent; that is to say that for any pair of surfaces there
exists a bijective map, smooth with its inverse, taking one surface onto the other.

From proposition 1 it follows that all images must have the same Euler-
Poincare’ characteristic χ, that can now be computed by making use of the
Gauss-Bonnet theorem.

The Gaussian curvature of a Monge patch L = {x, y, I(x, y)} is given by [6]
K = | HI |

(
1 + (∂I/∂x)2 + (∂I/∂y)2

)−2 where | HI | is the determinant of
the Hessian matrix HI of the function I.

Let now V ⊂ R2 be a disk of radius r with boundary C; V is a flat surface,
hence

∫ ∫
V
KdA = 0 and

∑
i θi = 0 because there are no vertices. In this case the

geodetic curvature along C is equal to the curvature k = 1/r of C and it follows



that
∫
C
kgds = 2π. Therefore χ = 1, and, since χ is a topological invariant, it

must be the same for all images.
It must be pointed out that the result applies only to Monge patches, and

hence not to any regular surface in R3; however we are interested in images,
which indeed are graphs of functions, and hence Monge patches.

In our proof we assumed image intensity I to be a continuous function.
This is a common assumption justified by the observation that most images are
band limited due to the imaging system. In human vision there is a good match
between the band limitation and the sampling density.

We have seen here that all images are topologically equivalent. Of course this
is is not true for the objects that generate different images. The surfaces of these
objects may have different topological properties, e.g. for a sphere and a torus
χ = 2 and χ = 1 respectively (see Fig. 1), and their visible parts have χ = 1
and χ = 0 respectively (see Eq. 1); however, their images have χ = 1. Thus the
topological properties of an object’s surface cannot be determined as topological
properties of the corresponding image surfaces. In other words, characteristics
such as holes or discontinuities do not exist in the images per se, indeed there is
no a priori reason to interpret dark or light blobs as holes. Nevertheless, one can
do so and successful methods for estimating the Euler characteristic of binary
images have been presented [13, 10].

4 Pseudo-topological properties of images

It has been mentioned before that there is some experimental evidence suggest-
ing that the human visual system can discriminate on the basis of what appear
to be different topological properties of the objects underlying the image. Then
it is of interest to search for image properties, which reflect topological properties
of the associated objects. We call such properties pseudo-topological properties
of images, and we shall investigate, which kind of operators are appropriate
to detect pseudo-topological image properties. To compute pseudo-topological
properties of images by integrating local features as the outputs of some op-
erator, then only 2D-operators, that capture the local curvature of the image,
seem appropriate, even though not all 2D global operators will work in detecting
pseudo-topological properties of images. Indeed let L be the geometrical repre-
sentation of an image and suppose that its boundary C is a regular closed curve
contained in a planar region such that, in C, |∇I| = 0. Then we have, as seen
before,

∑
i

θi +
∑
i

∮
Ci

kgds = 2π. (3)

From the Gauss-Bonnet formula
∫ ∫

V
KdA + 2π = 2πχ, and, since χ = 1,∫ ∫

V
KdA = 0. If we now extend an image by a planar frame we can find a

curve C such that Eq. (3) holds. Then, for all “framed” images the total cur-
vature is equal to zero. For any practical purpose this also implies that any



deviation from zero will be a boundary effect. Therefore, a straightforward ap-
plication of the Gauss-Bonnet theorem to image analysis cannot lead to useful
image properties. We will make no attempt to develop a general theory about
the invariance properties of integral 2D-operators. Instead, we will show how
a specific 2D-operator, namely the clipped-eigenvalues (CEV ) operator, can be
used to compute pseudo-topological properties of images. This operator has been
introduced as a model for dot-responsive cells in [16], and described in more de-
tail in [1]. Nevertheless, it seems useful to understand in the present context how
the operator can be derived from the expression for the Gaussian curvature K.
The determinant of the Hessian of I can be written as

|HI | =
1
4

(
∂2I

∂x2
+
∂2I

∂y2

)2

− 1
4

(
∂2I

∂x2
− ∂2I

∂y2

)2

−
(
∂2I

∂x∂y

)2

, (4)

that is,

|HI | =
(
∇2I

)2 − ε2, (5)

where ∇2I is the Laplacian on the intensity I and ε is the eccentricity; they
determine the eigenvalues of HI through the formula λ1,2 = ∇2I ± ε2. The
operation of clipping is defined as λ+ = Max(0, λ) and λ− = Min(0, λ). The
CEV operator is then CEV (I) = λ+

2 (I)− λ−1 (I). Note that in case of isotropic
patches, where ε = 0, CEV (I) = ∇2I. But when a pattern becomes elongated,
CEV will be less than ∇2I and will become zero for straight patterns. The local
operator CEV yields a global measure < CEV > defined as the average of CEV
on the whole image.

The main difference between the Gaussian curvature and the operator CEV
is that the latter is zero for hyperbolic surface patches. Using the clipping oper-
ation one obtains different signs for positive- and negative-elliptic patches, and
only patches with absolute CEV values above a small threshold contribute to
< CEV >. Fig. 2 presents some examples of the action of CEV on different
images and the corresponding values of < CEV > are also shown. Note that
| < CEV > | is, within a very small error due to the numerical approxima-
tion, equal to |χT |, the total Euler-Poincare’ characteristic of the visible parts
of surfaces in the scene.

The < CEV > measure exhibits the pseudo-topological invariance illustrated
above as long as the patterns have the same contrast. A contrast independent

version of the CEV operator can be defined as CEVN = (λ+
2 (I)−λ−1 (I))

(c+(∂I/∂x)2+(∂I/∂y)2)1/2 ,

where c is a small constant. With this measure we have obtained results where
< CEVN > varied with less than 1% for patterns with different contrasts.

Pseudo-topological invariance is also limited by the scale of the operators
and the size and shape of the patterns that are involved. We should mention
here, that before computing the partial derivatives, the images are low-pass
filtered with a Gaussian filter, which defines the scale of the CEV operator (that
can be evaluated on multiple scales). However, any image can be zoomed (by
nearest-neighbor interpolation) such that patterns are approximated by saw-
tooth contours (like the two tilted polygons in the third row of Fig. 2). In this



Fig. 2. Responses of the CEV operator (second and fourth row) to 8 different patterns
(first and third row). In addition, the mean values of < CEV > (normalized to the
first image) are given.

case the scale on which the CEV operator is computed can be finer than the
highest frequencies of the original patterns. On such zoomed images, we can
obtain the above pseudo-topological invariance independent of the shape of the
patterns.

As concerns simulations of visual functions, however, the issue of strong in-
variance is less relevant. More important is whether we can predict the experi-
mental results with reasonable model assumptions.

5 Simulations of experimental data

Due to Minsky and Papert [11] it is a widespread belief that topological prop-
erties of images can neither be easily computed by simple neural networks, nor
easily perceived by human observers. In a series of experiments, Chen has shown
that subjects are sensitive to “topological” properties of images, and he has in-
terpreted his results as being a challenge to computational approaches to vision.
For example in [4] he has shown that if two images are presented briefly (5 ms),
subjects discriminate better between images of a disk and a torus, than they do
in case of images of a disk and a square or a disk and a triangle, respectively.
Note that the objects disk, square, and triangle are topologically equivalent,
χ = 2, whereas is case of a torus χ = 0, compare Eq. (1) and Fig. 1.

Further indications of this kind of performance, that Chen attributed to
some topological process, have been found in reaction-time experiments [5] where
subjects were as fast (750 ms on average) in finding the quadrant containing a
“closed” pattern (a triangle), with the 3 other quadrants containing an “open”



pattern (an arrow), as they were in finding an empty quadrant (with the other
3 quadrants containing a square) - see Fig. 4.

Proposition 1, on the other hand, demonstrates that the image does not
directly exhibit the topological properties of the underlying surfaces and that
some type of further processing is needed, which we have attributed to the action
of the CEV operator. To simulate the results obtained by Chen, the image shown
at the left of Fig. 3 was used as an input, to which the CEV operator was applied
with a result shown in the middle of Fig. 3. The final results are displayed on the
right of Fig. 3. Here we have not computed the global mean values < CEV >
but have integrated the local CEV values by low-pass filtering.

Therefore the intensity map shown on the right of Fig. 3 can be interpreted
as a local estimate of < CEV >, denoted by CEVLP , that varies with (x, y)
and depends on the chosen scale. Obviously, if CEVLP were the representation,
which subjects use for discrimination, the difference between the ring and the
disc would be larger than the differences between the disc and the rectangle and
triangle (as found in the experiment). The existence of an end-stopped CEV -like
representation is well motivated by neurophysiological and some psychophysical
results [17]. The spatial filtering is common in many other models, e.g, of texture
perception [3]. What it assumes is that the similarity metric involves some spatial
integration. Of course, the CEVLP representation depends on a few parameters,
mainly the scale of CEV itself and of the low-pass filter. However, the point
here is that it is easy to predict the experimental results with reasonable values
of the parameters, and we found the predictions to be stable with respect to
variations of the parameters. A more comprehensive analysis of how the pseudo-
topological properties depend on the spatial scales of the underlying operations
is beyond the scope of this paper. The results shown in Fig. 4 have been obtained

Fig. 3. Input image (left), output of the CEV operator (middle) and, on the right, low-
pass filtered CEV operator (CEVLP ). The result on the right predicts the experimental
findings that humans are more sensitive to the difference between a circle and a ring,
than between a circle and a square or a triangle.



in a similar way. Here the CEVLP result shown on the right illustrates the large
difference between the triangle and the arrow in this representation.

Fig. 4. Simulations as in Fig. 3 but for a different input. In this example results predict
the large perceptual difference between the open and the closed shapes arrow and
triangle.

6 Conclusions

We have shown here that all images are topologically equivalent. From this we
can conclude that any “topological” properties of images depend on, and are
restricted to, some additional abstractions or computational rules.

Chen’s experiments reveal that the human visual system is sensitive to “topo-
logical” properties of the input patterns. Our simulations show that the results
can be explained by assuming that the visual system evaluates integral values of
specific curvature measures. These integral values can be seen as corresponding
to activities of end-stopped, dot-responsive cells that are averaged over space. A
possible interpretation is that in certain cases, e.g. at short-time presentations,
the system evaluates integral values of an underlying, end-stopped representa-
tion. End-stopped neurons in cortical areas V1 and V2 of monkeys are oriented
and more complex than dot-responsive cells. For simplicity, we have restricted
our simulations to the CEV operator and have argued that the basic requirement
for pseudo-topological sensitivity is that straight features are not represented.
However, we have shown before that even the retinal output could be endstopped,
depending on the dynamics of the input, and that the quasi-topological sensi-
tivity is not limited to the use of the CEV operator [2].

The evaluation of integral values is assumed to be relevant to texture percep-
tion also. Indeed, we have been able to show that certain human performances in
texture segmentation can be predicted by integrating the output of 2D-operators
in general and of the CEV operator in particular [3]. Thus, we are confident to
be dealing with a rather general principle of visual processing.
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