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Abstract. This paper briefly summarises our results on gaze guidance
such as to complement the demonstrations that we plan to present at
the workshop. Our goal is to integrate gaze into visual communication
systems by measuring and guiding eye movements. Our strategy is to
predict a set of about ten salient locations and then change the prob-
ability for one of these candidates to be attended: for one candidate
the probability is increased, for the others it is decreased. To increase
saliency, in our current implementation, we show a natural-scene movie
and overlay red dots very briefly such that they are hardly perceived
consciously. To decrease the probability, for example, we locally reduce
the temporal frequency content of the movie. We here present prelim-
inary results, which show that the three steps of our above strategy
are feasible. The long-term goal is to find the optimal real-time video
transformation that minimises the difference between the actual and the
desired eye movements without being obtrusive. Applications are in the
area of vision-based communication, augmented vision, and learning.

1 Introduction

An important property of human vision is that we must constantly shift our
gaze between objects of interest because only the central part of the retina
provides high visual acuity. Moreover, we can only attend to a very limited
number of features and events in the visual environment. These facts have severe
consequences for visual communication, because what is communicated depends
to a large degree on those mechanisms in the brain that deploy our attentional
resources and determine our eye movements.

The message that is conveyed by an image is thus determined not only by the
image itself, but by the image in conjunction with the observer’s gaze pattern,
which may vary considerably from person to person and with context. Therefore,
gaze is as important an attribute as brightness or colour for defining the message
that reaches the observer.



We propose that future information and communication systems should be
designed to optimise gaze patterns and the use of the user’s limited attentional
resources. We believe that in future communication systems, images and movies
will be defined not only by brightness and colour, but will be augmented with a
recommendation of where to look, of how to view the images.

Gaze guidance can also be used to create new kinds of vision aids that fuse the
strengths of human and computer vision to improve human visual capabilities.
Such augmented-vision systems are of particular interest for automotive applica-
tions. For example, the driver’s attention can be directed towards a pedestrian,
who has been detected by sensors looking out of the car, in cases when the driver
would otherwise fail to see the pedestrian.

Gaze guidance can be used for a further kind of application in which novices
can be taught to view images with the eyes of experts. It is known that experts,
for example experienced pilots, scan their environment in a way that substan-
tially differs from how inexperienced viewers would. We believe that by applying
the gaze pattern of experts to novices, we can evoke a sub-conscious learning ef-
fect.

To reach such goals, however, a considerable amount of basic research and
technological development is still required. During the workshop we will demon-
strate the eye-tracking and display technology that we currently use and continue
to develop [1,2]. In the remainder of this paper we report on a few results that
address selected problems of gaze guidance.

2 Guidance of Eye Movements

The final goal of our gaze guidance system is to direct the user’s attention
to a specific part of a scene, ideally without the user noticing this guidance.
Our strategy is to (i) predict a few candidate locations for saccade targets, (ii)
increase the probability of being attended for one candidate, and (iii) decrease
the probability for the other candidates. We have not yet implemented a system
that integrates all components of this strategy, but will show some results related
to the individual points (i-iii) above.

2.1 Eye Movement Predictions

We have investigated the variability of eye movements with dynamic natural
scenes and found that 5-15 clusters (frequently looked at regions that, when taken
together, cover 2-5 % of the viewing area) account for 60 % of all fixations [3].
This justifies our approach of predicting a small set of candidate locations based
on low-level features of the visual input.

Like other authors, e.g. [4], we base our approach on a saliency map that
assigns a certain degree of saliency to every location in every frame of a video
sequence. Various techniques exist for computing saliency maps, but they are
all based, in one way or another, on local low-level image properties such as
contrast, motion or edge density, and are intended to model the processes in the



human visual system that generate saccade targets. We assume that the human
visual system uses low-level features such as those used in saliency maps to
generate a list of candidate locations for the next saccade target, and that top-
down attentional mechanisms then select one of the candidate locations as the
actual saccade target (although in reality, bottom-up and top-down processing
will most likely be hard to segregate). This selection mechanism is probably very
difficult to model algorithmically. In our view, a more realistic goal is therefore
to predict a certain number of candidate locations, say ten, that will with high
probability include the actual saccade target, and our above mentioned results
on gaze analysis show that a small number of target locations usually covers
most of the variations in the eye movements made by different observers.

As described previously [5, 6], our approach to saliency is based on the con-
cept of intrinsic dimension that was introduced for still images in [7]. The in-
trinsic dimension of a signal at a particular location is the number of directions
in which the signal is locally non-constant. It fulfils our requirement for an al-
phabet of image changes that classifies a constant and static region with low
saliency, stationary edges and uniform regions that change in time with inter-
mediate saliency, and transient patterns that have spatial structure with high
saliency. We also note that those regions of images and image sequences where
the intrinsic dimension is at least 2 have been shown to be unique, i.e. they
fully specify the image [8]. The evaluation of the intrinsic dimension is possi-
ble within a geometric approach that is plausible for biological vision [9] and is
implemented here by using the structure tensor J, which is well known in the
computer-vision literature [10]. The structure tensor is defined in terms of the
spatio-temporal gradient V f of the image intensity function

J=wxVf® Vf =w=x (VEVET) (1)

where w denotes a convolution kernel that performs a local averaging of the
product terms. Our saliency measure that was used for the results presented in
Fig. 1 is K, the determinant of J, which indicates an intrinsic dimension of 3, i.e.,
there is no spatio-temporal direction along which intensity is constant. Typical
features with high K-values would be blobs or corners that appear or dissappear.
To extract salient features on different spatial and temporal scales, we construct a
4-level spatio-temporal Gaussian pyramid from the image sequence and compute
the saliency measures on each level. Details of how we select the candidate
locations from the saliency map are given in [11]. We have used other invariants of
the structure tensor (trace and sum of minors that indicate intrinsic dimensions
of at least one or two respectively) and found prediction results that were slightly
worse. We have not performed more comprehensive comparisons for two reasons:
(i) the results are good enough for our purpose of guiding eye movements, and
(ii) we are not aware of similar attempts to predict a set of locations based on a
spatio-temporal measure.

As a baseline for assessing the saliency maps computed analytically using the
K measure, we use empirical saliency maps, i.e. saliency maps computed from
the actual eye movements of the test subjects. These give us an idea of what



the saliency map should look like for a given video sequence, and they can serve
as a basis for judging what the best possible results are that we can expect for
predictions made solely on the basis of a saliency map generated from the image
data, without taking individual top-down strategies into account (the empirical
saliency actually does even better than the best possible saliency because it
is derived from the data that are then predicted). To generate the empirical
saliency map for a video frame, we determine the current gaze position of each
observer and place a Gaussian with a standard deviation of 16 pixels at each of
these positions. The superposition of these Gaussians then yields the empirical
saliency map. For a detailed description see [6].

Note that the attempt of predicting ten candidate locations based on a simple
saliency measure is quite successful in the sense that it approaches the limit
given by the empirical predictor. However, when using only one instead of ten
candidates, the errors obtained for both the empirical and the analytical saliency
measures are still better than chance but unacceptably high.
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Fig. 1. Saliency prediction results. Histogram of error (distance of saccade target to
closest salient candidate location) for ten candidate locations. The horizontal axis plots
the error magnitude in degrees, the vertical axis plots the number of saccades per
histogram bin. Plots are shown for the K saliency measure, the empirical saliency
measure, and locations chosen at random.



2.2 Effect of Gaze-Contingent Red Dots

We now address the problem of increasing the probability of candidate locations
to be attended. In a first set of experiments, we were motivated by the well-known
fact that sudden object onsets in the visual periphery can attract attention. We
therefore chose to briefly superimpose small bright red dots on the displayed
movie. Depending on the eccentricity of the dots at the time of their flashing,
in up to about 40 % of trials, saccades were initiated towards the location of
the flashed red dot when subjects where asked to just watch the movie. The
results of these experiments are shown in Fig. 2. Note that the red-dot stimuli
have a considerable effect when presented at 10 degrees eccentricity. The effect
is smaller at 15 and 20 degrees partly because of the limited field of view and
partly due to the fact that the stimulus size was not scaled (enlarged by the
cortical magnification factor) with eccentricity and was therefore less effective.

Because the typical saccadic latency of about 200 ms exceeds the presentation
time of the dot, which was set to 120 ms, the red dot was already switched off by
the time the saccade was finished. In another set of experiments, where (other)
subjects watched the same movies and were instructed to look for red dots and
press a button when they detected one, the stimulation remained invisible in
about 50 % of cases. Stimuli at 15 and 20 degrees were less visible than those at
10 degrees.

Similar effects were obtained in an experiment where the red dot was replaced
by a looming stimulus, the looming stimulus being harder to detect than the red
dot. Nevertheless, the exact parameters for an optimal guidance effect, such as
size, contrast, duration, or the timing with regard to previous saccades, still need
to be determined.

2.3 Effect of Gaze-Contingent Spatio-Temporal Filtering

We now address the problem of decreasing the probability of candidate locations
to be attended. To do this, we have developed a gaze-contingent display that
can in real time change the spatio-temporal content of an image sequence as a
function of where the observer is looking [12].

Gaze-contingent displays manipulate some property of the (static or moving)
image as a function of gaze direction (see [13] for a review). The image property
that is most commonly manipulated in a gaze-contingent display is spatial res-
olution. A popular type of manipulation is to foveate an image or video, i.e. to
simulate the effect of the variable resolution of the human retina, which is high-
est at the fovea and falls off towards the periphery. If the foveation is adjusted
to match the resolution distribution of the retina, the effect is not noticeable
for the observer, but the resulting images can be compressed more efficiently
because they contain less high-frequency content [14,15]. The current state-of-
the-art algorithm for gaze-contingent spatial filtering of video is due to Perry
and Geisler [16]. Unlike previous algorithms, which introduced artifacts in the
filtered images, their algorithm produces smooth, artifact-free results.
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Fig. 2. Effect of red-dot stimulation. We show the number of cases (in % of all trials)
in which subjects made a saccade to where the red dot had been shown (the saccade
started in a time window of 100 to 300 ms after stimulus onset and landed within a
circle of 5 deg radius around stimulus location). As a reference we show (with a dashed
line) the same results for cases in which the red dots had not been displayed.

Based on this work, we have developed a gaze-contingent display that ma-
nipulates not the spatial, but the temporal resolution of a video. The basic effect
of temporal filtering is to blur the moving parts of an image while leaving the
static parts unchanged (demonstrations will be shown at the workshop). Our
motivation for performing this type of manipulation is that we want to examine
the effect that it has on eye movements; movement or change in the periphery of
the visual field is a strong cue for eye movements. The results presented in Fig. 3
show that gaze-contingent temporal filtering reduces the number of saccades into
the periphery where the temporal frequencies are reduced by our gaze contingent
display. To further improve the effect of the gaze-contingent display, we plan to
specifically change the spatio-temporal content only at certain locations in an
image.

3 Discussion

We have shown that a rather small set of locations where people may look while
watching a natural video can be predicted with acceptable errors based on simple
low-level dynamic saliency measures. This fits well with our previous analysis of
eye movements on high resolution natural videos, which shows that eye move-
ments tend to cluster in rather few (10-20) locations [3]. We then reported on
simple experiments that were meant to increase the saliency by a brief gaze-
contingent presentation of red dots in the periphery. Concerning methods for
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Fig. 3. Effect of spatio-temporal filtering shown as histograms of saccade amplitudes
with and without gaze-contingent temporal filtering. Only the histogram bars for sac-
cades of 10 degrees and greater are shown since no effect could be expected in the
central field of view due to the shape of the foveation function.

decreasing saliency, we have shown that peripheral temporal blur changes the
gaze pattern by inhibiting saccades.

Since we are looking for unobtrusive ways of guiding gaze, we also analysed
the visibility of red dots and of the temporal blur. The visibility is hard to
determine since it depends on the task. However, our results [17] indicate that
there exists a set of manipulations (of which we do not yet know how large it is)
that are effective in guiding eye movements but are not perceived consciously.

We therefore conclude that gaze guidance seems possible in principle. How-
ever, more work is required to better understand the most efficient ways of
performing it. Eventually, we will have to show that gaze guidance can improve
human vision capabilities in behavioural tasks and thus justify the applications
that we have in mind.
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