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ABSTRACT

Larry Stark has emphasised that what we visually perceiverg much determined by the scanpath, i.e. the pattern of
eye movements. Inspired by his view, we have studied the implications of shanpath for visual communication and
came up with the idea to not only sense and analyse eye motgrbanhalso guide them by using a special kind of gaze-
contingent information display. Our goal is to integrategato visual communication systems by measuring and ggidi
eye movements. For guidance, we first predict a set of abosaliént locations. We then change the probability for one
of these candidates to be attended: for one candidate thalpitity is increased, for the others it is decreased. Teeiase
saliency, for example, we add red dots that are displayedhwiefly such that they are hardly perceived consciously. To
decrease the probability, for example, we locally reduestéimporal frequency content. Again, if performed in a gaze-
contingent fashion with low latencies, these manipulati@main unnoticed. Overall, the goal is to find the real-tideo
transformation minimising the difference between thealadnd the desired scanpath without being obtrusive. Apfitios

are in the area of vision-based communication (better obatiwhat information is conveyed) and augmented vision and
learning (guide a person’s gaze by the gaze of an expert anputr-vision system). We believe that our research is very
much in the spirit of Larry Stark’s views on visual perceptand the close link between vision research and engineering

Keywords: eye movements, scanpath, eye tracking, gaze-contingspiaglj gaze guidance, saliency, foveation, aug-
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1. INTRODUCTION

One of the most important characteristics of human visiothas we must constantly shift our gaze between objects of
interest because only a small part of the retina (the fovem)iges high visual acuity. Additionally, we can only attkto

a very limited number of features and events in the visualreninent. These facts have severe consequences for visual
communication, because what is communicated depends tgeadagree on those mechanisms in the brain that deploy
our attentional resources and determine our eye movements.

The information that is conveyed by an image is thus detegthimot only by the image itself, but by the image
in conjunction with the observer’'s gaze pattern, which magy\wconsiderably from person to person and with context.
Therefore gaze is as important an attribute as brightnesslour for defining the message that reaches the obsenter, bu
existing technology does not take this into account.

We propose that future information and communication sgstshould be designed to optimise gaze patterns and the
use of the user’s limited attentional resources. We belieatin future communication systems images and movies will
be defined not only by brightness and colour, but will be augeawith a recommendation of where to look, of how to
view the images.

Gaze guidance can also be used to create new kinds of visieitrit fuse the strengths of human and computer vision
to improve the visual capabilities of the user. Such augetatsion systems are of particular interest for autoneotiv
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Figure 1. Hardware currently used to incorporate eye tracking teldyyointo visual communication systems. Left: Monoculaatie
mounted display worn together with a head-mounted EyeLirkteacker. Middle: Remote eye tracker attached to a stdntil
screen. Right: Custom-built head-mounted display witbgrated binocular eye tracking and two outward-facing scameras.

applications. For example, the driver’s attention can beatéd towards a pedestrian, who has been detected by sensor
looking out of the car, in cases when the driver would otheevail to see the pedestrian.

Gaze guidance can be used for a further kind of applicatiomhiith novices can be taught to view images with the
eyes of experts. It is known that experts, for example expegd pilots, scan their environment in a way that substinti
differs from how inexperienced viewers would. We believatthy applying the gaze pattern of experts to novices, we can
evoke a sub-conscious learning effect.

To reach such goals, however, a considerable amount of teesiarch and technological development is still required.
In Fig. 1 we show the eye-tracking and display technologyweacurrently use and further develop. In the remainder of
this paper we report on a few results that address seleabddipns of analysing, predicting, and guiding gaze.

2. ANALYSIS OF GAZE

We have investigated the variability of eye movements withainic natural scenes. To this end, we collected a large
data set of gaze samples from 54 subjects watching a varietigast high-resolution video clips (20 s duration each).
For each movie frame, clusters of gaze samples were exdragtan unsupervised machine-learning algorithm. First, a
fixation map was created by a superposition of Gaussianseckat each gaze sample. From the resulting map, up to
n = 20 maxima were extracted by iteratively applying a lateralitfon scheme. Then, clusters were formed using a
simple distance threshold. Results show that there exisspts that contain a high number of fixation locations. On
average, 5-15 clusters (2-5 % of the viewing area) accouri@d% of all fixations. An example of fixation patterns is
shown for a single frame of one of our videos in Fig. 2. The dataye-movement variability have been briefly presented
at two conferencés®; a comprehensive analysis will be published in a forthcanpiaper.

3. PREDICTION OF GAZE

Our approach to gaze prediction divides the problem intopands: First, predicting the eye movements made between
saccades (intersaccadic prediction); and second, pirgglitie targets of saccades (saccade prediction). Divitlieg
problem in this way requires some means of switching betw#ersaccadic prediction and saccade prediction. Cuytent
we use a saccade detector, i.e. we switch from intersacpaeliliction to saccade prediction once we detect that a dacca
is taking place. Ultimately, one would also want to prediwtta saccade will take place before it actually starts. For
intersaccadic prediction, we use a predictor based on gigperlearning techniques that uses a history of prewousl
attended locations to predict the gaze position in the rieet step?: °

Saccade prediction is certainly the harder of the two suldpros. Like other authors, e.g. Ref. 6, we base our approach
on a saliency map that assigns a certain degree of saliemsxety location in every frame of a video sequence (see Fig. 3
for an example). Various techniques exist for computingesaly maps, but they are all based, in one way or another,
on local low-level image properties such as contrast, matioedge density, and are intended to model the processes in
the human visual system that generate saccade targets. IMehibat the human visual system uses low-level features
such as those used in saliency maps to generate a list ofdzdedications for the next saccade target, and that toprdow



Figure 2. Still shot from a video of a natural scene. Each little squiadécates the gaze position of one observer. These gazégpssi
are not uniformly distributed across the image, but tenduster in “interesting” regions.

Figure 3. Left: Still shot from a video. Right: Corresponditig saliency map. Ten candidate saccade locations were edriiom the
map (little squares).
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Figure 4. Saliency prediction results. Histogram of error (distaoicgaccade target to closest salient candidate locatiotgficandidate
locations. The horizontal axis plots the error magnituddegrees, the vertical axis plots the number of saccadesigegtam bin.
Plots are shown for thé&/, S, and K saliency measures, the empirical saliency measure, aatidos chosen at random. When using
only one instead of ten candidates, errors based on allénsglimeasures are still better than chance but unacce tigily

attentional mechanisms then select one of the candidadtdos as the actual saccade target. This selection mechai
probably very difficult to model algorithmically. In our wie a more realistic goal is therefore to predict a certain bem

of candidate locations, say ten, that will with high probi&pinclude the actual saccade target, and our above nregdio
results on gaze analysis show that a small number of targatitms usually covers most of the variations in the eye
movements made by different observers.

As described previously? our approach to saliency is based on the concept of intriisiension”® The intrinsic
dimension of a signal at a particular location is the numibdirections in which the signal is locally non-constantulfils
our requirement for an alphabet of image changes that fissai constant and static region with low saliency, statipna
edges and uniform regions that change in time with interatedialiency, and transient patterns that have spatiatstal
with high saliency. We also note that those regions of imagesimage sequences where the intrinsic dimension is at
least 2 have been shown to be unique, i.e. they fully spehifyinage'®'' The evaluation of the intrinsic dimension
is possible within a geometric approach that is plausibtebfological visio? and is implemented here by using the
structure tensod, which is well known in the computer-vision literature !> Our saliency measures are the invariants
of J, namely the tracé?, the sum of minorsS, and the determinarit’. To extract salient features on different spatial
and temporal scales, we construct a 4-level spatio-terh@@assian pyramid from the image sequence and compute the
saliency measures on each level.

As a baseline for assessing the saliency maps computediaatyy based on thé7, S, and K measures described
above, we use empirical saliency maps, i.e. saliency mappaeted from the actual eye movements of the test subjects. In
a sense, they give us an idea of what the saliency map shakdike for a given video sequence, and they can serve as a
basis for judging what the best possible results are thatameegpect for predictions made solely on the basis of a salien
map generated from the image data, without taking indivityadown strategies into account (the empirical salieiscy
actually doing even better than the best possible salieacgise it has been derived from the data that are then prefict
To generate the empirical saliency map for a video frame, @terchine the current gaze position of each observer and
place a Gaussian with a standard deviation of 16 pixels dt ehthese positions. The superposition of these Gaussians
then yields the empirical saliency map. For a detailed digtion, see Ref. 5.

4. GAZE GUIDANCE

The final goal of our gaze guidance system is to direct thesuaention to a specific part of a scene, ideally without
the user noticing this guidance. Our strategy is to (i) predifew candidate locations, (ii) increase the probabdity
being attended for one candidate, and (iii) decrease thzapitity for the other candidates. We have not yet implereeént
a system that integrates all components of this strategywhiushow some results related to (ii) and (iii) above in the
remainder of this section.
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Figure 5. Raw data plots for stimulation with red dots. Horizontalsagiots time after stimulation onset, vertical axis denates
distance from the gaze position to the locus of the stimoati eft: Results for one subject. Right: Baseline trialevenred dots were
not shown (since red dots had been shown at randomly crsadiemtlocations this control seems necessary).

4.1. Effect of gaze-contingent red dots

Apart from our work on modelling which image features attigaze, we have therefore also conducted experiments with
several different spatio-temporal transformations desigto alter eye-movement characteristics. These tranat@ns
were based on observations made with synthetic stimulichvere commonly used in experiments that investigate at-
tentional effects. The first set of transformations was wadéid by the well-known fact that sudden object onsets in the
visual periphery can attract attention. We chose to briefpesimpose small bright red dots on the movie. Depending on
the eccentricity of the dots at the time of their flashing, inta about 40 % of trials, saccades were initiated towards the
location of the flashed red dot when subjects where askedstavjatch the movie. The results of these experiments are
shown in Fig. 5.

Because the typical saccadic latency of about 200 ms extieegsesentation time of the dot, which was set to 120 ms,
the red dot was already switched off by the time the saccaddiniahed, so that in about 50 % of cases this stimulation
remained invisible in another set of experiments wheregtbubjects watched the same movies, but were now asked to
detect the red dots, and they pressed a button when theytetbtbe dots.

Similar effects were obtained in an experiment where thed@dvas replaced by a looming stimulus, the looming
stimulus being harder to detect than the red dot. Nevedhglbe exact parameters for an optimal guidance effedt,asic
size, contrast, duration, or the timing with regard to poergisaccades, still need to be determined.

4.2. Effect of gaze-contingent spatio-temporal filtering

For a second, more complex set of transformations, we havelafeed a gaze-contingent display that can in real time
change the spatio-temporal content of an image sequendmiast®n of where the observer is looking.

Gaze-contingent displays manipulate some property ofgtegi¢ or moving) image as a function of gaze direction
(see Ref. 15 for a review). This type of display was first usedeiading researé¢h and has since been used in many
psychophysical and perceptual studies (e.g. Ref. 17). fflagé property that is most commonly manipulated in a gaze-
contingent display is spatial resolution. A popular typenafipulation is to foveate an image or video, i.e. to simaihé
effect of the variable resolution of the human retina, whichighest at the fovea and falls off towards the periphefry. |
the foveation is adjusted to match the resolution distidsudf the retina, the effect is not noticeable for the obseriut
the resulting images can be compressed more efficientlyusedaey contain less high-frequency contént? Another
application is to visualise the effect of diseases of the eyg glaucom®; these visualisations can be used to educate
students or family members of patients about the effectsict sliseases. The current state-of-the-art algorithmdaeg
contingent spatial filtering of video is due to Perry and @ei¥ Unlike previous algorithms, which introduced artifacts
in the filtered images, their algorithm produces smootlifazttfree results.



Figure 6. Left: Image from one of the video sequences. Right: Sameémdth gaze-contingent temporal filtering applied; the whit
square at the centre left (below the white sail) indicatespibint of regard.
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Figure 7. Histogram of saccade amplitudes with and without gazeitgant temporal filtering. Only the histogram bars for saesaof
10 degrees and greater are shown since no effect could betedpe the central field of view due to the shape of the foeesdfinction.

Based on this work, we have developed a gaze-contingeriaglifpat manipulates not the spatial, but the temporal
resolution of a video. The basic effect of temporal filterisgo blur the moving parts of an image while leaving the stati
parts unchanged (see Fig. 6 for an example). Our motivatiopdrforming this type of manipulation is that we want to
examine the effect that it has on eye movements; movemeiitaorge in the periphery of the visual field is a strong cue
for eye movements. The results presented in Fig. 7 show #m-gontingent temporal filtering reduces the number of
saccades with large amplitude.

To further improve the effect of the gaze-contingent digphee plan to specifically change the spatio-temporal cdnten
only at certain locations in an image.

4.3. Visibility of temporal blur on a gaze-contingent disphy

In the following, we will describe an experiment where wedlbg and selectively suppress temporal frequencies. The
locus of the suppression is then varied so as to investipateisibility of such changes as a function of eccentriciky.
opposed to the temporal foveation described above, thevédsow filtered with a spatial annulus with variable widtldan
eccentricity. Note that we do not intend to measure the ttolesor the maximum temporal frequency that can be detected
at a given eccentricity; it is the absence of higher tempioegjuencies that subjects had to detect.
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Figure 8. Detection thresholds for temporal filtering as a functioreofentricity. Left: Filtering applied to natural scenesck line
shows results for one width of the filtered annulus-shapgibne(as indicated in the legend). Right: Data for synthetitse sequences
with differing spectral characteristics; a single ring thidf 2.5 degree has been used in these latter experiments.

We had shown previously that in natural scenes, a selectieeirfg of higher temporal frequencies in an annulus-
shaped region around the centre of gaze remains unnotiezchavide range of frequenciés. As shown in the left part
of Fig. 8, the level to which temporal blur can be introdugettéases dramatically with eccentricity.

We now compare these findings with the visibility of tempdskir in dynamic noise with varying spectral charac-
teristics. We tested white noise (uniform spectral contaatwell as pink noise (1/f spectral falloff) that was tengdiyr
lowpass-filtered to model the temporal correlation acrossecutive frames that is characteristic for natural stefig in
the case of the experiments conducted with natural imalyese subjects watched 20 s long video clips (1024x576 pixels
spatial, 30 frames per second temporal resolution) whegleehitemporal frequencies were filtered only in an annulus-
shaped region of width 2.5 degrees at an eccentricity of 02Q0or 30 degrees. After stimulus presentation, subjects
had to indicate whether they had perceived any temporal Bhreshold frequencies were then adjusted in an intertbave
staircase procedure. Subjects were seated 55 cm from a 2ZR"cGRputer screen, running at a spatial resolution of
1280x960 pixels and a refresh rate of 90 fps. Eye movements measured at 240 Hz and the latency of the system,
defined as the time from a change in gaze position to the update display, was 35-75 ms (60 ms on average). This
latency may seem quite high compared to the latencies ofgangent displays that alter single images only, buenot
that building a temporal multi-resolution pyramid is by fastlier. Ultimately, every video frame that is displaysdai
weighted sum of more than 250 high-resolution frames smdting it.

The results in the right part of Fig. 8 clearly show that thisra qualitative difference between natural and synthetic
sequences. Contrary to the effect found in natural scemgsciibn thresholds for temporal blur do not vary signiftgan
with eccentricity both in white and pink noise sequencesweier, in white noise, temporal blur can be detected more
easily (detection threshold at about 25Hz) than in pinke&¢18Hz). We do not have an explanation yet for the qualiativ
differences described above.

5. CONCLUSIONS

We have shown that a rather small set of locations (10-20yevhbeople may look while watching a natural video can be
predicted with acceptable errors based on simple low-ldyeamic saliency measures. This fits well with our analy6is o
eye movements on high resolution natural videos, which stibat eye movements tend to cluster in rather few locations
(10-20). We have then reported on simple experiments theg weant to increase the saliency by the gaze-contingent
and brief presentation of red dots in the periphery. Relsdadethods that would decrease saliency, we have shown that
spatio-temporal blur changes the gaze pattern by inhghéiaitcades. Since we are looking for unobtrusive ways ofrgyid
gaze, we also analysed the visibility of temporal blur anghfibthat peripheral temporal blur remains unnoticed on our
gaze-contingent display, an effect that cannot be repedion the synthetic movies that we used.

We would therefore like to conclude that gaze guidance s@assible in principle, but more work is required to better
understand the most efficient ways of performing it. Evellyuse will have to show that gaze guidance can improve
human vision capabilities in behavioural tasks and by tinstify the applications that we have in mind.
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