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In this paper we consider how the representation of images as
surfaces, and their characterizations via surface differential
forms, can be related to the concept of redundancy in the intensity
signal. In contrast to common approaches, the basic surface types
(planar, parabolic, elliptic/hyperbolic) are not seen as equal-prior-
ity classes, but as corresponding to different degrees of redun-
dancy. This leads to a new approach to image representation and
region labeling based upon generalized curvature measures. Fur-
thermore, we employ different reconstruction algorithms to show
that elliptic surface patches carry the significant information in
natural images. Based upon deterministic and stochastic relaxa-
tion techniques, these algorithms allow one to reconstruct the
original image from (i) “elliptic intensities’’ only and (ii) curvature
measures which are zero for nonelliptic regions. © 1993 Academic

Press, Inc.

i. INTRODUCTION

Low-level visual routines for the characterization of
images are generally focused upon the fundamental prob-
lem of efficiently encoding the image, that is, the capture
of salient or nonredundant image information that can be
used for higher level pattern or object recognition. In
image processing, representations via transform tech-
niques, scale-space or even linear prediction [1] have
been used to encode and segment images.

In recent years, partly due to the development of range
imaging and partly due to the interest in inferring geomet-
ric properties of object surfaces from intensity or range
data, differential geometry has become a popular method
for representing depth or image data. For example, a
large number of object recognition systems characterize
and segment image range data via input surface curva-
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tures in the initial encoding stages (see [2-5]). In these
cases, Gaussian (K) and mean (H) curvatures are used to
determine the eight well-known local surface types.
Haralick [6] used different differential operators to label
each pixel of an intensity image with one of ten topo-
graphic labels.

We have recently developed an alternative conceptual
framework which is based on ‘‘intrinsic signal dimension-
ality’ and differs from the common approaches in two
ways [7-9]. First, we do not think of the basic surface
types as equally important classes, but claim them to be
ruled by a hierarchical order which is determined by their
significance. This results in a classification of signals into
0D (planar), 1D (parabolic) and 2D (elliptic/hyperbolic)
regions corresponding to the different degrees of predict-
ability. Second, we do not use the classical measures
and K, but measures which are more basic and reliable
from a signal processing point of view. This signal pro-
cessing type of approach has also led us to the develop-
ment of a Fourier (spatial frequency) description of the
curvature operators which allows to overcome the limita-
tions imposed by the differential calculus.

The main point of this paper is to show the redundancy
of developable surface patches (planar and parabolic re-
gions) or, equivalently, to demonstrate the predominant
significance of curved (2D) regions for the representation
of relevant image information. (A more detailed discus-
sion of the redundancy concept in the context of image
data compression can be found in [10]. Some hints and
examples are given in Section 2.3.) In general, the rele-
vance of a certain type of image features or a certain
representation can only be judged with respect to a spe-
cific task, that is, one can evaluate the amount of data,
computational effort, etc., needed to achieve a certain
performance.

Our “‘criterion for relevance” is more general. It is
based on the reconstruction of the image on the sole basis
of the suggested ‘‘essential’” features. Our position can
be related to standard arguments concerning the decorre-
lating and energy concentration properties of the
Karhunen-Loéve transform, where the irrelevance of
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coefficients is demonstrated by showing them to be un-
necessary for the achievement of a sufficient signal to
noise ratio of the reconstructed image [1]. In analogy, we
want to show that the planar and parabolic regions are
not essential for a satisfactory reconstruction of the im-
age. This is done in two different ways: in Section 3 by
reconstructing the image from original intensity values at
image positions which are classified as curved (2D re-
gions) and, in Section 4, by dealing with the harder in-
verse problem of reconstruction from curvature mea-
sures.

To attain these ends we first consider some fundamen-
tal aspects of what may be termed “‘geometric signal pro-
cessing”’—in this case the use of filter theory to general-
ize fundamental measures in differential geometry and
compute them in a robust manner.

2. COMPUTING CURVATURES
OR THEIR EQUIVALENTS

2.1. Classical Measures

In classical differential geometry a surface is defined,
in general, by the parametric representation

S(u, v) = {X(u, v), Y(u, v), Z{u, v)}, (N

where (1, v) correspond to the surface (index) intrinsic
parameters and (X, Y, Z) to real-valued functions of (u, v)
which result in three-dimensional loci of surface points.
The fundamental differential operators used in differen-
tial geometry to (uniquely) determine its shape, locally,
are

{SH’ Sl)7 SI[Us SIH(’ SUU}) (2)

where S, refers to partial differentiation of § with respect
to z.

For our application images are special types of sur-
faces: viewer-dependent, insofar as the intensity (or
depth) is a function (f) of the viewer’s stance. That is, for
projection plane coordinates (x, y), fis a function of x, y,
giving (x = u, y = vin (1)):

£, y) = {x, y, flx, M} 3)

Such surfaces are termed ‘‘Monge’” patches [11] and,
sometimes, the 2 1/2-D image’” when referring to depth
maps [12]. The fundamental theorem of surfaces not only
shows that the five differential operators defined in Eq.
(2) uniquely define a surface up to rigid motions, but that
surface curvatures are readily derived from these mea-
sures. Specifically, these operators determine two matri-
ces which constitute the coefficients of the surface first
and second fundamental forms, which, for Monge
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patches (3), are (the matrix notations are chosen to illus-
trate common structures of the measures introduced be-

low)
. < £ p) <1 + £ L ) )
g = | o o ffy 1+ 12

( L M> (f fxy>
(bz‘j) = = . . N,
M N fxy f yy

N = surface normal. (5)

That is,

1 fw f,;rv
(byj) V1 + f? + f% (/A» Sy ) ©

The principle curvatures correspond to the eigenvalues
of

(bi)gi)™". (7

Equally, the eigenvalues of the Hessian of f(x, y) pro-
vide unnormalized principal curvature estimates and are
adequate for the classification of region types in terms of
their curvature sign.

For ki, k, corresponding to the eigenvalues of (7),
mean (H) and Gaussian (K) curvatures are given as

1 1
H = ‘2‘ (/(1 -+ /\’2) == ‘i trace(b,:,-)(g,;)"‘ (8)
and
- . N det(b,;,)
K = /(1 kz - mdet((g‘;;,-_)“' (9)

Similar to Eqgs. (8) and (9) we obtain the Laplacian form,

1

. . 1
Af = E U“dCC(/’l(/‘) = % (fux + f}’)’) = z (dy + dy), (10)

and the determinant of the Hessian,

D = det(hy) = fuicfyy — %} = dyd,, (1)
where d,, d are the eigenvalues of the Hessian
foo S
(hy) = < A I (12)
fxy fyy

2.2. Geometrical Signal Processing

Differential geometry uses the calculus for a quantita-
tive description of surface properties. Therefore the basic
measures are first and higher order derivatives (tradition-
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ally computed by finite difference, or convolution-based
procedures). However, by using Fourier methods for a
frequency domain design of the operators we have been
able to provide more stable and more general curvature
measures.

We first note that Eq. (11) can be rewritten as

r . . | . ) .
D = Z (fxx + fyy)z - Z (f.\"x - fyy)z - .%y = (Af)2 - 82,
(13)
with eccentricity ¢ defined as
| . .
gt = Z (.fxx - fyy)2 + f.%_v . ,2\’y + f,:\z"y’

1 . | .
= Z (f\\ - fy_v)z + Z (fx’x' - fy’y’)z'

The (x’, y') coordinates are rotated 45° relative to (x, y)
and are introduced to illustrate that the eccentricity can
result from bandpass filters, as discussed below. The ec-
centricity ¢ is a measure of ‘‘elongatedness’’, that is, it is
equal to zero for circular symmetric patches and equal to
the Laplacian (Af) for parabolic regions.

Interestingly enough, the eigenvalues d,, d, can be
computed using the same Laplacian (Af) and eccentricity
(e) operators (the proof is straightforward):

dis = Af +/— e. (14)

To obtain operators with different selectivities for posi-
tive and negative elliptic patches we introduce the clip-
ping operation:

d, d=20 0, d=0
dt = ;. d o= (15)
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As shown in Table 1, the clipped-eigenvalues operator

¢, ) =dix, y) — dix, y) (16)
is equal to the minimum (with respect to orientation) sec-
ond-order derivative within elliptic regions and zero else-
where.

Remember, that we are concerned with differentiating
between curved (2D) and not curved image regions.
From Table 1 it should be clear that this can be done by
using the Laplacian and the eccentricity as basic mea-
sures. In the following we present possible implementa-
tions and generalizations of this operation from a signal
processing point of view.

Even- and odd-order partial derivatives correspond,
via the convolution and differentiation theorems [1], to
even (real) and odd (imaginary) transfer functions of the
form (in)", or (iv)", where (u, v) are the (spectral) spatial
frequency coordinates and # is the order of differentia-
tion.

Introducing the filter functions (in polar frequency co-
ordinates p, 8, where A(p) corresponds to the radial filter
tuning function),

C, = ()"A(p)cos(n®)

4 a7
S, = (()*"A(p)sin(n®)

with their corresponding image domain convolution ker-

nels ¢,(x, y), s.(x, ¥), we can define a generalized eccen-
tricity (g,) as

en = (calx, ) * fOe, P+ (salx, ) # fx, y)2, (18)

with <> denoting convolution with respect to x and y.

Note that for A(p) = Qmp)?* and n = 2, &, in Eq. (18)

corresponds to e in (13) and for n = 0 to Afin (10). The

gradient is defined by &, with n = | and A(p) = 2wp. In

0, d<0 —d, d<0 practice we usually introduce a Gaussian blurring which
TABLE 1
Basic Surface Types
Signal
classes Basic surface types H K Konax Kanin Arax din D Af di—dy
2D + Elliptic (pit) >0 >0 =0 =0 =0 >0 >0 >0; >e >0; =dpin
— Elliptic (peak) <0 >0 <() <{) <0 <0 >() <Q; <e <0; =duin
Hyperbolic (saddle ridge) <0 <0 <) >0 £0 <0 =()
Hyperbolic (saddle valley) >0 <0 >() <0 o ite sig < |Af] < & =()
Hyperbolic (minimal surface) =() <0 kmax =~ Kin ppostie sign <0 =0
1D + Parabolic (valley) >() =() >0 =0 >0 =0 =() >(); =¢ ={
— Parabolic (ridge) <0 =0 <0 =0 <0 =() =() <0; = —¢ =()
oD Planar =() =0 =0 =() =0 =() =0 =0 =0

Note. Traditionally H and K are used as initial estimates for region labelling (Besl and Jain [3]). Instead, we use the simpler and more robust Af
and & (or ¢,), since we are not interested in differentiating within hyperbolic patches. Last column illustrates that the clipped-eigenvalues operator
(16), used for reconstruction, depicts the elliptic patches, being equal to the minimum eigenvalue of the Hessian. This is because for elliptic patches
d, and d> have the same sign and thus either d; or d; is equal to zero. The 2D, 1D, 0D classification is discussed in detail in Zetzsche and Barth [7].
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FIG. 2.1. Traditional geometric measures H and K compared to the
more robust clipped eigenvalues (defined in Eq. 16). Results are illus-
trated as gray-level images with ““gray”’ for zero, ‘‘bright’’ for positive,
and *‘dark’ for negative values of the corresponding measures. First
row: mean (in the middle) and Gaussian curvature (on the right) of the
natural intensity surface shown on the left. Second, row: output of the
clipped eigenvalues operator (Eq. (16)) for n = 2, 4, 6 (from left to right)
and A(p) = Qup)? exp(—mp¥4od) including a Gaussian blurring with a
space constant o = 1.8 pixels (o = 1/40). The same operations are
repeated below for a noisy input (25% uniformly distributed additive
noise).

changes, for example, the second-order radial profile to
Alp) = Qmp)? exp(—mp¥do}).

Figure 2.1 illustrates the benefits of using the ¢ opera-
tor (defined in Eqgs. (16) to (18) with &, replacing &) for the
processing of natural images. It also demonstrates the
effect of increasing n in Eq. (17). Since these basic opera-
tions are used in the following sections on reconstruc-

tion, we devote the remainder of this section to a brief

discussion of the differences between our 2D operators
and the traditional curvatures. Note that, by definition,
2D operators and classical curvatures have, in a strict
mathematical sense, the same classification properties
with respect to the basic signal classes as defined in Table
1. We have argued elsewhere that the traditional geomet-
ric approach can be seen as a specific realization of more
general principles for the nonlinear processing of multidi-
mensional signals [8-10]. Here we just give some motiva-
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tion for increasing the parameter n in Eq. (17) and for
using curvature operators which are not normalized.

From Eq. (13) one can understand &, as resulting from
a nonlinear interaction between oriented filters (L, /,,
lvy, Iyy) which have an orientation bandwidth of 90°. In-
creasing n reduces the bandwidth, for example, to 30° for
n = 6. This is reasonable since it introduces additional
integration in the process of differentiation, thus provid-
ing a more robust representation (the corresponding con-
volution kernel is elongated orthogonal to the direction in
which it differentiates). Also, a reduced bandwidth is in
accordance with models of the biological visual system
[8]. 1t is important to note, however, that for the ¢ opera-
tor the integration is implicitely performed in direction of
the minimum curvature and is therefore fundamentally
different from the simple and unspecific kind of integra-
tion one can obtain by increasing the support of the deriv-
ative operators or by Gaussian smothing of the input
function.

The main differences between K and D, and between H
and Af, are due to the division by the first fundamental
form det (g;;) (see Eqs. (8) to (11)). This is essentially a
normalization of even-symmetric measures (like /.., &,
&4, corresponding to real-valued filter functions) to odd-
symmetric measures (like [, &, &3, corresponding to
imaginary filter functions). (An example of how the even/
odd relationship can be understood as a 2D-phase prop-
erty is given in [8]) There are two specific points we want
to make here:

(1) The signs of K and D are identical and the signs of
H and Af differ only within hyperbolic regions (see Table
). In practical applications, however, testing for zero
and sign involves thresholding. Thus, the classification,
for example based on the signs of K versus D, will differ
due to the different noise sensitivities and tuning proper-
ties of the measures involved (see Fig. 2.1).

(ii) Usually, mean and Gaussian curvatures (/ and K)
are used because they are invariant to rigid motion of the
surface. However, different visual tasks involve different
invariance properties which are often contradictory and
difficult to define.

For example, it has been claimed that the same proce-
dures could be used to segment range and intensity im-
ages [3] although the desired invariance is completely
different for the two cases. While the segmentation of
range images should be invariant to rigid motion of the
objects involved, i.e., to rotations and translations of the
(x, y, /) (see Eq. (3)) coordinates, the segmentation of
intensity images is supposed to be invariant to illumina-
tion, i.e., to multiplicative distorsion, and to rotations,
translations and dilations, but of the (x, y) coordinates
only. These, quite different, desired invariance proper-
ties will interfere with noise and thresholding effects, and
this interference will be more critical for normalized mea-
sures, like H and K (see Fig. 2.1), because of their ex-
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FIG. 2.2. Normalization and contrast invariance. First row: input (on the left) representing squares of different contrast. The geometric
measures H (middle) and K (right) are invariant to the change in contrast (same operators as in Fig. 2.1). Second row: &, (Eq. (18), n = 2, A(p) =
Qup)? exp(—mp¥4od)); Laplacian (Eq. (10)); determinant of the Hessian (Eq. (13)). Third row: same measures as second row but divided by the
gradient g, (Eq. (18), n = 1, A(p) = 2mp). Fourth row: same as third row but using &, with A(p) = (2mwp)* exp(—mpHdcd). o = 2.6 pixels.

treme dynamics. Think, for example, of range data from
differently sized spheres with radii from 1 to 100. The
Gaussian curvature of the corresponding inputs will then
vary in a range from 1 to 10,000. Similar problems will
occur with curved contours in intensity images. Using
the standard geometrical operators, only sharp corners
can be labelled, with sufficient reliability, as “‘curved,”’
whereas smoothly curved contours, which would be
clearly classified as “‘curved” by any human observer,
will be labelled as straight (parabolic) by the technical
system.

We do not claim to have a solution for all these prob-
lems, but it should be clear from the above discussion
that no simple optimal solution will probably exist. For
intensity images we suggest to perform either no normal-
ization at all, which may be the best solution anyway, or
to use an odd &, (Eq. (18), with n = 1 or even n = 3,
5, . . .) for normalization. Figure 2.2 illustrates how La-
placian (Af), eccentricity (g), and curvature measures
like ¢ in Eq. (16) can be normalized in two different ways
to achieve contrast invariance.

2.3. Curvature and Redundancy

2.3.1. Redundancy from a Geometrically Extrinsic
Point of View

. . R FIG. 2.3. A surface corresponding to the blurred image of a rectan-

Figure 2.3 illustrates that developable surface patches  gie (top). The 2D regions (corners) shown below illustrate that the miss-

are usually determined by boundary conditions. Cufting ing surface patches are determined by the given boundary conditions.
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out the 2D patches from a rectangle surface one can for-
mulate the task of joining the corners without producing
new 2D regions. The suitable material for this type of
work would be paper, and whatever one tries to do with-
out creasing the paper will lead to the original surface.
We try to reveal this type of redundancy in Section 3.

2.3.2. Redundancy from a Geometrically Intrinsic
Point of View

Consider, for example, the problem of fitting a net to a
given surface. If the surface is purely 0D and 1D, the
fitting is straightforward. For 2D regions on the surface
we have to change the local structure of the net such that
the changed metric leads to a Gaussian curvature equal to
the curvature of the surface. These changes will then
contain essential information about the ‘‘shape’ of the
surface. In spite of this, there is no general mathematical
proof for these ‘‘deviations from the flat metric’’ being
sufficient for determining the embedding (see Section 4).
Nevertheless, it should be clear that 0D and 1D regions,
being flat, will enforce less ‘‘shape constraints’ than 2D
regions.

2.3.3. Relationships to Other Concepts
of Redundancy

Another way to characterize the redundancy of 1D re-
gions is to say that one can find a rotation of the (x, y)
coordinates such that in the new coordinates (x', y') we
have

flx, y) = filx") for 1D regions. (19)
That is, 1D regions are fully characterized by a one-di-
mensional function. Note, however, that there might be
restricted variations within 2D regions also, for example,
for umbilic points (where K > 0) or points on ruled sur-
faces which are not developable (where K < ).

Once we can assume to know the orientation of (x’, y)
(the determination of which will always involve a nonlin-
ear operation) we can consider linear prediction (or pre-
dictive compression) techniques were a given pixel’s
(x, ¥) intensity (f(x, y)) is modeled by
(20)

fe,y) = D awfx+ u,y + ),

WUER(X,y)

where R (x, y) corresponds to the ““support’ region about
(x, y) used to predict the intensity at (x, y). From this
perspective the 0D, 1D, and 2D signal classes correspond
to different prediction coefficients and, in particular, de-
velopable surfaces or surfaces with zero Gaussian curva-
ture always have subsets of a,, coefficients which index
collinear positions (u, v) where f(x + u, y + v)is a linear
function of (u, v) (they can be isometrically ‘“‘ruled’’).
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Obversely, if there does not exist a locus of points (x + u,
y + v), including (x, y), which has such an intensity func-
tion, then the point (x, y) must have nonzero Gaussian
curvature. Such points have the least redundancy in the
sense that the coefficients of (20) which can predict f(x, y)
are not linearly related to the shift position vector compo-
nents (i, v).

Also, from the perspective of locally approximating
images by some standard functions, e.g., splines, the
number of free parameters will increase with the 0D, 1D,
and 2D hierarchy. In this sense, from an image coding
perspective, it would be reasonable to gradually allocate
resources for the encoding of the different region types—
a mechanism implicit to some advanced coding schemes
(see [10]).

However, this is different from saying that all informa-
tion is contained in 2D regions and, as a further step, that
images can be recovered from only (2D) curvature mea-
sures. These, more radical, points of view are supported
by the reconstruction results presented in the next sec-
tions.

Due to the fact that 2D regions are rare events in natu-
ral images [13], a 2D representation has low entropy.
(Examples for this, and a comparison with the Laplacian
pyramid are given in [14]; see also Figs. 3.3 and 3.4.)
Thus, curvature extraction and reconstruction have an
obvious potential for image coding, an issue beyond the
scope of this paper. (The importance of curvature fea-
tures is discussed from an image-coding perspective in
[10].) Nevertheless, the relationship between what we
call redundancy in a geometric and heuristic sense and
the statistical concept of redundancy is not clear (particu-
larly as the operations are extended to multiple scales).
Note, however, that there is no a priori reason for one
specific mathematical theory occupying the intuitive no-
tion of redundancy.

3. IMAGE RECONSTRUCTION BASED ON LABELING
AND PARTIAL DATA

Our first reconstruction paradigm depends upon how
the partial data are selected and leads to the issue of
region labeling based upon geometric characteristics of
surfaces.

3.1. Region Labeling

Most applications involve a two-stage segmentation
procedure. That is, the image (range or intensity) is ini-
tially labeled for surface type. Second, such labels are
merged according to model data either in the form of
known relationships between model parts (for example,
bounds on interpart angles, etc.; see [4]) or by fitting
surface parts to specific parametric surface types (B-
splines, quadratic surfaces, etc.; see [15]). Such tech-
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niques have proved to be useful as early low-level proce-
dures for object recognition systems. However, to this
stage we know of no use of differential geometry to repre-
sent images, per se, from the perspective of developing
efficient encoding and region labelling procedures.

Based on the measures discussed in Section 2 we used
different algorithms to label images into six or less region
types, that is, to assign one of the following labels to each
pixel: positive elliptic (pit), negative elliptic (peak), hy-
perbolic (saddle), positive parabolic (valley), negative
parabolic (ridge), and planar.

3.1.1. Thresholding

If we do not differentiate between “‘saddle ridge’” and
““saddle valley,”” it is clear from Table 1 that we can use
Af(10) and &, (18) as the basic measures for the following
labeling algorithm, which assigns one of six labels (/) to
each pixel:

if {((Af)? + &2) < h} then [ (planar)

else if {Af > ey} then [ (pit)

else if {—Af > ay &,} then I, (peak) @
else if {&, > ar|Af]} then f (saddle)

else if {Af > 0} then Iy (valley)

else I5 (ridge).

The threshold £ discriminates between ‘‘planar’ and
some kind of variation, while «, «, (both 1) determine
the boundary between curved (K # 0) and parabolic re-
gions (see Fig. 3.1). Theoretically, the algorithm is equiv-
alent to the more traditional way of using the signs of H
and K (see Table 1), but, in practice, the results will differ
due to the thresholding.

As discussed in Section 2, Laplacian and eccentricity
can be normalized (see Fig. 2.2) if a contrast invariant
labeling is required. Results of applying the labeling (21)
to intensity data are shown in Fig. 3.2.

A®

arctan( o, ) —f—arctan( o, )

arctan( ot ) arctan( o, )
I
peak pit Af

.
o

FIG. 3.1. Discrimination lines in the (¢, Af) plane corresponding to
the algorithm (21). (Other configurations may be conceived, for exam-
ple, rectangular regions for “‘ridge,”” *‘valley,”” and/or “‘planar.”)
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3.1.2. Relaxation Labeling

We have extended classical relaxation labeling proce-
dures [1] to image segmentation. Starting with geometric
measures as initial probabilities for a certain label, con-
sensus is reached between labels, neighbors, and scales.

The algorithms are presented in their most general
form. However, depending on the application, the global
structure can easily be reduced, for example, if the scale
compatibility is not required or if less than six labels are
sufficient.

To each pixel we assign the probability vector pi(x, y),
denoting the probabilities for pixel (x, y) being labeled /;
(see Algorithm (21)) after ¢ iterations.

We use the following geometric measures, based on Af
and &, (similar to (21)) to define the initial probabilities:

my = (Aj“ 811)7%5
iy = (A/+ Hiz)ﬁa

my = (Af),
ms = (Af)",

M3 = (tAf] - 8)1)79 Mg =

(22)

max {m;(x, y)}.

X,y

Here, ““()7,” ()" correspond to the clipping opera-
tions defined in Eq. (15). First, the m;’s are normalized
over (x, y):

gy . mi(xs Y)
IH,,,(X, )’) - max,\,,y{mi(x, y)} (23)
Finally, the initial probabilities are obtained as
I’}’l,,,*(X, )
e, y) = i (24)
i=1 Mu(x, y)
to satisfy
N
> p? =1, N = number of labels. (25)
=1

The initial probabilities in Eq. (22) capture the local
surface geometry. They are computed once (since we do
not update the image) using the filters (17) and then
merged as below. After a number of iterations, typically
less than 10, the pixels are labeled according to the high-
est probability:

Pmax = mMax pi(x, y). (26)

In contrast to earlier approaches {3}, compatibility is not
accomplished after thresholding the geometric measures
and then merging the initial labels. Instead, the relaxation
labeling algorithm will allow the initial measures to con-
tribute to the final result until, in the end, a decision is
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FIG. 3.2. (a) Threshold labeling, as defined by Eq. (21) and Fig. 3.1, for geometrical and natural images, illustrating the effect of normalization.
First row: input (on the left); in the middle: negative (bright) and positive (dark) elliptic regions; on the right: hyperbolic (black), —parabolic (light
gray) and +parabolic (dark gray) patches. Second row: the same labeling as above but using normalized measures (Af and &,, both divided by &, +
0.001, for both &; and e, the radial profile is A(p) = (2mp)? exp(—wp4a}), with o = 2.6). The same procedure is repeated below for the ‘‘boats”
image. Both labeling results were obtained with the same thresholds: & = 3, oy = 1.4, and «; = 1.6 (see Fig. 3.1). (b) Threshold labeling, as in (a)
illustrating the effect of increasing n in Eq. (18). Only negative (bright) and positive (dark) elliptic patches are shown for Af and e, (in the middle,
with i = 5, ) = 1.5, and a; = 2) and Af'and & (on the right, with # = 5, y = 2, and «; = 2). In both cases we included a Gaussian blurring with o =
1.8 pixels.

made by assigning the label corresponding to the highest  with

probability. N N

The complete relaxation labelling scherr‘xe. has thfee g, y) = > i, Dpite, y) + > ealiy konjx, y)
components, label, space, and scale compatibility, which =l k=1 (28)
can be used separately or in different combinations. N

Starting with the probabilities defined in Eq. (24) we + z (i, Wshix, ),
use the updating rule =l

P, y) = N{piex, )1 + gix, y), (27)  where N is the number of labels. C, C,, C, denote the
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FIG. 3.3. Reconstruction results obtained by spreading elliptic intensities for the “‘lady”” (see Fig. 3.2b) and “*boats”’ (see Fig. 3.2a) images. The
labeling on the left (bright and dark for elliptic patches) was used to select the corresponding intensities shown in the middle. This selection reduces
the data to 12% (plus 3.2% boundary values) in the example shown in the first row (low entropy reconstruction) and to 22% (+3.2%) in the second
row. We have been able to reconstruct the images shown on the right from this restricted set of original pixel intensities using algorithm A2 (7
iterations) followed by Al (14 iterations). Note that the distinction between + and — elliptic has been done for illustration purpose only. The
Jabeling (+ elliptic, — elliptic, others) was obtained after 7 iterations of the relaxation labeling procedure described in Section 3.1.2 using the
following compatibility matrices (N = 3):

first row (low entropy),

I 0 0 0.15 0.1 01
o, j) = 0 1 0 |, al, =101 015 0.1 |, ¢, h)=2a0,));
=1 -1 0.07 0.1 0.1 0.5
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label-, space-, and scale-transition matrices, and #y, s,
are the neighbor and scale-probability vectors as de-
scribed below. Normalization N is achieved by replacing
pi with

. N, (29)

N
pi/Z{‘I)i’ i=1..

after each iteration. The algorithm defined by Eqgs. (27)
and (28) can be seen as a modification of classical relaxa-
tion labeling procedures [1].

The updating is meant to achieve a consensus defined
by the weights in the transition matrices, which are prob-
lem dependent and can be chosen in various ways. This
issue is now discussed for each matrix (compatibility
component).

3.1.2.1. Label Compatibility. We have chosen the
probabilities defined in Eq. (24) such that initially all pix-
els have a highest probability of being planar. Thus the
label-compatibility component of the updating procedure
has to allow higher order label probabilities to reduce the
probability of lower-order labels. Specifically, the
weights ¢(i, j) are chosen such that high probabilities pj s
(parabolic) will reduce the probabilities p§ (planar), and,
further, pi,s (curved) have a chance to win over plsg.
This allows us not only to perform a non-trivial
thresholding (curved discrimination lines in Fig. 3.1) in
an intuitive way, but also to satisfy other constraints,
over space and scale, in parallel. The hierarchy described
above will usually require a triangular matrix C;. There-
fore, we can replace N by i in the first sum of Eq. (28).

At this stage the weights ¢((/, j) have been chosen heu-
ristically. Negative values denote incompatibility, for ex-
ample ¢i(1, 4) = —1 will result in a high probability p{ (pit)
decreasing the probability pj§ (valley). However, we sug-
gest that the compatibility coefficients (¢/’s) can be opti-
mized, for example, by learning in a neural network, to
satisfy global constraints, like obtaining representations
with the highest information content at a given entropy.
Referring to Section 3.2, this would lead to ¢;’s where the
image can be optimally reconstructed from data with the
lowest possible entropy (see Figs. 3.3 and 3.4).
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3.1.2.2. Space Compatibility. There are various ways
to make the labels at a given pixel consistent with the
labels at its neighbors. Our basic measures defined in
Section 2 already exhibit a low sensitivity to noise, com-
pared to, for example, H and K (see Fig. 2.1). Hence it
nroved to be sufficient to reduce the neighborhood inter-
action to only one N X N transition matrix, by defining
the neighbor-probability vector:

nilx, y) = N{pilx = 1, y) + pitx + 1, y) + pitx,y = D
+pie,y+ Dy, i=1,...,N. (30)

Note that the sum in Eq. (30) can be extended to eight
neighbors or reduced to one neighbor without changing
the relaxation labeling procedure defined by Eqgs. (27) and
(28).

3.1.2.3. Scale Compatibility. Space transition en-
ables us to implement constraints like the existence of
low probabilities for ““peaks’ in “‘valley’ regions and the
general types of relationships between regions. We now
want to make the labeling consistent with the persistence
of features at lower scales. For example, we would like to
support a pixel to be labeled “‘peak’ or “‘pit’” if the re-
gion is elliptic at lower scales.

We have chosen the scale probability vector in Eq. (28)
as

L
sile, y) =N {2 wipile, v, S/)}- €2))

=1

This corresponds to a probability vector with each
component being a weighted sum over different scales.
Therefore, Laplacian and eccentricity are computed on L
(typically 1 to 4) lower scales and transformed into a set
of L initial probability vectors: Py, s, l=1,. .., L
according to Egs. (22) to (25). Their weighted (w,’s) sum
is then renormalized to satisfy the condition (25). Note
that

1

[ 41
S =8 i

= §;

= 7. (32)

That is, lower scale probabilitics are not updated.

second row,

I 0 0
a,p=10 1t 0 e i, k) =
-1 ~1 0

0.1 0.07 0.07

0.07 0.1 0.07 }, cli, =200, ).

0.07 0.07 0.1

The initial measures for the scale compatibility vector in Eq. (31) (see also Eq. (22)) were computed on subsampled lower scales (L = 3 and all scale

weights w, =
The same procedure is used for the “boats’ image below.

I; 0 =1, 2, 4, 8 pixels) and then expanded using blockwise interpolation.
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FIG. 3.4. Reconstruction results obtained by labeling elliptic and parabolic patches and spreading elliptic intensities. The partial data on the left
(intensities at pixel locations labelled elliptic) were obtained as in Fig. 3.3. The intensities are first spread through the parabolic patches, shown in
the middle, according to Algorithm A3 (28 iterations). The new resulting image intensities were then kept fixed, together with the initial intensities
shown on the left, and treated like elliptic intensities in Algorithm A1 (42 iterations). Compared to Fig. 3.3 we need additional information about the
locations of parabolic pixels, but, on the other hand, the number of original intensities can be further reduced to 3.9% (+3.2%) in the low entropy
case (first row) and to 15% (+3.2%) in the second row. The labeling (elliptic, parabolic, others) resulted after 9 iterations with

S50 0 0.05 1.5 -0.1
o, py=1-1 1 0 1, o, b=1]-01 05 =01], G h=al.l,
0 -1 0.0 0 -0.1 0.1

with the only difference that ¢(3,3) = 0.15. The coefficients used for the higher entropy labeling (second row) differ from the above (low entropy)
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In conclusion, the region labeling depends on some
geometric measures defined by Eq. (22) and up to 3 - N?
compatibility coefficients. However, the maximum num-
ber of 108 + L weights, including the w,’s in Eq. (31), will
not be needed for most of the applications. For example,
in Section 3.2 we use a segmentation into elliptic and
nonelliptic regions (N = 2} and reconstruct the image
from ‘‘elliptic data’” only.

Although region labeling is not the main concern of this
paper, the results presented in Figs. 3.3 and 3.4 together
with the corresponding reconstructed images suggest that
our method, initially designed for reconstruction, can be
used to segment images into parts which are more inter-
pretable and unique compared to previous labelling meth-
ods based upon differential geometry.

3.2. Reconstruction from Partial (2D) Data

In a first stage, we assume that we have the original
intensity information only at those image positions which
are classified as elliptic (partial data). This is to be con-
trasted with our simulations presented in Section 4,
where only curvature information is used.

The simplest approach to the problem is a modification
of the classical Gauss—Seidel (sequential) and Jacobi
(parallel) relaxation procedures, employing successive
overrelaxation insofar as we retain the intensity image
values in elliptic regions. Clearly, then, the boundary of
such elliptical patches are spread through other patches
in accord with spreading (relaxation) conditions which
vary as a function of the region types.

By treating “‘elliptic intensities’’ like sparse data in tra-
ditional reconstruction procedures [16, 17] our first algo-
rithm (Al) is defined as

(A1.1) All elliptical pixels retain their intensity values:

e YY) = fanipic(x, ¥). (33)

(A1.2) All other patches are averaged to simulate soap
bubble surfaces, that is, the intensity r’ (x, y) is
replaced by
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PG ) = g (= L) G L)
(34)
+ i,y = )+ r'x,y + 1)

(Modifications are necessary at boundaries. In
applications like those illustrated in Figs. 3.3
and 3.4 boundaries were treated like eliptic
patches, that is, the original intensity image val-
ues were kept fixed.)

However, since soap bubbles cannot develop sufficient
rigidity to fill in between elliptic patches, we introduce
additional rules, leading to Algorithm A2. Starting with
an image labeled elliptic and nonelliptic we have (A2):

(A2.1) All elliptical pixels retain their intensity values
Eq. (33).
All relabelled pixels retain the intensity values as-
signed in A2.2.
(A2.2) For all nonelliptic pixels:
if {it is a neighbor of elliptical pixels or
relabeled pixels}
then {replace it by the average of only these
neighbors and relabel it}
else {averaging (Eq. (34)}.

Results shown in Fig. 3.3 have been obtained by using
(A2) followed by (Al). As illustrated in Fig. 3.4, the
amount of data from which we reconstruct can be further
reduced by, in addition, using the parabolic patches as in
Algorithm (A3):

(A3.1) All elliptical pixels retain their intensity values
(Eqg. (33)).
All relabeled pixels retain the intensity values as-
signed in A3.2.
(A3.2) For parabolic pixels:
if {it is a neighbor of elliptical pixels or
relabeled pixels}
then {replace it by the average of only these
neighbors and relabel it}
else {do A3.3}.

coefficients only in

¢(3,3) = 0.1 and ¢, k) =

0.03 2.4 ~0.06
-0.06 0.3 —0.06
0 —0.06  0.06

In addition to the previous example the initial measures were divided by &, + 3 (partial normalization). Again, we used L = 3 lower scales and the

weights wy = 1, 0.5, 0.25 (from high to low scales).

For the **boats’” image we used 4.4% (+3.2%) and 16% (+3.2%), respectively, of the original image intensities resulting from the same labeling
parameters as above, with the only difference that ¢,(3,3) = 0.02 in the low entropy case.
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(A3.3) All other patches are averaged to simulate soap
bubble surfaces (Eq. (34)).

Note, that, in order to use (A3), images have to be
segmented in 3 regions: elliptic (/; = [, in Eq. (21), para-
bolic (l4 = [5), and hyperbolic/planar (s = [5). Thus, we
reconstruct from elliptical intensities and by knowing the
parabolic image positions but not their intensities. Al-
though we use less intensity data, reconstruction im-
proves, especially for long straight patches (see Fig. 3.4).

Finally, we should mentioned that results obtained
with the above algorithms depend on the labeling proce-
dures. As already suggested in Section 3.1 the recon-
struction result could be used to optimize or, at least,
improve the labeling. This could then lead to coding strat-
egies where images can be reconstructed from low en-
tropy data. Since 2D features seem to play an important
role in human vision [7, 8], one can expect such coding
procedures to be optimal with respect to subjective image
quality.

4. IMAGE RECONSTRUCTION BASED ON
CURVATURE MEASURES

Though curvature measures provide useful ways of de-
fining local surface geometries invariant to rigid motion
they are, when taken alone, not sufficient to reconstruct a
surface. Indeed, the fundamental theorem of (surface)
differential geometry shows that a surface is uniquely
defined and can be reconstructed up to an unknown rigid
motion from the first- and second-order fundamental
form coefficients: E, F, G, L, M, N (Egs. (4) and (5)) (for
Monge patches f, fy, fu, foy, f); see, for example, Do
Carmo [11] or Spivak [18]. This inverse problem is equiv-
alent to solving the Gauss—Weingarten differential equa-
tions and involves the generation of geodesic curves in
3D (which correspond to surface loci). Numerical algo-
rithms for such procedures are well-known and have
been applied, for example, to the construction of color
space [19] the perceived geometry of color distances.

Our approach to reconstruction differs from such se-
quential or contour tracking schemes and is based upon
parallel relaxation procedures and, more importantly, on
the use of partial information about the surface. That is,
we have investigated the extent to which images can be
reconstructed from 2D regions (K # 0, or, even more
restricted, K > O; see Table 1).

In differential geometry it has been known since
Minkowski (see [2, 20-22]) that convex surfaces are
uniquely defined by their Gaussian curvature values. For
Monge-patch surfaces (Eq. (3)) the question of how the
determinant D (Eq. (11)) determines the surface is related
to the solution of the Monge—Ampere differential equa-
tion (see {23, 24]). Further, our problem is related to the
more general question of how the metric on a manifold
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determines the possible embeddings of the manifold into
a higher dimensional space. This is because the Gaussian
curvature K, Eq. (9), is an intrinsic property of surfaces
(theorema egregium) and thus it is only for 2D regions
that the metric of the surface differs from the Euclidean
(flat) metric. The vast mathematical literature on this is-
sue shows that the problem of reconstructing from 2D
information is under constraint in general, but solutions
are possible under certain conditions [21, 23, 24].

Thus, our approach to reconstruction from curvature
measures is more related to this mathematical inverse
problem than to image restoration from sparse or noisy
data [17] or the integration of information from multiple
sources [16].

Similar problems have been addressed in the context of
reconstructing images from partial Fourier magnitude or
phase [25]. Although phase or magnitude information
alone is, in general, not sufficient to uniquely specify an
image, it was possible to (a) synthesize a signal in a more-
or-less straightforward way from partial information that
captures ‘‘much of the intelligibility of the signal” (by
combining the known information with an ‘‘average as-
sumption’ about the remainder) (Oppenheim et al. [25,
p. 1413]) and (b) develop conditions under which exact
reconstruction is possible. Much work was devoted to
(b), e.g., for developing efficient algorithms [26]. We are
more interested in a general algorithm of type (a) and
expect further research related to (b). However, although
our curvature approach poses similar problems, the na-
ture of the partial information is quite different. Whereas
the necessity for reconstructing from partial Fourier-
domain information arises from a variety of practical
problems, we use reconstruction to motivate curvature
extraction.

We employed stochastic relaxation techniques, partic-
ularly a parallel version of simulated annealing, which
was first applied to optimization by Kirkpatrick et al. [27]
and is ‘“‘regarded as a general engine for non-convex
problems’ [17]. Our aim was to design a general algo-
rithm capable of revealing the amount and type of infor-
mation contained in different representations.

One graphical way of illustrating this approach is to
start with white noise (see Fig. 4.1) and ask the question
as to how to update pixels to result in a desired image
using only the neighborhood constraints defined with re-
spect to different curvature types. The algorithm, de-
scribed in some detail in the Appendix, minimizes a cost
function (energy) which is generally defined as

Ey = (£(r'(x, y)) — E(f(x, Y)))?, (35)
where r' (x, y) denotes the actual intensity value at pixel

(x, ) after ¢ iterations (relaxation image) and is expected
to converge to the original data f(x, y). This should hap-
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FIG. 4.1.  Reconstruction from multiscale curvature information using stochastic relaxation. The clipped eigenvalues of the original image are
computed on four subsampled scales and shown as grey level images as in previous figures. The original image was represented by 128 x 128
intensity values. Thus, the input for Algorithm A4 consists of 128 x 128 plus 64 X 64 plus 32 % 32 plus 16 X 16 values of ¢ (see Eq. (16), n = 2; scale
parameter oo = 1, 2, 4, 8 pixels). We start from white noise and present results obtained after 200, 400, and 2000 iterations corresponding to different

“cooling” stages (see the text and the Appendix for details).

pen under local constraints which propagate during the
relaxation process. &, the representation operator, is ap-
plied to the relaxation image r'(x, y), and &(f(x, y)) is the
representation from which we reconstruct (we know only
£(f(x, y)) but not the original f(x, y)). In our applications
the operator ¢ extracts local (surface) properties and thus
the enforcement of local constraints becomes equivalent
to the problem of minimizing F.

However, when reconstructing from only 2D informa-
tion, results can be considerably improved by using a
multiscale representation. In this case the energy can be
defined as

L

E, = l}: wil €10 (x, ¥) = &1(flx, )2, (36)
=

where [ is the scale index and w are scale-weights: that is,
the local properties are computed on L different scales.
In our applications the lower scales were subsampled
according to the sampling theorem of Fourier analysis
making the algorithm less than two times slower when
running on four scales. We have not systematically tested
the influence of lower scales. However, in some applica-
tions we obtained good results from only one, or even no,
additional scale.

Figure 4.1 shows results for ¢ corresponding to ¢ (de-
fined in Eqs. (16) and (17), with n = 2) and L = 4: that is,
we constrained the relaxation image r’ (initially white
noise) to have the same clipped eigenvalues (Eq. (16)) as
the original (see the Appendix for details).

We would like to think of the reconstruction problem
as a process of modeling a pellicle (membrane). In Sec-
tion 3.2 the pellicle was defined by deterministic relaxa-
tion algorithms in order to fit partial data. When minimiz-
ing cost functions like those defined in Eq. (33), the
pellicle has no properties other than those derived as
curvature measures from the original image (only even-
symmetrical local properties).

We therefore make some additional assumptions
(about the world); that is, we think of a pellicle which has
some general local properties and we try to “‘impreg-
nate” this pellicle with curvature information which is,
still, the only information we have about the actual im-
age. In other words, additional energy terms are included
in Eq. (35) to support the reconstruction process (see the
Appendix for details). As in Section 3.2, we have to fill in
regions where the curvature is zero. Since the corre-
sponding planar and parabolic patches are developable
they would be modelled as “‘paper surfaces.”” The prob-
lem is that an isometric sheet (paper) is rigid enough to
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FIG. 4.2. Successive reconstruction from multiscale curvature information using additional constraints and a deterministic acceptance criterion
(see the Appendix for details). The original “lady’’ (a) and *‘boats’ images (¢) are represented by 512 X 512 intensity values from which we
compute a subsampled curvature-scale space, that is, 512 X 512 plus 128 x 128 plus . . . 16 X 16 values of the clipped eigenvalues operator ¢ (see
Eq. (16), n = 6; o = 1 pixel on the finest scale). As described in the Appendix, reconstruction starts at each scale (with the exception of the lowest,
where it starts with a constant-gray-value image) with the expanded version of the next lower scale, resulting in a total of 137 increments per pixel,
on average for a 512 x 512 image (see the Appendix for details). For the 128 x 128 image, however, only 111 iterations were needed compared to
2000 iterations of the stochastic relaxation algorithm in Fig. 4.3. A threshold of 1% of the maximum was applied to the clipped eigenvalues, that is,
we allowed a dynamic of 1 to 100 for the curvature measures & (f(x, y)). However, results are seriously affected only for thresholds greater than
7%.
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FIG. 4.2—Continued
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bridge parabolic and planar regions, but, on the other
hand, will crease as soon as we try to bend it into an
elliptically shaped surface. However, we obtained good
results (illustrated in Fig. 4.2) by defining an additional
energy term,

Ee = (Vori(x, )R, (37)
where V() performs a first-order derivative in direction
@, and ¢ changes during the relaxation process (see the
Appendix for details). Results do not critically depend on
the type of continuity constraints. However, well-known
energy terms like those for the membrane or plate [17, 28]
lead to a higher degree of blurring and somehow inhibit
the pellicle as it tries to “‘blow up.”

Surprisingly, it turned out that reconstruction results
can be improved by replacing the multiscale energy E
(Eq. 36) by

L

Er = ; wi( £(ri(x, ¥)) — E(fQx, Y2 (38)

E; inforces a certain persistence of elliptic features over
scale (““fractal” energy), thus providing an influence of
lower scales, although the lower scales are not evaluated
in the relaxation process. However, the computational
effort is much lower for E; compared to .

The algorithm illustrated in Fig. 4.2 successively mini-
mizes a cost function defined as the weighted sum of E;
(Eq. (38)) and E. (Eq. (37)). It turned out that this type of
cost function (energy) can be minimized using a determi-
nistic acceptance criterion (see the Appendix for details).
From these simulations, it can be seen that reconstruc-
tion under these conditions is possible, though further
work is required in optimization of the algorithms and
parameter states.

5. CONCLUSION

In this paper we have explored how differential geome-
try and filter theory can be used to capture significant
image regions. We have noted that zero-Gaussian curva-
ture surfaces, being developable, always have a direction
through which intensities (or depth) are constant and so
are not intrinsically ‘‘two-dimensional.”” Further, we
have developed new methods for computing such surface
characteristics, for example, based on the clipped eigen-
values of the Hessian, instead of the more traditional
mean and Gaussian curvature measures. The generaliza-
tion of the basic Laplacian and eccentricity operators has
given us more robust representations and, as initial mea-
sures for a relaxation labeling procedure, reasonable re-
gion classifications.

A further benefit of this approach for determining im-
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portant regions of images is that the operators themselves
are inherently locally adaptive in contrast to traditional
adaptive filtering methods where adaptation is obtained
by providing additional ‘‘side information’” or by gradual
approximations over extended spatial regions (see also
[10]). The clipped eigenvalues operator (Eq. (16)), for
example, can be thought as performing a second order
derivative in the direction of the minimum second order
derivative. That is, the linear operator ‘‘adapts’ to the
local surface geometry. Also, 2D operators not only pro-
vide an efficient representation, but are relevant to bio-
logical vision and can be used as prerequisites for certain,
for example, topological, invariants [7, 8]. We have only
briefly mentioned the possible connections between cur-
vature-scale space and fractals, when modeling the prop-
erties of the ‘‘reconstruction pellicle’” in Section 4. Yet,
we suppose that self-similarity is related to the presence
of elliptic features over scale and that the fractal dimen-
sion could be measured in curvature-scale space [29].

We introduced the 0D, 1D, and 2D signal classes,
showing that 2D features are the most significant insofar
as we have been able to reconstruct a variety of images
from only retaining the 2D regions. Surprisingly, recon-
struction also reveals a redundancy of hyperbolic patches
in intensity images, which is due to the fact that these
regions are usually well approximated by minimal or
ruled surfaces.

From the geometric point of view we have shown that
the “‘embedding’’ (shape) is much more determined by
intrinsic curvature properties than one would expect
from classical differential geometry. One reason for this
is the fact that we use filters on different scales, whereas
the geometric results are based on infinitesimal calculus.
Second, differential geometry, per se, cannot incorporate
relaxation as a method of revealing possible embeddings.

In both labeling and reconstruction phases we have
used relaxation techniques which operate simultaneously
over space and scale. We suggest that reconstruction al-
gorithms, like those presented in Sections 3 and 4, could
be accepted as a general criterion, that is, as a method for
determining the usefulness of certain image features and
the efficiency of labeling procedures via the achievable
quality of the reconstructed image.

Thus, reconstruction can help to find efficient repre-
sentations, and, thereby, avoid feeding higher order pro-
cesses with irrelevant or redundant information.

APPENDIX

The stochastic relaxation algorithm based on simulated
annealing (and illustrated in Fig. 4.1) has the following
basic structure:

A4.1. Compute the initial “‘energy”” E, (Eq. (36)) for all
pixels.
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A4.2. Update all pixel values.

A4.3. Compute the new energy F, and the difference AE
= I, — E} (cost function).

Decide wether to accept the new pixel value, or to
restore the initial state, using the Metropolis algo-
rithm, that is,

Ad.4.

accept if {AE < 0} or {r <exp (*“AE)}’

(39)

where r is a random number between 0 and | and ¢
is the actual ‘*‘temperature’ (control parameter).
Change the value of the control parameter ¢ (cool-
ing or heating) and restart with A4.1 unless a stop
criteria is reached.

(A special treatment is necessary at boundaries. In
the examples illustrated in Figs. 4.1 and 4.2, the
boundary energy was defined as (f(x, y) — r(x,
y)?. However, results do not critically depend on
the boundary conditions).

A4.5.

We adopted a parallel algorithm, as it is more efficient
in our implementations of the energy computation where
the filter operations involved are realized via a fast
Fourier transform of the image. Due to the growing popu-
larity of simulated annealing and Boltzmann machines,
there is a large literature on how to optimize the cooling
schedule to obtain best convergence of such an algorithm
(see [30]).

In our application it proved to be efficient to start at a
low temperature ¢, and to increase the control parameter
until about 80% of the changes are accepted. After that,
we started the cooling using the same type of updating
rules (Eq. (37)) as with heating.

In most applications the updating (A4.2) was defined as

FN e, y) = i, y) B g, (40)
where the sign of the increment i, was chosen randomly
with equal probability for ““+> or “—."" ri(x, y) denotes
the actual intensity value at pixel (x, y) after ¢ iterations
(relaxation image) and is expected to converge to the
original data f(x, y).

However, running A4 as heating, we used a modified
acceplance criterion:

—|AE

accept if {r < exp <——~;——>}

(41)

Dropping the first branch of the original Metropolis
algorithm (Eq. (39)), we ensure that the number of ac-
cepted transitions is a purely statistical measure which
reflects the actual temperature state without influence
from a ‘‘downhill component.”” In (A4.5) the new value
of the control parameter at “‘time” ¢ + 1 was usually
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with & = 1 (typically between 1.5 and 2) for heating and
o =1 (0.8 to 0.95) for cooling.

For obtaining the results illustrated in Fig. 4.1, we
started with white noise and ‘‘heated’” with o = 1.5 until
80% of the changes were accepted. Then, the steps
(A4.1) to (A4.4) were repeated 20 times (unless the num-
ber of accepted transitions was less than 45% = stop
criterion) for each value of the control parameter before
cooling with « = 0.9. All pixels were incremented at each
iteration as defined in Eq. (40) with i, = 2. The energy
(Ey, £ = ¢, n = 2) was computed on subsampled lower
scales which were then added (Eq. (36)) using blockwise
interpolation,

The algorithm illustrated in Fig. 4.2 is defined as

AS5.1. Start with a constant grey-value image on the low-
est scale (here 16 by 16 pixels)

Do M iterations of steps (A4.1) to (A4.4) using a
deterministic acceptance criterion, that is: accept
if {AE < 0}, the energy E being a (weighted) sum of
E¢ (Eq. 38) and w, E. (Eq. (37)).

Decrement the previous increment, as in Eq. (42)
with & = 0.9, starting with an initial increment i,
unless a final increment i; is reached (stop crite-
rion).

Expand the relaxation image (e.g., from 16 X 16 to
32 x 32 intensity values) using any type of interpo-
lation, and then go back to A5.2.

A5.2.

AS5.3.

AS5.4.

The continuity energy . (Eq. (37)) was computed by
finite differences to approximate a first order derivative
which rotates clockwise (with ¢} and stops at every
“hour.”” It was defined as the squared difference to one
of the four neighbors ((x,y — 1), (x + 1, ), (x, y + 1), and
(x — 1, y)for 0, 3, 6, and 9 o’clock, respectively) or as the
weighted sum of squared differences to two neighbours
depending on the direction ¢ (Eq. (37)).

At each stage (scale, see Fig. 4.2) of the reconstruction
we used a “‘fractal’” energy Er (L = 1, . . . 4, see below)
where the lower scale terms were not extrapolated, but
added only on the corresponding coarse grid, their influ-
ence on the fine grid being ensured by E. (Eq. (37)).

The parameters used for the different scales were:

Scale M Iy iy 1 W, W W We
1 (16 by 16) 24 10 S 168 0 0 0 0.25
2 (32 by 32) 12 8 4 84 0.8 0 0 0.25
3 (64 by 64) 12 6 3 84 0.8 0.75 0 0.25
4 (128 by 128) 12 4 2 84 0.7 0.45 0.15 0.15
5 (256 by 256) 12 4 2 84 0.7 0.45 0.15 0.15
6 (512 by 512) 12 S 2 108 0.7 0.45 0.15 0.15

1is the total number of iterations from i, to i, and w, to w;
are the energy weights for lower scales in Eq. (38).
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