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ABSTRACT

The saliency of an image or video region indicates how likely it is that the viewer of the image or video fixates
that region due to its conspicuity. An intriguing question is how we can change the video region to make it more
or less salient. Here, we address this problem by using a machine learning framework to learn from a large set
of eye movements collected on real-world dynamic scenes how to alter the saliency level of the video locally. We
derive saliency transformation rules by performing spatio-temporal contrast manipulations (on a spatio-temporal
Laplacian pyramid) on the particular video region. Our goal is to improve visual communication by designing
gaze-contingent interactive displays that change, in real time, the saliency distribution of the scene.

Keywords: spatio-temporal saliency, saliency manipulations, gaze guidance, gaze-contingent displays, Laplacian
pyramid

1. INTRODUCTION

In our daily life, we are constantly faced with a vast amount of visual information that the human visual system
cannot process simultaneously. Despite the illusion that we perceive the entire visual field in full detail, only a
small fraction of this information — which falls on the higher resolution area of the retina (the fovea) — can
be handled at any one time. The selected locations in the visual field are brought to the fovea and processed
by a succession of saccades and fixations that together form a scanpath. The set of mechanisms through which
relevant information is selected is called visual attention and is known to be determined by two types of factors.
First, low-level stimulus properties, such as motion, contrast, and colour, can trigger a fast bottom-up attentional
capture. Second, higher cognitive processes, i.e. the viewer’s goals and interests, also modulate the attentional
selection (top-down attention).

Taking advantage of the gained insights on the cognitive processes involved in attentional selection, vari-
ous computational models of visual attention have been proposed.1–4 The ability to predict the salient, and
therefore, potentially relevant scene locations has proven to be invaluable for computer vision applications, too,
where attention-based algorithms have been proposed e.g. for image and video compression,5 cropping, quality
assessment, and active vision.6 Such models centre on the concept of a “saliency map”, which assigns, to each
pixel of an image or video, a saliency value indicating how likely it is that the viewer of the image or video fixates
that location due to its (relative) conspicuity. Although the various models differ in their underlying assumptions
concerning the model architecture and the formal definition of saliency, they share some properties that make
them biologically plausible. In general, by utilizing one or more basic visual features that are known to play a
role in attentional control, local contrast of image regions with their surrounding is computed. Visual features,
such as orientation, contrast, and colour are extracted separately on multiple scales and then combined together
to form a master saliency map. On this map, biological mechanisms, such as winner-take-all competition and
inhibition-of-return, are used to shift attention among the salient regions, thus generating a scanpath for an
input scene.
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Apart from the prediction of scanpaths, only very few studies have addressed the intriguing question of how
one can change an image or video locally to influence the emerging scanpath, i.e. how human gaze can be guided
by low-level changes to the visual stimulus. In situations where a large visual display (or visual field) needs to be
searched for specific information (e.g. driving, analysing medical and geological images), it is often crucial in which
order the salient (and relevant) objects and events are attended to, i.e. how we look at a certain visual stimulus.
Eye movement studies have shown that in several domains the gaze patterns of experts differ considerably from
that of novices. For example, search strategies of expert and novice radiologists are substantially different,7

and experienced drivers’ and pilots’ gaze patterns exhibit shorter dwell times and are better defined;8 in other
words, experts have learned to direct their eyes more efficiently. Moreover, in safety-critical situations, such as
driving, assistance in where to look next, for example in order not to overlook a pedestrian, can prove more than
beneficial.

Recently, we proposed gaze-guidance systems that lead the observer’s gaze through a visual scene in order
to enforce a predetermined, optimal scanpath and, through this, to aid the information uptake of the human
viewer.9 The goal is to augment human vision with computer vision technology in a least-obtrusive way. Gaze
guidance is realized by gaze-contingent interactive displays that use an eye tracker to monitor the viewer’s gaze.
In order to achieve an alteration of the gaze patterns, the saliency distribution of the visual scene is modified
in real time by local changes to the visual input. Based on the original visual input and the eye position of
the viewer, first, a limited set of salient, candidate locations is predicted that would attract the user’s gaze.
Then, using real-time video processing, we increase the probability of being attended (i.e. its saliency) for one
candidate location, and simultaneously decrease saliency for all other candidates. That such modifications are
not perceived consciously is assured by the fact that they are embedded gaze-contingently in the periphery.

Previously, several attempts had been made to influence gaze patterns, either by filtering potentially salient
targets10, 11 or by adding synthetic gaze attractors such as flashing Gabors.12, 13 However, these attempts
were limited to static natural images and computer-generated content, where eye movements are more idiosyn-
cratic and less driven by bottom-up saliency than on natural movies,14 and they were also not rendered gaze-
contingently, so that subjects presumably quickly became aware of the changes and could consciously decide to
ignore their effect.

In the above formulation, a critical issue is to identify optimal image transformations that can make a video
region more (or less) eye-catching (i.e. salient) to the viewer. Here, we use a data driven approach to the problem,
which aims at learning, from eye movements collected on real-world dynamic scenes, how to alter the saliency
level of the video locally. We consider a two-class classification scenario in which the video regions fixated by
humans form the salient class and non-fixated locations represent the non-salient class. To the best of our
knowledge, the general problem of “moving” a sample of a class into the other, in an optimal way and under
certain constraints, is novel in the machine learning and computer vision literature.

In the current scenario, transformations are limited to subtle changes in the video patch that go “unnoticed”
— as they are embedded gaze-contingently in the periphery — yet still have a gaze guiding effect. In theory,
such image modifications could be derived directly in the pixel (or intensity) space of image regions (or patches).
However, as natural image patches are known to be samples of an unknown low-dimensional manifold in the
space of all possible image patches (i.e. generating an image patch randomly pixel-by-pixel does not give a natural
image), transforming them in the original, high-dimensional pixel space will almost always result in unnatural,
white noise images. In other words, there are only a limited number of modifications that could be performed
on a given image while still preserving its natural look. Moreover, these modification rules would be specific to
the image patch at hand, and would not apply to all patches.

Alternatively, one could map the high dimensional pixel patch onto some lower-dimensional (parameter)
space by peforming local feature extraction on the patch. Such an approach clearly limits the range of possible
image modifications to changes in the chosen feature space. This could mean, for example, an increase/decrease
in either luminance contrast, colour contrast or intensity, or motion velocity. Nevertheless, it has the advantage
that any meaningful feature modification still yields a natural looking image. However, a strong constraint is
imposed on the chosen feature space by the need to be able to apply (or map back) the changes in the feature
space to the pixel image. Additionally, as we intend to derive transformation rules from information on the



salient and non-salient image regions that was obtained with machine learning algorithms, the proposed feature
space must be characterized by a good separability of the salient and non-salient classes.

In this paper, we propose to use the local spectral energy as a feature space that satisfies the above constraints.
It is a low-dimensional representation of a movie patch computed on each level of a spatio-temporal Laplacian
pyramid by averaging the squared pixel intensities within the patch. Learned transformations within this space
can be implemented as local spatio-temporal contrast manipulations on a spatio-temporal Laplacian pyramid.
We show that such transformations lead to a modification of the saliency distribution, which in turn should result
in a change in eye movement statistics. In Sec. 2, we present the machine learning framework used for deriving
transformations in the spectral energy space. Then, in Sec. 3, we evaluate the effect of the spatio-temporal
contrast modifications on saliency distribution in a preliminary experiment, where such energy modifications
are embedded offline in a number of real-world videos. The desired effect (an increase or decrease in absolute
saliency) is observed in different saliency maps of the modified movies — maps computed by state-of-the-art
saliency models for dynamic scenes.

2. TRANSFORMATIONS IN THE SPECTRAL ENERGY SPACE

To derive saliency alteration rules, we explore a data-driven approach that takes advantage of learning the
discriminative characteristics of salient video regions directly from human-labelled data (i.e. fixated video areas).
Note that this approach does not make any assumptions per se on what constitutes saliency in natural movies.
Our strategy is to first learn the structural differences between fixated and non-fixated movie regions by building
a classifier that operates on the spectral energy representation of the patches, and then use information on the
classification boundary to move elements of one class into the other.

2.1 Spectral energy as a simple saliency measure

The flow diagram of our joint saliency classification/modification scheme is depicted in Fig. 1. Given a collection
of real-world videos, we use eye movements collected on them to label movie areas as either attended or non-
attended. The videos are first decomposed into their Laplacian pyramid representation,15, 16 i.e. a dissection
of the original movie into a hierarchy (or pyramid) of videos such that each pyramid level corresponds to a
different spatio-temporal frequency band. For each movie location p = (x, y, z) in the two classes (with spatial
coordinates x and y, and frame number z), the local spectral energy is extracted on each level of the spatio-
temporal Laplacian pyramid. The spectral energy es,t on the s-th spatial and t-th temporal pyramid level (Ls,t)
is computed in a spatial neighbourhood centred around p as

es,t =
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where Ws and Hs stand for the width and height of the neighborhood on the s-th spatial scale (fewer pixels on
lower-resolution spatial scales, but independent of the temporal scale). The spatial coordinates of the location p
are also subsampled on the spatial scale s: (xs, ys) = (x/2s, y/2s). We consider a spatial window around a video
location because context is known to strongly influence the saliency of the location, and with fixational data one
also needs to compensate for spatio-temporal imprecision in both the eye tracking and the human visual system.
The size of the window is a free parameter whose value needs to be determined either from data fitting or chosen
in accordance with the results of perceptual experiments.

Thus, each video patch, be it attended or not, is described by a feature vector consisting of the spectral
energies extracted on the different pyramid levels. With this low-dimensional representation (or energy profile)
of a video patch a non-linear kernel support vector machine (SVM) is trained that can discriminate between
salient and non-salient movie regions. We here note only briefly that despite its simplicity this algorithm yields
similar results to state-of-the-art saliency models. On the collection of videos considered below for evaluation,
the leave-one-out ROC score for predicting eye movements — averaged over all 18 movies and after removing
biases inherent in eye tracking data — is 0.63 for the above simple algorithm, 0.63 for the classical Itti and Koch
model,1 and 0.64 for SUNDAy.17 In previous work, however, we could also obtain better results (ROC score of
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Figure 1. Flow diagram summarizing the proposed approach. In the saliency classification phase (left), a classifier is trained
with the spectral energy profiles of attended and non-attended video patches (fixations are denoted by small red (filled)
squares in the movie frame). This feature is extracted as the mean-square-root of pixel intensities in a neighbourhood
around the locations (large unfilled square) on each level of a spatio-temporal Laplacian pyramid. Right: Schematic

view of transformation rules (for illustration purposes, only a two-dimensional feature space is shown: ~f = (e1, e2)). An
iterative SVM approach (kernel + linear SVM) is utilized to learn an optimal separation (a hyperplane h = (~w, b)) of
salient (green dots) and non-salient (red triangles) video regions. To avoid saccades to a particular salient region whose

energy profile is ~f , the patch’s energy profile is moved perpendicular to h in the direction of the class of non-salient regions
(along ~fdec). To increase the patch’s saliency, its energy profile is moved away from h (along ~finc).

0.67) based on invariants of the structure tensor,18 which are generic representations that are not invertible and
thus cannot be used for saliency modifications.

2.2 Spectral energy modification

Support vector machines search for an optimal “hyperplane”, a decision boundary that separates the two classes
with maximum margin. The hyperplane h is described by a vector ~w perpendicular to the plane and the bias b,
which specifies its shift from the origin. The closer an instance to the plane, the more difficult it is to classify
it into either group, because the more it resembles instances of the other class. The classification confidence of
those points located far from the plane is high since, in our case, they are “truly” salient/non-salient video areas.
Therefore, in order to change the saliency level of a movie region (in terms of its spectral energy) it suffices to
move its energy profile relative to the plane, either towards the plane or away from it. Thus, a separating plane
imposes a meaningful direction for transformations of spectral energy profiles in the feature space.

Still, an important question remains: how can we map back a modified feature vector (energy profile) to an
image patch? How to apply the learned transformations to the original video patch? Obviously, this mapping
can only be approximate, but there are various ways of increasing or decreasing the spectral energy of a video
patch. A straightforward approach, applied here, is to multiply every pixel in the patch with the ratio of the
desired and actual energy, thus increasing or decreasing contrast in the specific pyramid scale.

One complication in our scenario relates to the fact that the classifier that best discriminates salient video
regions from non-salient ones is kernel-based, i.e. it nonlinearly maps its input data into a higher-dimensional
space, where the problem becomes linearly separable. The non-linear mapping between the input space and the
high-dimensional feature space is performed implicitly using the kernel trick, hence the φ non-linear embedding



function is unknown. As a result, the reverse mapping (with an unknown φ−1) from the feature space back to
the input (energy) space of the modified data points is difficult. This is known as the pre-image problem in
the kernel methods literature. It has been shown that exact pre-images typically do not exist but need to be
aproximated, in the process of which they can (easily) get distorted. To remediate the issue of a further non-linear
mapping, we reformulate the task of learning a saliency classifier by considering only a subset of the attended
and non-attended locations, thereby making the problem “easier”. Assuming that the video patches correctly
classified by the kernel support vector machine approximate well the manifolds of their respective classes, we
train a second, linear support vector machine with only these patches, in case of which the separating plane is
defined in the input (energy) space — see Fig. 1 for a visual illustration.

Recall that with our problem formulation (gaze guidance through saliency manipulations), the alteration (in
terms of the probability of being attended) of only potential gaze-capturing locations is intended. To modify
the saliency of a candidate, i.e. salient, video patch, we move its energy profile perpendicular to the separating
hyperplane of the linear SVM, either towards the non-salient class (i.e. towards the hyperplane, to make the
patch less salient), or away from the hyperplane (to increase its saliency) — as shown schematically in Fig. 1.

Thus, for a candidate location with spectral energy vector ~f , the transformation rules are defined as

~finc = ~f + α1 ~w
b

||~w||

~fdec = ~f − α2 ~w
b

||~w||

, (2)

where αi denote the degree of change.

One might argue whether the learning of such contrast modification rules (or weights) from eye movement
data really is necessary. An analysis of the average spectral energy at attended and non-attended locations
reveals that, on every scale, the attended movie regions have higher spectral energy than non-attended ones.
Thus, it may suffice to increase/decrease energy by a constant factor — relative to the average spectral energy
of the specific class — in each frequency band. However, we chose to learn these weights, since this way the local
structure of the manifold of natural video patches is also considered, and the relative weighting of individual
frequency bands becomes possible. Different spatio-temporal frequency bands may play different roles in guiding
bottom-up attention, and individually weighting them can account for these differences.

To avoid artefacts, such as pixel saturation, due to strong contrast enhancements (occuring in the “saliency-
increase” case), elaborate normalization schemes that map back the output videos to pixel intensity values in
[0, 255] are required. Because natural videos usually already use up the limited dynamic range of the display,
we reduce the to-be-modified videos to x% overall contrast and adjust the energy weights (through the strength
factors αi in Equation (2) such that the intensity range at the modified location is stretched maximally without
overflows. Also, in order to avoid strong and unnatural changes in the candidate video patch, the DC component
(i.e. the lowest pyramid level of the Laplacian) is left unaltered.

3. EXPERIMENTAL EVALUATION

To evaluate the effect of the spatio-temporal contrast modifications on saliency and eye movements, in a prelim-
inary experiment, we embedded such local energy transformations in high-resolution videos of natural outdoor
scenes. Three baseline saliency models for dynamic scenes, the model of Itti and Koch,1 SUNDAy,17 and a sim-
ple yet powerful approach based on the invariants of the structure tensor,4 were used to compute saliency maps
both for the unmodified and transformed movies. Using statistical tests, we then verify whether the embedded
spectral energy modifications really bring the desired change, i.e. an increase or decrease in absolute saliency.

3.1 Learning the contrast modification rules

For the experiment, we use a collection of 18 natural videos (1280 by 720 pixels, 29.97 fps, about 20 s duration
each, recorded in the Y ′CbCr format) for which eye movements of 54 human subjects freely viewing these movies
are available.14 From the recorded eye traces overall about 40,000 saccades are extracted using a dual-threshold
velocity-based procedure.19 These fixations are used to find an optimal hyperplane for separating salient and less
salient video regions. For the non-salient locations, however, biases inherent in gaze data need to be addressed.



Because eye movements tend to cluster in the centre of the screen (a phenomenon known as the central fixation
bias in the human vision literature), one needs to assure a similar, centrally biased distribution of non-attended
locations, too. To achieve this, a common approach, which we also follow here, is to use randomly chosen
scanpaths from other movies as non-attended locations on a given video. Additionally, assuming that saccades
are “responses” to gaze-capturing events, one would also need to consider the oculomotor latency between the
event and the saccade associated with it. However, we have previously shown that, possibly due to prediction,
the average time lag of saccades in natural videos is near-zero, i.e. no offset needs to be taken into account.20

The energy profiles of the attended and non-attended locations are computed on an anisotropic Laplacian
pyramid decomposition of the videos (the pyramid having S = 5 spatial and T = 4 temporal levels), in a 5 by 5
degree spatial neighbourhood on all scales (which corresponds to 128×128 pixels on the highest spatial levels). In
the periphery, the highest spatial and temporal frequency information is known to contribute little to attentional
selection, since high spatio-temporal frequency is discernible only near the fovea. Therefore, we leave the energies
in these scales (8 out of the 20 pyramid levels) unaltered, i.e. we fix their weights to 1.0. Thus, the soft-margin
kernel SVM21 operates in a low-dimensional space: on the only 12-dimensional vectors containing energies from
all but the highest spatial and temporal scales. The optimal SVM parameters, the width of the Gaussian γ and
the penalty term C, are found with 5-fold cross-validation. Different from classical machine learning tasks, here,
we do not wish to improve the performance of the above simple classifier on independent test data, but rather
optimize it to better fit the given training data. Even though not relevant here, performance on test data is also
good (see Sec. 2.1). The quality of prediction on the training data is measured through ROC analysis, which
reports an ROC score of 0.82. After discarding the wrongly classified video patches, about 28,000 locations are
left per class, with the energy profiles of which a linear SVM is trained. Its C parameter is again determined
with 5-fold cross-validation. Now, with this linear SVM, on the selection of “truly” (i.e. easily discriminable)
salient and non-salient video patches, an ROC score of 0.819 is achieved. The optimal separating hyperplane
h = (~w, b) found by this linear SVM shall be used to derive the rules in Equation (2).

3.2 Embedding the modifications in natural movies

For our evaluations, in the above 18 movies, about every second, 10 candidate locations are determined. In
principle, we could have used the above simple saliency predictor based on the spectral energies (or any other
state-of-the-art saliency model) to generate these locations. However, for our testing purposes, the most precise
determination of gaze-capturing areas is important, and human observers’ eye movements are still best predicted
by other observers’ eye movements. Hence, we created a spatio-temporal fixation density map for each movie
by placing a two-dimensional Gaussian with standard deviation 0.75deg at each gaze sample of the 54 subjects.
After normalizing the superposition of these Gaussians, the candidate locations are iteratively extracted from
these maps by picking the location with the highest “empirical” saliency, and subsequently laterally inhibiting
this location with an inverted Gaussian of standard deviation 2.35 deg. In this way, it is also assured that within
a neighbourhood of about 5 × 5 deg no overlaps of candidates occur. With Equation (2), for each of these
candidates a pair of new spectral energy vectors is computed based on the candidates’ actual profiles, which were
extracted with the parameters used for the SVM learning. The scalar αi, which controls the degree of change, is
first set to a fixed initial value independent of the candidate’s energy vector. The rationale is that, at this point,
we only define the directions of change in the feature space of spectral energies, and adjust the strength of the
modification later, separately for each test condition, in which the effectiveness related to different modification
strenghts is examined. Thus, for contrast modifications, initial weights ~winc and ~wdec are derived as the ratio

between the desired and actual energies
~finc
~f

and
~fdec
~f
, respectively.

As mentioned above, if contrast is increased beyond what the dynamic range of the display allows, artefacts
occur. Therefore, to leave room for contrast enhancements, we reduce the overall contrast of our movies by
different amounts, and embed modifications in each of these contrast-decreased videos.

The final, video patch-specific saliency-increase weights ~winc
′ are defined for each contrast level so as to stretch

the dynamic range in the neighbourhood of the candidate between the extrema (i.e. 0 and 255, black and white –
as we are operating on the brightness channel only). Thus, with different overall contrasts, it becomes possible to
quantify the strength of the modification and evalutate its effect on saliency. We introduce a simplified notation
for the synthesis of the Laplacian pyramid:

∑S−1
s=0

∑T−1
t=0 Ls,t, which in fact involves the iterative upsampling and



addition of the Laplacian levels. To avoid overflows, for each pixel p = (x, y, z) in the modified spatio-temporal
video patch the following must hold:

0 ≤

S−1
∑

s=0

T−1
∑

t=0

w′
s,tLs,t(x, y, z) ≤ 255, (3)

where w′
s,t is the patch-specific weighting coefficient for the spatio-temporal frequency band (s, t). These weights

are obtained from the initially derived ones (ws,t):

w′
s,t = (ws,t − 1)β + 1, (4)

where β takes now the role of αi from Equation (2) in controlling the strength of the manipulation. To stretch
the intensity range to the extrema but not beyond, β is derived from Equation (3) for each spatio-temporal video
patch individually as

β = min
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













255−
∑

s

∑

t Ls,t(x, y, x)
∑

s

∑

t ws,tLs,t(x, y, z)−
∑

s

∑

t Ls,t(x, y, z)
, if the denominator > 0

−

∑

s

∑

t Ls,t(x, y, z)
∑

s

∑

t ws,tLs,t(x, y, z)−
∑

s

∑

t Ls,t(x, y, z)
, if the denominator < 0

. (5)

For each pixel in the video patch, exactly one of the following conditions holds: (1) the denominator is larger
than zero, i.e. the manipulation brings an increase in pixel intensity, and so (in the limit) β should stretch the
new intensity to 255; (2) the denominator is negative, i.e. the modified pixel intensity is smaller than the original,
and should, therefore, be decreased further to 0; (3) the denominator is zero, i.e. the pixel intensity remains the
same, hence, β is not affected. By picking the smallest ratio over all pixels in the patch, we assure that the
modified intensities remain in the allowed range.

The quantification of the strength of the saliency-decrease rules cannot be tied to the overall contrast level of
the video. Instead, the strength is varied by scaling the initial ~wdec weights so that n weights closest to zero are
actually brought to zero (0 ≤ n < S ∗ T ). Setting the energies in certain scales to zero means removing those
frequencies.

For the experiment, three saliency-increase and one saliency-decrease strengths were tested; for the increase
rules, the original videos were decreased to 70, 80, and 90 percent overall contrast. For simplicity, we only report
results for one condition: the 80% overall contrast case. The same qualitative results were obtained in the other
two conditions, with the obvious difference that saliency-increase modifications at 70% contrast were stronger
than at 80% or 90%. For decrease rules, n was set to 4, i.e. frequencies in four spatio-temporal levels – with
weights closest to zero – were removed. Every second, the saliency of 5 randomly chosen candidate points was
increased further, and the remaining 5 candidates were decreased in their saliency. For the results reported
below, spatio-temporal contrast manipulations were embedded in a 5 by 5 deg spatial and 700ms temporal
neighbourhood centred around the candidates. An example stillshot from a movie and its altered version is
shown in the first row of Fig. 2. Lack of temporal change in the printed figure renders the modifications less
visible than in the actual movie; however, in the difference map of the two the 10 modified patches are clearly
discernible. In this specific frame of the “roundabout” scene, the 5 locations in the upper part of the scene are
decreased in saliency, while those in the lower part are increased.

3.3 Results

The effect of spectral energy modifications on overall saliency is evaluated by pairwise comparison of the saliency
maps of unmodified and transformed videos – maps which were generated by three independent models of
bottom-up attention. The first of these is an implementation of the classical Itti and Koch saliency map, the
architecture of which we reviewed in the introduction. Here, we use the Maxnorm normalization scheme (based
on normalized summation) to fuse the separate feature maps into one master map. SUNDAy, the second model,
uses natural image statistics in combination with a Bayesian approach to detect gaze-capturing events. To create
the saliency maps for both of these models, their publicly available implementations were used with their default



Figure 2. Saliency maps for one frame of an original (first column) and altered (second column) video. Ten non-overlapping
candidate (i.e. salient) regions undergo saliency manipulations: the five candidates in the upper part of the scene are
reduced in saliency, while the remaining five in the lower part are rendered more salient. Three baseline models are used
to obtain the saliency maps: the geometrical invariant K (second row), the model of Itti and Koch (third row), and
SUNDAy (last row). In the differences of the saliency maps before and after the modification (third column), the desired
alteration in saliency can be clearly detected for the saliency-increase case (dark areas in the difference maps), while the
decrease rules (bright areas in the differences) have a weaker effect on the saliency (in particular for SUNDAy).
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Figure 3. Box plots comparing the saliency distributions of candidate locations extracted from the saliency maps of original
and modified videos. The distributions at saliency-increase (INC) and decrease (DEC) locations are treated separately.
In all cases, the differences between the original and modified saliency distributions are statistically significant (paired
Wilcoxon signed rank test) (middle line: median, box: upper and lower quartile, whiskers: data extent, outliers not
shown).

parameters. Finally, the third algorithm, introduced in Ref. 4, is a simple and fast alternative to state-of-the-art
saliency algorithms, and relies on the estimation of the intrinsic dimension, i.e. the degree of variation of the
signal, by means of computing the geometrical invariants of the structure tensor. We have previously shown
that the more the video signal varies locally, i.e. the higher its intrinsic dimension is, the more it attracts human
gaze. The geometrical invariant K, which encodes spatial and temporal changes and is computed as the product
of the eigenvalues of the structure tensor, even outperforms baseline models in predicting eye movements.18

The parameters for computation of K were as in Ref. 18. All of these models compute saliency on spatially
downsampled versions of the original movie in order to reduce computational cost and to increase resilience
against noise. The lowpass-filtered videos (6.6 cycles/degree) were created by filtering the video with a 5-tap
spatial binomial filter and downsampling it (in space) by a factor of two. Note, though, that the highest spatial
levels remained unchanged in our transformations anyway.

Saliency maps for the “roundabout” scene from Fig. 2 are shown in subsequent rows of the same figure (in the
order: invariantK, Itti and Koch, and SUNDAy – second to fourth rows). Alterations in the saliency distribution
are visually more striking in the image differences (third column) between the saliency maps of unchanged and
modified videos. Here, a deviation from the gray value indicates an alteration in the saliency level: at darker areas
a saliency-increase occurs, while brighter regions experience a decrease in saliency. Visually, saliency-increase
seems to have a more pronounced effect than decrease, especially in the case of the maps computed by SUNDAy.

The saliency of candidate locations before and after the energy modification was compared with a paired
Wilcoxon signed rank test, and proved to be significantly different for all three saliency models and both in-
crease and decrease (see Fig. 3). Results confirm our observation on the effectiveness of the modifications: the
differences in saliency level are significantly greater where a saliency-increase manipulation was performed than
at decrease locations. However, comparing the effectiveness of the two types of changes is not entirely fair,
as the quantifications of the strength of manipulation for increase rules is independent of that of the decrease
rules. Also, the modifications are the most effective (in changing the saliency distribution) for invariant K
(p = 1.9 · 10−240 for increase rules, p = 1.7 · 10−165 for decrease rules). Nevertheless, the desired effect is reached
also in the saliency maps of Itti and Koch (increase, p = 4.9 · 10−213; decrease, p = 5.0 · 10−67) and SUNDAy
(increase, p = 1.0 ·10−145; decrease, p = 8.0 ·10−25). Unlike invariant K, which detects spatio-temporal intensity
variations (space-time corners, non-constant translations), the two state-of-the-art models base their prediction
of saliency on additional low-level features, such as colour and orientation. This explains why modifications to
contrast only have a more modest (yet significant) impact on overall saliency in the case of the Itti and Koch
and SUNDAy models.



4. CONCLUSION AND OUTLOOK

Redirecting visual attention to certain goal-relevant areas in the visual field is a promising new strategy to
integrate into future visual and communication systems. Our goal in this paper was to explore techniques that
allow to alter the saliency distribution of the scene, by embedding subtle low-level changes in the visual stimulus.
With effective changes that do not introduce objectionable image artefacts, an unconscious gaze guiding process
may be achieved.

In this paper, we proposed a generic saliency modification scheme in which, first, the structural differences
between attended and non-attended video locations are learnt. The information on the class boundary that
separates the two classes was then used to derive the desired image transformations that lead to an alteration in
saliency. Our scheme is generic because it does not assume any specific low- or high-level image feature space in
which the manipulation rules are derived. However, two constraints have to be met by the selected feature(s).
First, for effective saliency transformations, in this space, a high separability of the salient and non-salient video
areas is highly desirable. Second, modifications in the chosen feature space need to be mapped to manipulation
rules in the original input or pixel space of videos.

The spectral energy, computed on a spatio-temporal Laplacian pyramid, has proven to be a simple feature
that fulfils the above constraints. Transformations performed in this low-dimensional space were implemented
as local spatio-temporal contrast manipulation rules (on the spatio-temporal Laplacian). Normalization schemes
to avoid visual artefacts and ways to quantify the modification strengths were also discussed. Finally, in a
preliminary experiment, which aimed at evaluating the potential of such local video manipulations, we used
three independent saliency models to compare the saliency maps of the unmodified and altered videos. The
desired effect was reached in the saliency maps of modified movies, where a saliency-increase (or -decrease) rule
applied to a video patch led to an increase (or decrease) in absolute saliency relative to the original movie patch.

It should be also noted that, since the saliency transformation rules are learned from eye movement data and
validated on existing saliency models, our results are also indicative of the biological relevance of these models.

In future work, we shall investigate and empirically validate the effect of gaze-contingent energy modifications
on eye movements in a psychophysical experiment.
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