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University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

ABSTRACT

This paper deals with the problem of estimating multiple motions at points where these motions are overlaid.
We present a new approach that is based on block-matching and can deal with both transparent motions and
occlusions. We derive a block-matching constraint for an arbitrary number of moving layers. We use this
constraint to design a hierarchical algorithm that can distinguish between the occurrence of single, transparent,
and occluded motions and can thus select the appropriate local motion model. The algorithm adapts to the
amount of noise in the image sequence by use of a statistical confidence test. The algorithm is further extended
to deal with very noisy images by using a regularization based on Markov Random Fields. Performance is
demonstrated on image sequences synthesized from natural textures with high levels of additive dynamic noise.

1. INTRODUCTION

Motion estimation is essential in a variety of image processing and computer vision tasks, like video coding,
tracking, directional filtering and denoising, scene analysis, etc. Standard motion models, however, fail in case
of transparent and occluded motions. In case of transparent motions, two or more motion vectors are observable
at the same image location and time. As with a single motion, the estimation of multiple motions implies a one-
to-many correspondence and is thus an ill-posed problem [1]. In consequence, algorithms for motion estimation
have to incorporate some form of local regularization and to estimate the local motion parameters based on
a local neighborhood. For a single motion, the algorithms can be classified in three main classes: differential,
transform-based, and block-matching based methods.

A differential algorithm for two transparent motions was first proposed by Shizawa and Mase [2] and was
later generalized for the general case of N motions in [3] where an analytic solution based on so-called mixed
motion parameters was presented. A phase-based solution for the estimation of two transparent overlaid motions
was proposed by Vernon [4]. This method has also been generalized for an arbitrary number of N motions in [5].
This generalization led to solutions for extracting the N motions at a single point as well as for separating the
moving image layers. A layered representation of image sequences was presented in [6] and approaches based
on nulling filters and velocity-tuned mechanisms have been proposed in [7, 8].

Although both differential and transform-based methods are fast and perform well for small displacements,
block-matching is known to perform better for large displacements or in stronger noise, and is thus a widely used
method. To our knowledge, the first block-matching algorithm for multiple motion estimation was proposed
in [9]. In this paper we extend this algorithm to use a stochastic framework with a confidence test and Markov
random fields. The algorithm is derived from the phase-based solution for the Fourier-domain equations for
transparent motions [4, 5]. The distortion caused by occluding regions is also analyzed and we show how to
apply the algorithm to estimate motions at occlusions.
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2. THE BLOCK-MATCHING CONSTRAINT

The block-matching constraint will be derived from the phased-based method for multiple motion estimation
[4, 5]. In this method, the image sequence is modeled as an additive superposition of N independent moving
layers. This model is transformed to the Fourier domain and the motion layers are successively and analytically
eliminated. The remaining equations describe a non-linear coupling between the sought motion vectors and
the observed image sequence. These equations are then transformed back to the spatial domain, thus leading
to a multiple motions block-matching constraint. This constraint actually describes how a particular image in
the sequence results from N previous images which are warped according to the motion parameters and then
superimposed.

2.1. The block-matching equation for N motions

In the spatial domain, we model N transparent motions as

fk(x) = f(x, k) = g1(x− kv1) + g2(x− kv2) + · · ·+ gN (x− kvN ), k = 0, 1, . . . (1)

The above system of equations involves the observed images fk for each time step and spatial position x, the
unknown layers gn and the sought vectors vn for n = 1, . . . , N, see [2].

In the Fourier domain, Equation (1) becomes

Fk(ω) = φk1G1(ω) + φk2G2(ω) + · · ·+ φkNGN (ω), (2)

where φn = e−jω·vn , n = 1, . . . , N are the phase shifts and ω = (ωx, ωy) are the frequency variables. Uppercase
letters denote the Fourier transforms of the respective lower case letters, e.g., Fk is the Fourier transform of fk.

We simplify notation by setting Φk = (φk1 , . . . , φ
k
N ) andG = (G1, . . . , GN ) and obtain the following expression

for the above system of equations:
Fk = Φk ·G. (3)

The goal now is the elimination of the unknown vector G that contains the Fourier-transforms of the motion
layers. The remaining equation then relates only to the observable Fourier transform of the single images and
the phase shifts, i.e., F0, . . . , FN and φ1, . . . , φN . Note that we need a minimal number of N past frames with
constant motion vectors vn. The polynomial

p(z) = (z − φ1) · · · (z − φN ) = a0z
N + a1z

N−1 + · · ·+ aN (4)

with unknown coefficients a1, . . . , aN and a0 = 1 allows for an analytical elimination of the unknown layers gn.
Since its roots are the phase terms in Φ1 = (φ1, . . . , φN ), we have:

a0ΦN + a1ΦN−1 + · · ·+ aNΦ0 = (p(φ1), . . . , p(φN )) = 0. (5)

Therefore by inserting (3) in (5) we obtain

a0FN + a1FN−1 + · · ·+ aNF0 = (ΦN + a1ΦN−1 + · · ·+ aNΦ0) ·G = 0 ·G = 0. (6)

The coefficients of p(z) are symmetric polynomials of the its roots φ1, . . . , φN :

a0 = 1

a1 = −
N∑

i=1

φi

a2 =
∑

i<l

φiφl

a3 = −
∑

i<l<k

φiφlφk

...

aN = (−1)Nφ1φ2 · · ·φN .
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Transforming Equation (6) back into the spatial domain yields

e(f,x,v1, . . . ,vN ) = (−1)Nf0(x− v1 − · · · − vN ) + · · ·
−
∑

i<l

fN−2(x− vi − vl) +
∑

i

fN−1(x− vi)− fN(x) = 0, (7)

because the products of phase terms lead to concatenated shifts in the spatial domain. Since each an is a sum
of
(
N
n

)
terms, the central part of Equation (7) has

∑N
n=0

(
N
n

)
= 2N terms.

Equation (7) describes how the N -th image can be constructed form the N previous images by using the
motion vectors. Therefore, this equation can be used as the basis for block-matching methods for a theoretically
unlimited number of motions. For single motion, Equation (7) reduces to classical block-matching constraint

e(f,x,v) = f0(x− v)− f1(x) = 0 (8)

while for two transparent motions, it becomes

e(f,x,v1,v2) = f0(x− v1 − v2)− f1(x− v1)− f1(x− v2) + f2(x) = 0. (9)

3. HIERARCHICAL ALGORITHM FOR TRANSPARENCY AND OCCLUSION

From the block-matching constraint a number of different algorithms for the estimation of multiple motions could
be derived. We here present a hierarchical algorithm based on a combination of statistical model discrimination
and hierarchical decision making. First, a single-motion model is fitted to the sequence by exhaustive search. If
the fit is poor, the single-motion hypothesis is rejected and the algorithm tries to fit two transparent motions.
Otherwise, the single motion estimate is kept. If the assumption of two transparent motions must also be rejected,
the algorithm tries to fit an occlusion model, which will be developed later in this section, and estimates the
occluded motions. The method can be extended to deal with an arbitrary number of transparent motions. The
image noise is modeled as additive white Gaussian noise, thus leading to a significance test that evaluates χ2

test statistics.

3.1. The stochastic image sequence model

Apart from distortions and occlusions the non zero results of the block-matching constraint may be caused by
noise. Additional information about the distribution of the noise hence helps to determine whether or not the
observed error signals after the block-matching process is explainable by the noise model. Different motion
types lead to different noise distributions of the error signals which is helpful for selecting the most likely motion
model.

We model the observed image intensity at each spatial location and time step as

fk(x) = f̄k(x) + εk(x) , εk(x) ∼ N (0, σ2) , k = 0, 1, . . . (10)

Therefore, from Equation (7) and the noise model, we have

e(f,x,v1, . . . ,vN ) = e(f̄ ,x,v1, . . . ,vN) + εN (x), (11)

where

εN (x) = (−1)Nε0(x− v1 − · · · − vN ) + · · · −
∑

i<l

εN−2(x− vi − vl) +
∑

i

εN−1(x− vi)− εN (x). (12)

There are 2N terms in the right-hand side of the above equation. Assuming these to be independent, we obtain

εN (x) ∼ N (0, 2Nσ2). (13)

The hypothesis of noise independence fails when the arguments of terms involving the same image fn in Equa-
tion (7) are equal. This can not happen for less than three transparent motions. For four or more motions it may
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occur, e.g., that v1 + v2 = v3 + v4. This can be detected during the search process and the variance adjusted
accordingly. Hence, for a perfect match of the transparent motion model the motion compensated residual can
be modeled as

e(f,x,v1, . . . ,vN ) = εN (x) ∼ N (0, 2Nσ2). (14)

Consequently, the sum BMN of squared differences over the block obeys the χ2 distribution with |B| degrees
of freedom, i.e.,

BMN (x,v1, . . . ,vN ) =
1

2Nσ2

∑

y∈B
eN (f,y,v1, . . . ,vN )2 ∼ χ2(|B|), (15)

where B is the set of pixels in the block under consideration and |B| is the number of elements in B.

A block-matching algorithm can be obtained by minimization of the above expression. Other positive strictly
monotonic functions of motion compensated residual could also be used.

3.2. Example for single and double transparent motions

In the case of single motion the corresponding block-matching constraint consists of the subtraction between
the motion compensated image and the next image. Hence the function to be minimized is

BM1(x,v) =
1

2σ2

∑

y∈B

(
f0(y − v)− f1(y)

)2
. (16)

Similarly, for two motions the expression

BM2(x,v1,v2) =
1

4σ2

∑

y∈B
e(f,y,v1,v2)2 (17)

has to be minimized with respect to v1 and v2. If there is only one motion inside B, i.e. f1(x) = f0(x−v), the
value BM1(x,v) will be small for the correct motion vector v. On the other hand, if B includes two motions,
the value BM1 will tend to be far from zero for any vector v, because one vector cannot compensate for two
motions. Accordingly, in case of two transparent motions, BM2(x,v1,v2) will be small if we insert the correct
motion vectors v1 and v2. This Gaussian model was previously used in e.g. [10, 11], but may alternatively be
replaced by Generalized Gaussian models [12, 13].

3.3. Behavior at occlusions

In case of occluded motions Equations (8) and (9) are no longer valid because Equation (1) does not capture
this. We model the occlusion of the layer g2 by the occluding layer g1 by

fk(x) = γ(x− kv1)g1(x− kv1) + (1− γ(x− kv1))g2(x− kv2), (18)

with γ = 1 where g1 occludes g2 and γ = 0 otherwise, see [14]. By evaluating the error criterion (9) for two
transparent motions in combination with the above occlusion image model we obtain

e(f,x,v1,v2) =
(
γ(x− 2v1)− γ(x− v1 − v2)

)(
g2(x− v1 − v2)− g2(x− 2v1)

)
. (19)

Depending on the motion vectors, it is possible that the difference of the γ function terms on the right hand-side
of the above equation is non-zero. If we intend to apply the block-matching error criterion for transparent
motions to estimate two motions at the occluding boundary we will have a region near the boundary where
the values are generally non-zero. This leads to a high value of BM2(x,v1,v2) although v1 and v2 are the
correct motion vectors. The size of this region depends on the difference of the velocities. In fact, by replacing
y = x− 2v1 in the right-hand side of the above equation we find

e(f,x,v1,v2) =
(
γ(y)− γ(y + v1 − v2)

)(
g2(y + v1 − v2)− g2(y)

)
, (20)

which means that the distortion is restricted to a strip, which is at most |v1 − v2| wide. For the simplest case of
a straight-line border, the strip is |N · (v1 − v2)| wide, where N is the unit vector normal to the border. Due to
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Algorithm 1 Hierarchical algorithm

1: Compute thresholds T1 and T2

2: for all pixels do
3: Compute minimum value of BM1 and the corresponding motion vector.
4: if BM1 < T1 then
5: Choose single-motion model
6: else
7: Compute the minimum value of BM2 and the two motion vectors
8: if BM2 < T2 then
9: Choose model for two transparent motions

10: else
11: Mark pixel
12: end if
13: end if
14: end for
15: Increase block size and repeat lines 3 to 14 for all marked pixels. Ignore marked pixels inside the current

block and recompute T1 and T2 according to the number of non-marked pixels in the block.

this distortion it is not guaranteed that the minimum of BM2 yields the correct motion vectors. A more formal
treatment of motions at the occluding boundary is given in [15, 16]. The problem of estimating two motions
at the occluding boundary can be reduced to the problem of transparent motions if we exempt the region of
distortion from the residual error calculation. The main problem is then to find the location of the occluding
boundary.

3.4. Motion-model discrimination

For the case of transparent motions there are several possibilities to find the most likely motion model. We
could use discriminant functions or, for the simple cases of one or two motions, a likelihood ratio test. Toward
this end, we should search for the minimum block-matching values for all motion models before the test can
be carried out. To save computation time, we instead opt for a significance test which allows a hierarchical
estimation of the motion vectors.

From the discussion in the previous section, BMN (x,v1, . . . ,vN ) is χ2-distributed with |B| degrees of
freedom. If we allow a percentage α of misclassifications, we can derive a threshold TN for BMN as follows: let
the null-hypothesis H0 mean that the model of N transparent motion is correct. TN is determined by

Prob(BMN > TN |H0) = α. (21)

H0 is rejected if BMN > TN . The threshold can be obtained from tables for the χ2 distribution.

3.5. The hierarchical algorithm

In order to deal with the above mentioned cases of single, transparent and occluded motions we design
an hierarchical algorithm described below and summarized in Algorithm 3.5. An extension to more than two
motions is straightforward.

The algorithm first finds v that minimizes BM1 by a full search. It tests whether or not this value is
explainable by the underlying noise model: if BM1(x,v) < T1 one motion is assigned to the current location.
Otherwise, it proceeds by finding v1,v2 that minimize BM2 and tests for BM2(x,v1,v2) < T2. If both motion
models are rejected, this position is marked as occluded. In the second phase we determine motion vectors for the
marked pixels only. The algorithm is iterated at the marked pixels and the size of the block is increased at each
iteration to ensure that there are enough non-marked pixels in the block. The estimation of the motion vectors
for the marked pixels is based on non-marked pixels only, because the marked pixels violate the assumption of
one or two motions and it thus makes no sense to minimize either BM1 or BM2. The iteration can be repeated
until motion vectors are found for all marked pixels or a maximum number of iterations is reached. For each
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marked pixel the thresholds have to be adapted according to the number of non-marked pixel in the block. This
two-phase approach enables us to compute two motions at the occluding boundary by avoiding the terms in the
right side of Equation (20) with non-zero values.

4. MOTION ESTIMATION USING MARKOV RANDOM FIELDS

The algorithms proposed in the previous sections do not consider spatial and temporal relationships between
the motion vectors. Regions corresponding to moving objects tend to be of compact shape with smooth motion
vector fields. Single moving points leading to non-smooth motion vector fields are unlikely to appear. Regular-
ization of the motion vector fields is widely used for the optical flow estimation and its extension to multiple
motions [5]. Since motion estimation here deals with statistical observations rather than with functional min-
imization problems, we choose to increase robustness against noise by using a stochastic framework based on
Markov random fields (similar to how it was used in [17] for motion detection and in [11] for single motion
estimation) in combination with the block-matching constraint. This approach has three major benefits: firstly,
it allows to select the most probable motion model (the correct number of observed motion vectors) in the
presence of noise; secondly, it ensures the spatio-temporal smoothness of the motion fields; thirdly, it estimates
simultaneously a segmentation of the images based on the local number of motions. In the following we will
present a detailed estimation algorithm for up to two transparent motions. A generalization to more than two
motions is straightforward.

4.1. Bayesian formulation of the problem

For each pixel x and time step k, we seek the underlying motion vectors v1 and v2 and a segmentation value
s ∈ {0, 1} which represents the number of observed motions at this particular pixel. The aim is to estimate
the tuple uk(x) = (v1(x),v2(x), s(x)) at each pixel using the N + 1 = 3 successive images. The maximum a
posteriori concept seeks to estimate the most probable segmentation and motion vector fields for the current
frame given the observations fk, fk−1, fk−2. The estimated field uk = {uk(x)} hence obeys

uk = arg max
u

p(u|fk, fk−1, fk−2), (22)

where p(u|fk, fk−1, fk−2) is the posterior pdf for a tuple u given the observations. Invoking the Bayes theorem,
we rewrite this as

uk = arg max
u

p(fk, fk−1, fk−2|u) p(u). (23)

The prior pdf p(u) ensures that this estimate is consistent with our smoothness expectations and the conditional
pdf p(fk, fk−1, fk−2|u) is the relationship between the observed images and the so far unknown motion fields.

4.2. The observation model

The segmentation describes the number of observed motions at each pixel. Depending on this segmentation, we
have to select the corresponding motion model to specify the likelihood p(fk, fk−1, fk−2|u). From Section 3.1,
we know that the motion compensated difference is N (0, 2Nσ2)-distributed. We use BM1 if the segmentation
s indicates that there is only one motion, i.e. s(x) = 0. Otherwise, we switch to the two motion model (BM2).
In combination of both cases as a selection of the segmentation the likelihood hence obeys

p(fk, fk−1, fk−2|u) ∝
∏

x

[
(1− s(x))(4πσ2)−|B|/2e−BM1(x,v1(x)) + s(x)(8πσ2)−|B|/2e−BM2(x,v1(x),v2(x))

]
.

(24)

Replacing the expression (1−s(x)) by a segmentation function s1(x) and s(x) by a second segmentation function
s2(x) it becomes obvious that this equation can be expanded to an arbitrary number of motion models. Next,
we specify p(u) which completes the observation model.
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4.3. Spatial smoothness

The specification of the joint density p(u) of all tuples u(x) should be such that motion fields estimated with
expected properties are more likely than others. The Markov assumption simplifies the specification by describing
the statistical dependencies of the tuples locally. With Hammersley-Clifford theorem, we can write p(u) as a
Gibbs density:

p(u) =
1

Z
e−λE(u), (25)

with Z being a normalization constant. The parameter λ is controls the influence of the smoothing. The
energy E(u) should therefore take low values for the locally smooth vector fields and segmentations. Due to the
Markovian assumption, E(u) can be divided in two compositions of locally energy terms EL(x,u) according to

E(u) =
∑

x

EL(x,u). (26)

The local energy terms EL(x,u) depend only on the motion vectors and segmentation at pixel x and those
in its neighborhood Nx. Here, a neighborhood Nx comprises the eight pixels adjacent to pixel x. Since, the
local energy term should favor locally smooth motion vector fields as well as a locally smooth segmentations,
we divide this local energy term into two parts. The term ELs measures the smoothness of the segmentation
and ELv the smoothness of the motion fields, so that

EL(x,u) = ELs(x,u) +ELv(x,u). (27)

To obtain locally smooth motion vector fields we penalize differences between adjacent motion vectors. This
penalization has to be done for all motion vectors at each pixel. Since the number of motions inside the
neighborhood and the considered pixel might be different, for instance caused by object boundaries, the lowest
number of motions of both points gives the number of motion vectors to compare. With this observation and
the assumption that the vector v1 always corresponds to the first object and the vector v2 always to the second
object∗, we define the local smoothness term as

ELv(x,u) =
∑

y∈Nx

(
‖v1(x)− v1(y)‖2 + s(x)s(y)‖v2(x)− v2(y)‖2

)
. (28)

The smoothness of the second vector can only be incorporated if at both positions x and y two motions are
available, what is controlled by the term s(x)s(y).

The specification the function ELs is done in the same way as in [17] for the purpose of motion segmentation.
As a result, we have only to count the number of pixels inside the neighborhoodNx having the same segmentation
value s(x) and subtract it from the maximum number of equal pixel segmentation values which is still eight.
The local segmentation energy defined by

ELs(x,u) = 8− wNx , (29)

where wNx denotes the number of pixels in Nx having the same segmentation value as the pixel x, has its lowest
value if all pixels inside the neighborhood are of the same motion type as the considered pixel. Obviously, if the
number wNx(s(x)) decreases, the probability of the pixels x being classified to this motion type decreases too.

4.4. The optimization algorithm

The function to be maximized in Equation (23) consists of the product of (24) and (25) with corresponding
energies given by (28) and (29), respectively. By use of the negative logarithm, its maximization is equivalent
to the minimization of

C(f2, f1, f0|u) =
∑

x

[(
1− s(x)

)
BM1(x,v1(x)) + s(x)BM2(x,v1(x),v2(x))

]
+λE(u) + log(

√
2)|B||s|, (30)

∗The estimation procedure does not provide the correspondence between motions vectors v1 and v2 and layers g1 and
g2, which therefore has to be established additionally.
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where |s| = ∑x s(x) and the constants that do not influence the minimization have been dropped.

We minimize this criterion by using a deterministic relaxation of the ICM-type [18]. However this procedure
does not ensure to find the global minimum of the functional. A kind of simulated annealing algorithm which
is able to find the global minimum has been proposed in [19].

The results of previous image are used as an initial guess for the current estimation. For fast moving
sequences, this might not be a good guess. One possibility to overcome this problem is to compute a prediction
from the previous run using the motion information. As long the motion does not changes abruptly such a
prediction is close to the actual motion vectors and behaves like temporal regularization. For some applications,
an explicit temporal smoothing could improve results. We outline the necessary modifications to the algorithm
below.

4.5. Temporal Smoothness

The estimate uk−1 of the previous motion vector fields and the previous segmentation is available at the time
of estimating uk. For simplicity, the images are modeled as being conditionally independent of the previous
estimate uk−1, that is,

p(fk, fk−1, fk−2,uk−1|u) = p(fk, fk−1, fk−2|u) p(uk−1|u). (31)

The MAP-estimate is given by

uk = arg max
u

p(fk, fk−1, fk−2|u) p(uk−1|u) p(u). (32)

The estimation criterion includes now an extra component: p(uk−1|u) which captures the relation between the
previous tuples uk−1 and the one to be estimated.

To specify p(uk−1|u), we use again a Gaussian model and make two simplifications: firstly, each vector
vk = vk(x) depends (implicitly) only on its predecessor vk−1(x+ vk) along the motion trajectory, thus making
it more likely that both vectors in the likelihood belong to the same object; secondly, we assume conditional
statistical independence. The likelihood now simplifies to

p(uk−1|u) =
∏

x

p(vk−1
1 (x+ vk1)|vk1)p(vk−1

1 (x+ vk2)|vk2), (33)

with

p(vk−1
i (x+ vki )|vki ) =

1

ZT
exp(−λT ‖(vk−1

i (x+ vki )− vki ‖2) for i = 1, 2, (34)

where ZT is a normalization constant, and λT a weighting factor.

5. RESULTS

5.1. Results for the confidence based hierarchical algorithm

In Figure (1) examples of transparent and occluded motions are given. Image (a) shows the center frame of an
images sequence containing areas with single and transparent motions. The area with two transparent motions
can be identified as the brighter box shaped part in the image. One layer is moving with a velocity of one pixel
per frame to the right and the other with one pixel per frame downwards. The estimated motion vectors are
depicted in (b) and the rectangle marks the outline of the true area with two motions. In both areas the motions
are correctly estimated. The estimate of two motions is smeared a few pixels across the border of both regions
due to the use of 5× 5 blocks. Image (c) shows the center frame of an occlusion test sequence and the images
(d) and (e) the results after the first and second phase of the algorithm, respectively. The motions for both
regions are very well detected except for one outlier. After the second phase, two motions are estimated in an
area around the occluding boundary, where no motion could be computed in the first phase. Window sizes of
5× 5 and 9× 9 were used for first and second phase, respectively. In both examples Gaussian distributed noise
was added to the sequences such that we had a signal-to-noise ratio of 30 dB.
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(a) (b)

(c) (d) (e)

Figure 1. Results for transparent and occluded motions. See text for details.

5.2. Results with Markov random fields

Figure (2) demonstrates the performance of the Markov Random Field approach. The test sequence is the
same as the one used for testing the hierarchical algorithm but with a signal to noise ratio of 15 dB. We
initialize the algorithm with one motion and zero velocity everywhere. Image (a) shows the first frame of the
test sequence and image (b) and (c) the estimated motion vectors and segmentation after three iterations,
respectively. The dark parts in the segmentation image correspond to one motion and the bright parts to two
motions. Again, the rectangle marks the outline of the area with two transparent motions. At a few points
we observe misclassifications of the number of motions. In most cases one vector of the misclassified points in
regions with one motion is zero. At the upper edge of the region with two motions some pixels are erroneously
classified as one motion. The results are used as initialization for the next frame. In the images (d) to (f) we see
the results for the 15-th frame. The motions are well detected over the time and only a few misclassifications
or wrongly estimated motion vectors are observable. Therefore this algorithm gives very good results even in
strong noise. The regularization due to the Markovian assumption allows the use of 3 × 3 block sizes. With
such a block size and a signal to noise ratio of 15 dB it is impossible to obtain comparable results with the
hierarchical algorithm. In this example the parameter λ was set to one and convergence was achieved after only
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(a) (b) (c)

(d) (e) (f)

Figure 2. Results for transparent motions. See text for details.

three iterations for each image.

6. CONCLUSIONS

In this work we derived a block-matching constraint for an arbitrary number of transparent overlaid motions.
To estimate N motions N + 1 images and 2N blocks are needed. Moreover, we analyzed how the block-
matching constraint behaves near the occluding boundary in the case of occluded motions. Based on this
theoretical framework we developed a hierarchical algorithm which enables the estimation of single, transparent
and occluded motions. The estimation of occluded motions takes place in a second phase were the pixels near
the occluding boundary are not used. Our hierarchical algorithm has been tested with synthetic images and
additive noise. It performs well for a SNR down to 30 dB which is typical for low-end cameras. Nevertheless, for
some applications, e.g. sequences resulting from medical imagery, the amount of noise may be larger and then a
better form of regularization would be necessary. Hence, we derived a regularized version of the block-matching
algorithm for transparent motions based on Markov Random Fields. This allows to increase the performance of
the algorithm at lower signal-to-noise ratios.
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