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Abstract— In this paper we address the reliability of policies
derived by Reinforcement Learning on a limited amount of
observations. This can be done in a principled manner by taking
into account the derived Q-function’s uncertainty, which stems
from the uncertainty of the estimators used for the MDP’s
transition probabilities and the reward function. We apply
uncertainty propagation parallelly to the Bellman iteration and
achieve confidence intervals for the Q-function. In a second
step we change the Bellman operator as to achieve a policy
guaranteeing the highest minimum performance with a given
probability. We demonstrate the functionality of our method
on artificial examples and show that, for an important problem
class even an enhancement of the expected performance can be
obtained. Finally we verify this observation on an application
to gas turbine control.

I. INTRODUCTION AND RELATED WORK

REINFORCEMENT LEARNING (RL) [1] aims to de-
rive an optimal policy from observations acquired by

the exploration of an uncertain environment. For a limited
amount of observations the collected information might not
be sufficient to fully determine the environment’s properties.
Assuming the environment to be a Markov decision process
(MDP), it is in general only possible to create estimators for
the MDP’s transition probabilities and the reward function.
As the true parameters remain uncertain, the derived policy,
which is optimal w.r.t. the estimators is in general not optimal
w.r.t. the real MDP and might even perform insufficiently.
This is unacceptable in industrial environments, where qual-
ity assurance is of particular importance.

To overcome this problem, we incorporate the uncertain-
ties of the estimators into the derived Q-function, which
is utilised by many RL methods. In order to guarantee a
minimal performance with a given probability, as a solution
to quality assurance, we present an approach using statistical
uncertainty propagation (UP) [2] on the Bellman iteration
to obtain Q-functions together with their uncertainty. In a
second step, we introduce a modified Bellman operator,
jointly optimising the Q-function and minimising its uncer-
tainty. This method leads to a policy, which is no more
optimal in the conventional meaning, but maximises the
guaranteed minimal performance and hence optimises the
quality requirements. In this paper we apply the technique
exemplarily on discretised MDPs and outline a possible
generalisation to function approximation.
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There have already been several contributions to estimate
generalisation, confidence, and performance bounds in RL.
We consider the work of Bertsekas et.al. [3], who gave lower-
bounds on the policy’s performance by using policy iteration
techniques, which were substantially improved by Munos
et.al. [4]. Kearns et.al. [5] discussed error-bounds for a
theoretical policy search algorithm based on trajectory trees.
Capacity results on policy evaluation are given by Peshkin
et.al. [6]. Antos et.al. [7] provided a broad capacity analysis
of Bellman residual minimisation in batch RL. Incorporating
prior knowledge about confidence and uncertainty directly
into the approached policy were already applied in former
work as well in the context of Bayesian Reinforcement
Learning. We especially mention the work of Engel et.al.,
Gaussian Process Temporal Difference Learning (GPTD)
[8], [9] and a similar approach by Rasmussen and Kuss
[10]. They applied Gaussian Processes and hence a prior
distribution over value functions in RL, which is updated to
posteriors by observing samples from the MDP. Engel et.al.
recently developed algorithms for Bayesian Policy Gradient
RL [11] and Bayesian Actor-Critic RL [12] as further model-
free approaches to Bayesian RL. Gaussian Processes have the
advantage of inherently providing a measure of uncertainty.

In model-based approaches, however, one starts with a
natural local measure of the uncertainty of the transition
probabilities and rewards. One of the first concerning work
in the context of RL is provided by Dearden et.al. [13], [14],
who applied Q-learning in a Bayesian framework with an
application to the exploration-exploitation-trade-off. Poupart
et.al. present, in their recent work [15], an approach for
efficient online learning and exploration in a Bayesian con-
text, they ascribe Bayesian RL to POMDPs. Most related to
our approach is the recent independent work by Delage and
Mannor [16], who solved the percentile optimisation problem
by convex optimisation, and applied it to the exploration-
exploitation-trade-off. They suppose special priors on the
MDP’s parameters, whereas the present work has no such
requirements and can be applied in a more general context
of RL methods.

The remainder of this paper is organised as follows.
We first give an overview over Reinforcement Learning
(sec. II) and uncertainty (sec. III). The main section IV
discusses, how to bring these concepts together. We explain
the application of uncertainty propagation to the Bellman
iteration for policy evaluation and policy iteration for dis-
crete MDPs and introduce the concept of certain-optimality.
These approaches provide a general framework for different
statistical paradigms, we particularly describe, how to apply



frequentist and Bayesian statistics. We further argue, that
certain-optimal policies are stochastic in general. Since the
approaches are applicable to function approximation as well,
in sec. V the derivation to Least-Squares Policy-Iteration [17]
is exemplarily elaborated. Finally, in sec. VI, we focus on
artificial and industrial benchmarks and demonstrate different
application domains.

II. REINFORCEMENT LEARNING

In Reinforcement Learning the main objective is to achieve
a policy, that optimally moves an agent within a Markov
decision process, which is given by state and action spaces
S and A as well as the dynamics, defined by a transition
probability distribution PT : S × A × S → [0, 1] depending
on the the current state, the chosen action, and the successor
state. The agent collects rewards while transiting, whose
expected discounted future sum

V π(s) = Eπ
s

( ∞∑
i=0

γiR
(
s(i), π

(
s(i)
)

, s(i+1)
))

,

the value function, has to be maximised over the policy
space Π ∈ (S → A) for all possible states s, where
0 < γ < 1 is the discount factor, s′ the successor state of s,
π ∈ Π the used policy, and s =

{
s′, s′′, . . . , s(i), . . .

}
. As

an intermediate step one constructs a so-called Q-function
Qπ(s, a) depending on the current state and the chosen
action. The optimal Q∗ = Qπ∗

is determined by a solution
of the Bellman optimality equation

Q∗(s, a) = Es′(R(s, a, s′) + γV ∗(s′))

= Es′

(
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

)
.

Therefore the best policy is π∗(s) = arg maxa Q∗(s, a).
We define the Bellman operator T as (TQ)(s, a) =
Es′(R(s, a, s′) + γ maxa′ Q(s′, a′)) for any Q. The fixed
point of Q = Solve(TQ), i.e. the Bellman operator followed
by its projection on the Q-function’s hypothesis space is the
approached solution [1], [17], [4].

III. UNCERTAINTY

Statistical uncertainty is a crucial issue in many application
fields of statistics including the machine learning domain.
It is well accepted that any measurement in nature and
any conclusion from measurements are affected by an un-
certainty. The International Organization for Standardization
(ISO) defines uncertainty [18] to be “a parameter, associated
with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed
to the measurand.”

In the present work, we focus on the determination, quanti-
sation, and minimisation of uncertainty of the measurements’
conclusions in the context of Reinforcement Learning, i.e. the
uncertainties of Q-functions and policies. The reason for un-
certainty in RL is the ignorance about the true environment,
i.e. the true MDP. The more observations are collected, the
more certain the observer is about the MDP. And the larger
the stochasticity, the more uncertainty remains about the

MDP for a given amount of observations. And indeed, if
the MDP is completely deterministic on the one hand, then
everything is known about a state-action-pair, if it is observed
once. There is no uncertainty left. If the system is, on the
other hand, highly stochastic, then the risk of getting a low
long-term return in expectation is large.

Note that the mentioned uncertainty is therefore qualita-
tively different from the MDP’s stochasticity leading to the
risk of obtaining a low long-term return in the single run.
The main difference is, that the latter considers the inherent
stochasticity of the MDP, whereas uncertainty considers the
stochasticity of choosing an MDP from a set of MDPs.

The uncertainty of the measurements, i.e. the transitions
and rewards, are propagated to the conclusions, e.g. the Q-
function, by uncertainty propagation (UP), which is a com-
mon concept in statistics [2]. We determine the uncertainty of
values f(x) with f : Rm → Rn given the uncertainty of their
arguments x as Cov(f) = Cov(f, f) = DCov(x)DT , where
Di,j = ∂fi

∂xj
is the Jacobian matrix of f w.r.t. x and Cov(x) =

Cov(x, x) the covariance matrix of the arguments x holding
the uncertainty of x, f then provides the (symmetric and
positive definite) uncertainty Cov(f).

In the following, we usually work on multi-dimensional
objects and on their covariance matrices. Therefore, those
objects have to be appropriately vectorised. This can be done
by any enumeration and is only of technical importance.

IV. BELLMAN ITERATION AND UNCERTAINTY
PROPAGATION

Our concept of incorporating uncertainty into RL consists
in applying UP to the Bellman iteration

Qm(si, aj) = (TQm−1)(si, aj)

=
|S|∑
k=1

P (sk|si, aj)
(
R(si, aj , sk)

+γV m−1(sk)
)
,

here for discretised MDPs. For policy evaluation we have
V m(s) = Qm(s, π(s)), with π the used policy and for policy
iteration V m(s) = maxa∈A Qm(s, a) (sec. II). Thereby
we assume a finite number of states si, i ∈ {1, . . . , |S|}
and actions ai, i ∈ {1, . . . , |A|}. The Bellman iteration
converges, with m → ∞, to the (optimal) Q-function,
which is appropriate to the estimators P and R. In the
general stochastic case, which will be important later, we
set V m(s) =

∑|A|
i=1 π(s, ai)Qm(s, ai) with π(s, a) the prob-

ability of choosing a in s. To obtain the uncertainty of
the approached Q-function, the technique of UP is applied
parallelly to the Bellman iteration. With given covariance
matrices Cov(P ), Cov(R), and Cov(P,R) for the transition
probabilities and the rewards, we obtain the initial complete
covariance matrix

Cov(Q0, P, R) =

 0 0 0
0 Cov(P ) Cov(P,R)
0 Cov(P,R)T Cov(R)





and the complete covariance matrix after the mth Bellman
iteration

Cov(Qm, P, R) = Dm−1Cov(Qm−1, P, R)(Dm−1)T

with the Jacobian matrix

Dm =

 Dm
Q,Q Dm

Q,P Dm
Q,R

0 I 0
0 0 I


(Dm

Q,Q)(i,j),(k,l) = γπ(sk, al)P (sk|si, aj)
(Dm

Q,P )(i,j),(l,n,k) = δilδjn (R(si, aj , sk) + γV m(sk))
(Dm

Q,R)(i,j),(l,n,k) = δilδjnP (sk|si, aj).

Note that the presented uncertainty propagation accords the
expanded Bellman iteration(

Qm P R
)T =

(
TQm−1 P R

)T
to obtain the covariances between Q-function and P and
R, respectively. All parameters of Qm are linear in Qm,
altogether it is a bi-linear function. Therefore UP is indeed
approximately applicable in this setting [2].

A. The Initial Covariances
The initial covariance matrix Cov((P,R)) has to be de-

signed by problem dependent prior belief. If e.g. all tran-
sitions from different state-action-pairs are assumed to be
independent of each other and the rewards, all transitions
can be modelled as multinomial distributions. In a Bayesian
context one supposes a priorly known distribution [2], [19]
over the parameter space P (sk|si, aj) for given i and j. The
Dirichlet distribution with density

P (P (s1|si, aj), . . . , P (s|S||si, aj))α1,i,j ,...,α|S|,i,j

=
Γ(αi,j)∏|S|

k=1 Γ(αk,i,j)

|S|∏
k=1

P (sk|si, aj)αk,i,j−1

and αi,j =
∑|S|

k=1 αk,i,j is a conjugate prior in this case with
posterior parameters

αd
k,i,j = αk,i,j + nsk|si,aj

in the light of the observations occurring nsk|si,aj
times

a transition from si to sk by using action aj . The initial
covariance matrix for P then becomes

(Cov(P ))(i,j,k),(l,m,n)

= δi,lδj,m

αd
k,i,j(δk,nαd

i,j − αd
n,i,j)

(αd
i,j)2(α

d
i,j + 1)

,

assuming the posterior estimator P (sk|si, aj) = αd
k,i,j/αd

i,j .
Similarly, the rewards might be distributed normally with the
normal-gamma distribution as a conjugate prior.

As a simplification or by using the frequentist paradigm, it
is also possible to use the relative frequency as the expected
transition probabilities with their uncertainties

(Cov(P ))(i,j,k),(l,m,n)

= δi,lδj,m
P (sk|si, aj)(δk,n − P (sn|si, aj))

nsi,aj − 1

with nsi,aj
observed transitions from the state-action-pair

(si, aj).
Similarly, the rewards expectations become their sample

means and Cov(R) a diagonal matrix with entries

Cov(R(si, aj , sk)) =
Var(R(si, aj , sk))

nsk|si,aj
− 1

.

The frequentist view and the conjugate priors have the ad-
vantage of being computationally feasible, nevertheless, the
method is not restricted to them, any meaningful covariance
matrix Cov((P,R)) is allowed. Particularly, applying covari-
ances between the transitions starting from different state-
action-pairs and between states and rewards is reasonable
and interesting, if there is some measure of neighbourhood
over the state-action-space. Crucial is finally, that the prior
represents the user’s belief.

Theorem 1: Suppose a finite MDP M = (S, A, P,R) with
discount factor 0 < γ < 1 and C0 an arbitrary initial
symmetric and positive definite covariance matrix. Then the
function

(Qm, Cm) =
(
TQm−1, Dm−1Cm−1(Dm−1)T

)
provides a unique fixed point (Q∗, C∗) almost surely, inde-
pendent of the initial Q, for policy evaluation and policy
iteration.
Proof: It has already been shown that Qm = TQm−1

converges to a unique fixed point Q∗ [1]. Since Qm does not
depend on Ck or Dk for any iteration k < m, Q∗ persists.
We obtain

Cm =
m−1∏
i=0

DiC0
m−1∏
i=0

(Di)T

after m iterations. Due to convergence of Qm, Dm converges
to D∗ as well, which leads to

C∗ =
∞∏

i=0

D∗Cconv

∞∏
i=0

(D∗)T

with Cconv the covariance matrix after convergence of Q. By
successive matrix multiplication we obtain

(D∗)∞ =

 (D∗)∞Q,Q

∑∞
i=0 (D∗)i

Q,Q(D∗)Q,P

0 I
0 0∑∞

i=0 (D∗)i
Q,Q(D∗)Q,R

0
I


=

 0 (I− (D∗)Q,Q)−1(D∗)Q,P

0 I
0 0

(I− (D∗)Q,Q)−1(D∗)Q,R

0
I


since all eigenvalues of (D∗)Q,Q are strictly smaller than
1 and I − (D∗)Q,Q is invertible for all but finitely many



(D∗)Q,Q. Therefore, almost surely, (D∗)∞ exists, which
implies that C∗ exists as well. We obtain finally

C∗
Q,Q = (I− (D∗)Q,Q)−1

(
(D∗)Q,P (D∗)Q,R

)(
Cov(P ) Cov(P,R)

Cov(P,R)T Cov(R)

)
(

(D∗)T
Q,P

(D∗)T
Q,R

)(
(I− (D∗)Q,Q)−1

)T
.

The fixed point C∗ depends on the initial covariance matrices
Cov(P ), Cov(R), and Cov(P,R) only and is therefore
independent of the operations made before reaching the fixed
point Q∗. �

Having identified the fixed point consisting of Q∗ and its
covariance Cov(Q∗) as part of C∗, the uncertainty of each
individual state-action-pair is represented by the square root
of the diagonal entries σQ∗ =

√
diag(Cov(Q∗)) since the

diagonal comprises the Q-values’ variances.
Finally, with probability P (ξ) depending on the distribu-

tion class of Q, the function

Q∗
u(s, a) = (Q∗ − ξσQ∗)(s, a)

provides the guaranteed performance expectation applying
action aj in state si strictly followed by the policy π∗(s) =
arg maxa Q∗(s, a). Suppose exemplarily Q to be distributed
normally, then the choice ξ = 2 would lead to the guaranteed
performance with P (2) ≈ 0.977.

Note that this knowledge of uncertainty might help to
guide exploration, i.e. to probe state-action-pairs with large
uncertainty, but it does not help to improve the guaranteed
performance in a principled manner. By applying π(s) =
arg maxa Q∗

u(s, a), the uncertainty would not be estimated
correctly as the agent is only allowed once to decide for
another action than the approached policy suggests.

B. Joint Iteration

To overcome this problem, we want to approach a so-
called certain-optimal policy, which maximises the guaran-
teed performance. The idea is to obtain a policy π, which
is optimal w.r.t. a specified confidence level, i.e. which
maximises Z(s, a) for all s and a such that

∀s, a : P
(
Q̄π(s, a) > Z(s, a)

)
> P (ξ)

is fulfilled, where Q̄π denotes the true performance function
of π and P (ξ) being a prespecified probability. We approach
such a solution by approximating Z by Qπ

u and solving

πξ(s) = arg max
π

max
a

Qπ
u(s, a)

= arg max
π

max
a

(Qπ − ξσQπ) (s, a)

under the constraints, that Qπξ

= Qξ is the valid Q-function
for πξ, i.e.

∀i, j : Qξ(si, aj) =
|S|∑
k=1

P (sk|si, aj)
(
R(si, aj , sk)

+γQξ(sk, πξ(sk))
)
.

Relating to the Bellman iteration, Q shall be a fixed point not
w.r.t. the value function as the maximum over all Q-values,
but the maximum over the Q-values minus its weighted
uncertainty. Therefore, one has to choose

πm(s) = arg max
a′

(Qm − ξσQm)(s, a′)

after each iteration, together with an update of the uncertain-
ties according to the modified policy πm.

C. Certain-optimal Policies are Stochastic Policies

Policy evaluation can be made for deterministic and
stochastic policies, whereas it has been proven that an
optimal policy, within the framework of MDPs, is always
deterministic [20]. For certain-optimal policies, however, the
situation is different. Particularly, for ξ > 0 there is a bias on
ξσQ(s, π(s)) being larger than ξσQ(s, a), a 6= π(s), if π is
the evaluated policy, since R(s, π(s), s′) depends stronger on
V (s′) = Q(s′, π(s′)) than R(s, a, s′), a 6= π(s). The value
function implies the choice of action π(s) for all further
occurrences of state s. Therefore, the (deterministic) joint it-
eration is not necessarily guaranteed to converge. I.e., switch-
ing the policy π to π′ with Q(s, π′(s)) − ξσQ(s, π′(s)) >
Q(s, π(s))− ξσQ(s, π(s)) could lead to a larger uncertainty
of π′ at s and hence to Q′(s, π′(s)) − ξσQ′(s, π′(s)) <
Q′(s, π(s))−ξσQ′(s, π(s)) for Q′ at the next iteration. This
causes an oscillation.

It is intuitively apparent that a certain-optimal policy
should be stochastic in general if the gain in value must
be balanced with the gain in certainty, i.e. with a decreasing
risk of having estimated the wrong MDP. The risk to obtain
a low expected return is hence reduced by diversification.

The value ξ decides about the cost of certainty. If ξ > 0 is
large, certain-optimal policies tend to become more stochas-
tic, one pays a price for the benefit of a guaranteed small
performance, whereas a small ξ ≤ 0 guarantees deterministic
certain-optimal policies, however, uncertainty takes on the
meaning of chance for a large performance. Therefore, we
finally define a stochastic uncertainty incorporating Bellman
iteration as Qm

Cm

πm

 =

 TQm−1

Dm−1C
m−1DT

m−1

Λ(πm−1, TQm−1,m)


with

Λ(π,Q, t)(s, a)

=

{
min

(
π(s, a) + 1

t , 1
)

: a = aQ(s)
max (1−π(s,aQ(s))− 1

t ,0)
1−π(s,aQ(s)) π(s, a) : otherwise

and aQ(s) = arg maxa (Q− ξσQ)(s, a). The harmonically
decreasing change rate of the stochastic policies guarantees
reachability of all policies on the one hand and convergence
on the other hand. Alg. 1 summarises the joint iteration.

Note that the time complexity per iteration is of higher
order than the standard Bellman iteration’s one, which needs
O
(
|S|2|A|

)
time. The bottleneck is the covariance update



Algorithm 1 Uncertainty Incorporating Joint Iteration for
Discrete MDPs
Require: given estimators P and R for a discrete MDP, ini-

tial covariance matrices Cov(P ), Cov(R), and Cov(P,R)
as well as a scalar ξ

Ensure: calculates a certain-optimal Q-function Q and pol-
icy π under the assumption of the observations and the
posteriors given by Cov(P ), Cov(R), and Cov(P,R)

set C =

 0 0 0
0 Cov(P ) Cov(P,R)
0 Cov(P,R)T Cov(R)


set ∀i, j : Q(si, aj) = 0, ∀i, j : π(si, aj) = 1

|A| , t = 0
while the desired precision is not reached do

set t = t + 1
set ∀i, j : (σQ)(si, aj) =

√
Ci|A|+j,i|A|+j

find ∀i : ai,max = arg maxaj (Q− ξσQ)(si, aj)
set ∀i : di,diff = min

(
1
t , 1− π(si, ai,max)

)
set ∀i : π(si, ai,max) = π(si, ai,max) + di,diff

set ∀i : ∀aj 6= ai,max :
π(si, aj) = 1−π(si,ai,max)

1−π(s,ai,max)+di,diff
π(si, aj)

set ∀i, j : Q′(si, aj) =
∑|S|

k=1 P (sk|si, aj)(
R(si, aj , sk) + γ

∑|A|
l=1 π(sk, al)Q(sk, al)

)
set Q = Q′

set D =

 DQ,Q DQ,P DQ,R

0 I 0
0 0 I


set C = DCDT

end while
return Q− ξσQ and π

with a time complexity between O
(
(|S||A|)2 log(|S||A|)

)
and O

(
(|S||A|)2.376

)
[21] since each entry of Q depends

only on |S| entries of P and R. The overall complexity is
hence bounded by these magnitudes.

The function Qξ
u(s, a) =

(
Qξ − ξσQξ

)
(s, a) with(

Qξ, Cξ, πξ
)

as the fixed point of the (stochastic) joint iter-
ation for given ξ provides, with probability P (ξ) depending
on the distribution class of Q, the guaranteed performance
applying action a in state s strictly followed by the stochastic
policy πξ. First and foremost, πξ maximises the guaranteed
performance and is therefore called a certain-optimal policy.

V. FUNCTION APPROXIMATION

In order to demonstrate the principle functionality of the
approach to any kind of function approximation, we apply
the concept exemplarily on a variant of Least-Squares Policy-
Iteration (LSPI) [17] for a finite number of actions. Here, the
Q-function is linear and built upon features Φ as Qw(s, a) =
Φ(s, a)T w. The Bellman iteration then consists basically in
iteratively solving the linear equation system(

ΦT Φ + λI
)
wm = ΦT

(
R + γ(V ′)m−1

)
= ΦT

(
R + γ(Φ′)m−1wm−1

)
for wm with λ ≥ 0 being a regularisation parameter, Φ
the feature matrix of all observed state-action-pairs, and

(Φ′)m−1 =
∑|A|

a=1

(
πm−1(·, a)1T

)
• Φ′

a with Φ′
a being the

feature matrix of all successor states together with the action
a, • the componentwise multiplication, 1 an appropriately
sized vector consisting of ones, Q′ and V ′ the Q-function
and value function at the successor states.

The meaning and the information given by P and R
in the discrete case are now provided by the observations,
i.e. the successor states’ features Φ′ and the rewards R =
(r1, . . . , rn)T themselves, where n is the number of obser-
vations. Similarly we obtain the expanded Bellman iteration

wm (Q′(·, 1))m−1

...
(Q′(·, |A|))m−1


Φ′

R


=



vm−1 Zm−1
1
...

Zm−1
|A|


Φ′

R


,

where Zm−1
a = (Φ′

a)m−1vm−1 and vm−1 = (ΦT Φ +
λI)−1ΦT (R + γ(V ′)m−1). The Jacobian matrix turns out
to be

Dm =


0 Dm

w,Q′ 0 Dm
w,R

0 Dm
Q′,Q′ Dm

Q′,Φ′ Dm
Q′,R

0 0 I 0
0 0 0 I


with entries

Dm
w,(Q′(·,a)) = γ

(
(ΦT Φ + λI)−1ΦT

)
•
(
1π(·, a)T

)
Dm

wm,R = (ΦT Φ + λI)−1ΦT

Dm
Q′(·,a),Q′(·,b) = γ

(
Φ′

a(ΦT Φ + λI)−1ΦT
)

•
(
1π(·, b)T

)
Dm

Q′(si,a),(Φ′
b)j,·

= δi,jδa,bwT

Dm
Q′(·,a),R = Φ′

a(ΦT Φ + λI)−1ΦT .

We operate on the initial covariance matrix

Cov
(
w0, (Q′)0,Φ′, R

)
=


0 0 0 0
0 0 0 0
0 0 Cov(Φ′) Cov(Φ′, R)
0 0 Cov(Φ′, R)T Cov(R)

 .

Note that a convergence result as in th. 1 applies as well un-
der the condition that Φ′

a(ΦT Φ+λI)−1ΦT is a non-expansion
for all actions a. The certain-optimal weight vector wu can
be determined by solving the linear program (Φwu)T 1 →
min under the constraints w− ξ(σw) ≤ wu ≤ w + ξ(σw).
In a similar way, the method can also be applied to other
approaches, which use function approximation together with
the Bellman iteration.

Two problems remain. For the determination of the co-
variance matrix Cov((Φ′, R)) a continuous generalisation of
the transition probabilities’ and rewards’ distributions as well
as their priors must be implemented. But in principle, the
same as in the discrete case holds, it must represent the
user’s belief. Another issue is the handling of the policy’s
stochasticity, which could lead to stochastic weight vectors.



VI. APPLICATIONS

The presented techniques offer at least four different types
of applications, which are important in various practical
domains.

A. Quality Assurance

With a positive ξ one aims at a guaranteed minimal
performance of a given or the optimal policy. To optimise this
minimal performance, we introduced the concept of and an
approach to certain-optimality. The main practical motivation
is to avoid delivering an inferior policy. To simply be aware
of the quantification of uncertainty, helps to appreciate how
well one can count on the result. If the guaranteed Q-value
for a specified start state is insufficient, more observations
must be provided in order to reduce the uncertainty.

If the exploration is expensive and the system critical, such
that the performance probability has definitely to be fulfilled,
it is reasonable to bring out the best from this concept. This
can be achieved by a certain-optimal policy. One abandons
optimality in order to perform as good as possible at the
specified confidence level.

B. Exploration

Symmetrically, for negative ξ one uses the uncertainty in
the opposite way by harnessing the chance for a high perfor-
mance. This may be interesting to explore state-action-pairs,
where Qξ

u(s, a) is large, more intensively, since the estimator
of the Q-value is already large but the true performance of
the state-action-pair could be even better as the uncertainty
is still large as well.

C. Competitions

Another application field are competitions, which is
symmetrical to quality assurance by using negative ξ.
The agent shall follow a policy, which gives him the
chance to perform exceedingly well, and thus to win.
In this case, certain-optimality comes again into play as
the performance expectation is not the criterion, but the
percentile performance.

For demonstration of the quality assurance and competi-
tion aspects, we applied the joint iteration on (fixed) data sets
for two simple classes of MDPs (fig. 1). Subsequently we
sampled over the space of allowed MDPs from their (fixed)
prior distribution. As a result we achieve an accumulated
posterior of the possible performances for each (stochastic)
policy. Equipped with the correct priors, the approached
policy indeed coincides approximately with the true certain-
optimal policy.

Fig. 1 (left) concerns simple bandit problems with one
state and two actions and fig. 1 (right) two-state MDPs with
each two actions. The transition probabilities are assumed to
be distributed multinomially for each start state, using the
maximum entropy prior, i.e. the Beta distribution with α =
β = 1. For the rewards we assumed a normal distribution
with fixed variance σ0 = 1 and a normal prior for the mean
with µ = 0 and σ = 1. It can be seen that the certain-optimal

policies are indeed stochastic for ξ > 0 and the performance
estimation of the Q-function (dots and vertical lines) are close
to the actual performance.

D. Increasing the Expected Performance

Incorporating uncertainty in RL can even improve the
expected performance for concrete MDPs in many practical
and industrial environments, where exploration is expensive
and only allowed within a small range. The available amount
of data is hence small and exploration takes place in an,
in part extremely, unsymmetrical way. Data is particularly
collected in areas, where the operation is already preferable.
Many of the insufficiently explored so-called on-border-states
are undesirable in expectation, but might, by chance, give a
high reward in the singular case. If the border is sufficiently
large, then it happens at least a few times, that such an outlier
suggests a high expected reward. Note that in general the size
of the border region will increase with the dimensionality of
the problem. Carefully incorporating uncertainty avoids the
agent to prefer those outliers in its final operation.

Fig. 2. Visualisation of the archery benchmark. The picture shows the
target consisting of its 25 states, together with their hitting probabilities.

We applied the joint iteration on a simple artificial archery
benchmark with the “border-phenomenon”. The state space
basically represents an archer’s target (fig. 2). He possesses
the possibility to move the arrowhead in all four directions
and to shoot the arrow. The exploration has been performed
randomly with short episodes. The dynamics were simulated
with two different underlying MDPs. The arrowhead’s moves
are either stochastic (25 percent chance of choosing another
action) or deterministic. The event of making a hit after
shooting the arrow is stochastic in both settings. The highest
probability for a hit is with the arrowhead in the target’s
middle. The border is explored quite rarely, such that a hit
there misleadingly causes the respective estimator to estimate
a high reward and thus the agent to finally shoot from this
place.

In tbl. I the performance, averaged over 50 trials (two
digits precision), for the frequentist setting (in the stochastic



Fig. 1. Percentile performance for simple MDPs and joint iteration results. The different graphs show the minimal performances achieved by different
(stochastic) policies. The grey scale value and the line style determine, which action to choose on the state/both states. The dots and vertical lines show
the estimated Q-values for the certain-optimal policies at the specified percentile under the assumption, that those are distributed normally. Note that the
plotted graphs are the inverse of the cumulative performance distributions. Since it is not possible to plot complete families of curves for each possible
stochastic policy we chose each three representatives. This leads to 3 curves in the left figure and 32 = 9 curves in the right one.

case) and the deterministic prior (in the deterministic case)
for the transition probabilities are listed. Both priors can be
implemented as Dirichlet distributions.

The table shows, that the performance indeed increases
with ξ until a maximum and then decreases rapidly. The
position of the maximum apparently increases with the num-
ber of observations. This can be explained by the decreas-
ing uncertainty. The performance of the theoretical optimal
policy is 0.31 for the stochastic archery benchmark and 0.5
for the deterministic one. They are achieved in average by
the certain-optimal policy based on 2500 observations with
1 ≤ ξ ≤ 2 in the stochastic case and for 3 ≤ ξ ≤ 4 in the
deterministic case.

E. Industrial Applications

We further applied the uncertainty propagation together
with the joint iteration on an application to gas turbine
control [22] with a continuous state and a finite action space,
where it can be assumed, that the “border-phenomenon”
appears as well. We discretised the internal state space with
three different precisions (coarse (44 = 256 states), medium
(54 = 625 states), fine (64 = 1296 states)), where the
high-dimensional state space has already been reduced to
a four-dimensional approximate Markovian state space. A
detailed description of the problem and the construction of
a minimal Markovian state space can be found in [22]. Note
that the Bellman iteration and the uncertainty propagation is
computationally feasible even with 64 states, since P and
Cov((P,R)) are sparse.

We summarise the averaged performances (50 trials with
short random episodes starting from different operating
points, lead to three digits precision) in tbl. I on the same
uninformed priors as used in sec. VI-D. Those represent
the frequentist view and the maximum entropy assumption,
which leads to a uniform distribution, respectively. The

rewards were estimated with an uninformed normal-gamma
distribution as conjugate prior with σ = ∞ and α = β = 0.

In contrary to the archery benchmark, we left the number
of observations constant and changed the discretisation.
The finer the discretisation, the larger is the uncertainty.
Therefore the position of the maximum tends to increase
with decreasing number of states. The performance is largest
using the coarse discretisation. Indeed, averaged over all
discretisations, the results for the frequentist prior tend to be
better than for the maximum entropy prior. The overall best
performance can be achieved with the coarse discretisation
and the frequentist prior with ξ = 5, but using the maximum
entropy prior leads to comparable results even with ξ = 3.

The theoretical optimum is not known, but for com-
parison we show the results of the Recurrent Q-Learning
(RQL), Prioritised Sweeping (RPS), Fuzzy RL (RFuzzy),
Neural Rewards Regression (RNRR), Policy Gradient NRR
(RPGNRR), and Control Neural Network (RCNN), described
in [22], [23], [24], respectively. The highest observed per-
formance is 0.861 using 105 observations, which has almost
been achieved by the best certain-optimal policy using 104

observations.

VII. CONCLUSION

A new approach to uncertainty incorporation in RL is
presented. We applied the technique of UP to achieve certain-
optimality and implemented it exemplarily on discretised
MDPs and LSPI. Current and future work considers the
application of our approach to other optimality criteria and
function approximators as Neural Networks and Support
Vector Machines. Also the application to further industrial
environments is aspired. Another important issue is the
utilisation of the information contained in the secondary
diagonals of the covariance matrix. They are unused so far
for both the decision, which action to select in the next



TABLE I
AVERAGE REWARD FOR THE ARCHERY AND GAS TURBINE BENCHMARK.

Setting Model Discr. # Obs. ξ = 0 ξ = 1
2

ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5
Archery Frequentist 100 0.14 0.16 0.13 0.05 0.05 0.04 0.04
(Stochastic) Dirichlet Prior 500 0.17 0.20 0.25 0.22 0.10 0.05 0.04

∀i : αi = 0 1000 0.21 0.26 0.29 0.27 0.22 0.11 0.07
2500 0.27 0.29 0.31 0.31 0.30 0.28 0.24

Archery Deterministic 100 0.35 0.38 0.23 0.17 0.12 0.11 0.09
(Deterministic) Dirichlet Prior 500 0.32 0.38 0.39 0.41 0.27 0.18 0.11

∀i : αi = 0 1000 0.35 0.41 0.44 0.45 0.44 0.30 0.14
2500 0.44 0.46 0.48 0.49 0.50 0.50 0.48

Turbine Frequentist coarse 104 0.736 0.758 0.770 0.815 0.837 0.848 0.855
Dirichlet Prior medium 104 0.751 0.769 0.784 0.816 0.833 0.830 0.815
∀i : αi = 0 fine 104 0.767 0.785 0.800 0.826 0.837 0.840 0.839

Turbine Maximum Entropy coarse 104 0.720 0.767 0.814 0.848 0.851 0.854 0.854
Dirichlet Prior medium 104 0.713 0.731 0.749 0.777 0.787 0.780 0.771
∀i : αi = 1 fine 104 0.735 0.773 0.789 0.800 0.800 0.786 0.779

For Comparison RefCon RQL RPS RFuzzy RNRR RPGNRR RCNN
Turbine coarse 105 0.680 0.657 0.662

medium 105 0.53 0.687 0.745 0.657 0.851 0.861 0.859
fine 105 0.717 0.729 0.668

iteration step of the Bellman iteration and the operation of
the final certain-optimal policy. One possibility is to switch
from the local uncertainty measures to a global one. The
guaranteed minimal performance with given probability for
all or for at least one state, respectively, depends strongly on
the covariances between the different states.

Definitely, as several laboratory conditions, such as the
possibility of guided exploration or the access on a suf-
ficiently large number of observations, are typically not
fulfilled in practice, we conclude that the knowledge of
uncertainty and its intelligent utilisation in Reinforcement
Learning is vitally important to handle control problems of
industrial scale.
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