Explicit Kernel Rewards Regression for
Data-efficient Near-optimal Policy Identification

Daniel SchneegaB!'?, Steffen Udluft!, and Thomas Martinetz>

1- Siemens AG, Corporate Technology, Learning Systems,
Otto-Hahn-Ring 6, D-81739 Munich, Germany

2- University of Luebeck, Institute for Neuro- and Bioinformatics,
Ratzeburger Allee 160, D-23538 Luebeck, Germany

Abstract. We present the Explicit Kernel Rewards Regression (EKRR)
approach, as an extension of Kernel Rewards Regression (KRR), for Op-
timal Policy Identification in Reinforcement Learning. The method uses
the Structural Risk Minimisation paradigm to achieve a high generalisa-
tion capability. This explicit version of KRR offers at least two important
advantages. On the one hand, finding a near-optimal policy is done by
a quadratic program, hence no Policy Iteration techniques are necessary.
And on the other hand, the approach allows for the usage of further con-
straints and certain regularisation techniques as e.g. in Ridge Regression
and Support Vector Machines.

1 Introduction

Reinforcement Learning (RL) [1] as the answer from Machine Learning to the
Optimal Control problem [2] still offers many interesting open questions [3]. In
industrial applications, data efficiency is an important condition for an effec-
tive usage of RL technologies as either the ratio between the complexity of the
problem and the availability of data is underestimated or the algorithms and
technologies are limited in their time and space resources, or even both, to solve
these problems in practice.

As far as data efficiency is already handled with and well-understood in
Statistical and Algorithmic Learning Theory in the context of classification,
function approximation, and density estimation, it is a quite natural way to
develop a framework to connect these approaches to the RL methodology, so
that RL can profit from these theories as well. Several contributions follow
these paths, we especially want to point out the work of Lagoudakis and Parr
[4], Engel [5], Riedmiller [6], Ormoneit and Sen [7] as well as Dietterich and
Wang [8].

The KRR algorithm [9] is another example of combining RL with Statistical
Learning Theory. But, as many other methods, it still has to be applied to-
gether with a kind of Policy Iteration, where e.g. convergence can be guaranteed
only under restrictive assumptions. We hence propose a quadratic optimisation
problem formulation, whose solution gives a near-optimal policy directly. It
can be applied for the whole class of stochastic RL problems with finite action
spaces. Further, certain regularisation techniques and other constraints can be
incorporated within the model.



The paper is arranged as follows. We first give a brief introduction into RL
and introduce the KRR approach. We describe its core concept and introduce
essential nomenclature. Afterwards we derive and illustrate, how its explicit
version works. Finally we give some principal practical results on a stochastic
benchmark task.

2 Markov Decision Processes and Reinforcement Learning

In RL the main objective is to achieve a policy, that optimally moves an agent
within an environment, which is defined by a Markov Decision Process (MDP)
[1]. An MDP is generally given by a state space S, a set of actions A selectable
in the different states, and the dynamics, defined by a transition probability
distribution Py : S x A x S — [0,1] depending on the current state s, the
chosen action a, and the successor state s’. The agent collects so-called rewards
R(s,a,s") while transiting. They are defined by a reward probability distribution
Pr with the expected reward R = [, 7Pg(s,a,s',r)dr,s,s' € S,a € A.

In most RL tasks one is interested in maximising the discounting Value Func-
tion

[e's)
Vi(s) = E’S<Z¢R(s(“m(8(”),s(”l)))
=0

for all possible states s where 0 < v < 1 is the discount factor, s’ the successor
state of s, m: S — A the used policy, and s = {s/,s”,...,s® ... }. Since the
dynamics of the given state-action space cannot be modified by construction one
has to maximise V' over the policy space. One typically takes one intermediate
step and constructs a so-called @Q-function depending on the current state and
the chosen action holding

Q"(s,a) = BEy(R(s,a,s") +7Q(s",m(s)).

We define V' = V7rt as the Value Function of the optimal policy and @ respec-
tively. This is the function we want to estimate. It is defined as

Q(S7 a) = Eg (R(Sv a, $/> + VV(SI))
= E. (R(s, a,s") +ymaxQ(s', a'))

which is called the Bellman Optimality Equation. Therefore the best policy is
apparently the one using the action maximising the (best) @-function, that is
m(s) = argmax, Q(s,a).

For details we refer to Sutton and Barto [1]. In our setting, we assume a
discrete set of actions while the set of states is continuous and the dynamics
probabilistic.



3 The Kernel Rewards Regression Approach

To obtain a near-optimal @-function, we connect the Bellman Equation, written
as EgR(s,a,s") = Q(s,a) — EgyV(s'), to any linear kernel regression method.
The observed rewards r; and successor states s;41 are unbiased estimates for the
expected ones using any sufficiently exploring policy including the fully random
one with no strategic prior knowledge. Therefore we can use (s;, a;, $;41) as input
and r; as output variables for a Supervised Learning task mapping Q(s;,a;) —
YV (8i+1) on 7;. As described in [9], we restrict the set of allowed Q-functions
such that

l
Q(S7a) = ZO&Z‘K((S,Q),(S,L',CLZ')) (1)

with K ((s,a),(8,a)) = da,aK'(s,5). And thus

!
V(s) = max Z a; K'(s,s;)

i=1l,a;=a

As above the kernel K’ describes a transformation of the state space into an
appropriate feature space. Note that from a state-action point of view the kernel
K is constructed in a limited way. Each action spans its own subspace within
the feature space. Of course K remains symmetric and positive definite, if K’
already fulfills these properties. Due to the linearity of our model we obtain the
rewards function as an estimate of the expected rewards

l
R(Si7 Qaq, 5i+1) = Z (&7 (K((S“ ai)a (Sj7 aj)) - 7K((8i+1, ai+17maX)7 (Sjv a’j)))
J=1

where a; max is the action reaching the maximal value on s;. Suppose we already
know these actions. Then the solution of this linear equation system is given as
a = (K—yKT+CI)"'R

like in kernelized Ridge Regression [10] with K, ; = K((s;, a:), (s, a5)), KZ"’]
K((Si+1; @it1,max) (85,a;)), R the rewards vector, and a regularisation factor C.
Combined with the Policy Iteration scheme introduced in [9], Kernel Rewards
Regression can be seen as an extension of LSPI [4]. There are three important
differences. KRR uses kernelized features, it avoids classical Approximate Policy
Iteration, and allows for the use of different regression techniques beside the
standard Least-Squares regression as it understands RL as a generalisation of
Supervised Learning. We are further able to guarantee optimality in two different
aspects. For regular or regularised kernel matrices, it is easy to prove [11]

Theorem 1 Let 7 be any stationary and deterministic policy and K € R™! any
reqular kernel matriz. Then Kernel Rewards Regression approaches a solution
a which simultaneously minimises the Bellman residual and is a fized point of
the Bellman operator.



4 Optimal Control by Quadratic Programming

Now we introduce the accordant explicit approach for solving the Optimal Con-
trol problem without a Policy Iteration scheme. For simplicity we restrict our-
selves to a two-action problem. It is just technical to extend the elaboration to
an arbitrary number of actions, it can be done by a recursive definition over or-
dered vectors v; (see below), successively substituting the nested max-operators
[11].

The standard KRR algorithm works on a Policy Iteration scheme, which
starts with the random policy and moves over to more and more deterministic
strategies [9]. It converges to an optimal deterministic policy, if it exists. That
is, there has to be a vector ap., of maximal actions, for whose @Q-function
Q = Qa,.,., represented by eq. 1 and all observations holds

Q(SiJrl,aiJrl,max) = mgXQ(Si+17a)~

Otherwise it converges to a stochastic policy. But in this case the function class
can be seen as inappropriate and another kernel should be chosen. Now suppose
the regular deterministic case. We define the kernel matrices

K;; = 5“717(1;'K,(51'55j)
(Ka)ij = Oaa, K (si41,5;).
The kernels K, hence represent the successor states, if action a would be always

chosen. To guarantee that the solution of the @-function holds for an optimal
deterministic policy, we have to fulfill the constraints

R = Ka-—+ymax (Ko, Kha)
= min((K —vK1)a, (K —vKs)a)
which means that in the successor states the optimal actions are chosen always
by construction as long as the regression function is fitted correctly. The maxima

and minima are taken componentwise. In order to transform these alternative
constraints into regular linear ones we substitute

vi—v_ = ~(K;— K)o

with the additional constraints v, > 0 and v_ > 0. By simple mathematical
transformations we obtain the equivalent, but linear formulation as

(K= 3K+ Ko))a = T —;V’ = R,
if additionally the quadratic constraint v v_ = 0is fulfilled, for which the classic

quadratic programming approach is not designed. But instead we reformulate
this constraint as the objective as

viv, — min.
Within the feasible region we know that the optimal solution is (v, v_)T >0
and VIV_ = 0 is fulfilled if and only if an optimal solution of our Optimal
Control problem, i.e. an optimal deterministic policy, exists.



4.1 Regularisation and Further Constraints

Utilising the quadratic programming framework, it is possible to incorporate
considered regularisation techniques. E.g. we can introduce Support Vector reg-
ularisation consisting of minimising p = a” K« and permitting an e-tube around
the rewards function. The objective and the equality constraint are extended to

VIV_ +ca’Ka = min
Y Vi +vo
+ ng(K1+K2) o — iT < +R+e
which is a more general formulation.
5 Practical Results
Weight Vector Minimisation epsilon-bound
320 340
g coFser- S
© vative ©
>‘lU 280 >‘?
O o 280
0 2 4 6 BPOSWIOtlonWZ 14 16 18 20 0 2 4 6 BPOS‘T“OI,;Z 14 16 18 20

Fig. 1: Impacts of different regularisers on the Wet-Chicken @Q-function. Solid
line: Ridge Regression only, Dashed: with accordant regularisation. At the in-
tersections of the Q-function the action each changes. The closer the intersection
point lies to the waterfall (right), the riskier is the policy.

To show, how EKRR and their different regularisation extensions work, we
applied the method on the so-called Wet-Chicken problem [12]. Tt is a quite
simple, but probabilistic benchmark RL task. The only dimension of the state
space represents a river on which a canoeist has to paddle. On the end there is
a waterfall and the task is to come as close as possible to the waterfall without
falling down. Otherwise the canoeist has to restart. The reward increases lin-
early with the proximity to the waterfall. Simulated turbulences make the state
transition probabilistic. We modeled two different actions: drifting downstream
and rowing upstream. The canoeist has to force back as late as possible and as
early as necessary.

In fig. 1 we opposed standard EKRR and EKRR with different regularisa-
tion settings: minimising the weight vector and tolerating an e-tube. The two
regularisation methods result in more conservative policies. As expected, the
regularisation sanctions have smoothing effects and lead to a bias to a simpler
function class.



6 Conclusion

Kernel Rewards Regression was developed to handle Optimal Control problems
data-efficiently. But as many RL methods, it has to deal with a kind of Policy
Iteration to achieve a near-optimal policy. To avoid these iteration schemes and
eventual convergence problems, Explicit Kernel Rewards Regression proposes
the possibility to identify a near-optimal policy directly by applying just one
quadratic program. Hence, solving the RL problem becomes a task of well-known
numerical methodologies [13, 14] for non-linear and non-convex optimisation.
Furthermore, several regularisation techniques, known from Statistical Learn-
ing Theory, can be easily applied. They trade between different policy properties.
On a given benchmark, we showed that certain regularisation techniques control
the policies’ riskiness, their certainty, and the complexity of the Q-function.

7 Acknowledgment

The authors would like to thank Michael Metzger for very helpful hints formu-
lating the Optimal Control problem as quadratic program.

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, 1998.

[2] Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams. Reinforcement learning is
direct adaptive optimal control. IEEE Control Systems Magazine, 12:19-22, 1992.

[3] Richard S. Sutton. Open theoretical questions in reinforcement learning. In EuroCOLT,
pages 11-17, 1999.

[4] Michael G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of
Machine Learning Research, pages 1107—1149, 2003.

[5] Yaakov Engel, Shie Mannor, and Ron Meir. Bayes meets bellman: The gaussian process
approach to temporal difference learning. In Proc. of ICML, pages 154-161, 2003.

[6] Martin Riedmiller. Neural fitted g-iteration - first experiences with a data efficient neu-
ral reinforcement learning method. In Proceedings of the 16th European Conference on
Machine Learning, pages 317-328, 2005.

[7] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-
3):161-178, 2002.

[8] T. Dietterich and X. Wang. Batch value function approximation via support vectors. In
NIPS, pages 1491-1498, 2001.

[9] Daniel Schneegass, Steffen Udluft, and Thomas Martinetz. Kernel rewards regression: An
information efficient batch policy iteration approach. In Proc. of the IASTED Conference
on Artificial Intelligence and Applications, pages 428-433, 2006.

[10] Nello Cristianini and John Shawe-Taylor. Support Vector Machines And Other Kernel-
based Learning Methods. Cambridge University Press, Cambridge, 2000.

[11] Daniel Schneegass. Structural risk minimisation for data-efficient reinforcement learning.
Siemens AG, CT IC /, Technical Report, 2006.

[12] Volker Tresp. The wet game of chicken. Siemens AG, CT IC 4, Technical Report, 1994.

[13] L.E.Scales. Introduction to non-linear optimization. Springer-Verlag, New York, 1985.

[14] R. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based on interior point
techniques for nonlinear programming. Mathematical Programming, 89(1):149-185, 2000.



