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Abstract. Modern functional brain imaging methods (e.g. functional
magnetic resonance imaging, fMRI) produce large amounts of data. To
adequately describe the underlying neural processes, data analysis meth-
ods are required that are capable to map changes of high-dimensional
spatio-temporal patterns over time. In this paper, we introduce Multi-
variate Principal Subspace Entropy (MPSE), a multivariate entropy ap-
proach that estimates spatio-temporal complexity of fMRI time series.
In a temporally sliding window, MPSE measures the differential entropy
of an assumed multivariate Gaussian density, with parameters that are
estimated based on low-dimensional principal subspace projections of
fMRI images. First, we apply MPSE to simulated time series to test how
reliably it can differentiate between state phases that differ only in their
intrinsic dimensionality. Secondly, we apply MPSE to real-world fMRI
data of subjects who were scanned during an emotional task. Our find-
ings suggest that MPSE might be a valid descriptor of spatio-temporal
complexity of brain states.

Keywords: spatio-temporal complexity estimation, multivariate entropy,
fMRI data.

1 Introduction

Traditionally, data analysis in fMRI (functional magnetic resonance imaging) has
heavily relied on mass univaritate approaches that consider the time course of
each volume element (voxel) in isolation [4]. However, these methods may fail to
detect neural processes that lead to significant changes in widely distributed and
heavily interconnected neural networks, but are too subtle to cause detectable
changes in the local signal. Hence, multivariate approaches seem indispensable
in thorough fMRI data analysis.

Dhamala et al. (2002) used the correlation dimension to estimate spatio-
temporal complexity of brain activity in a task-driven fMRI study. The authors
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showed that their measure of complexity was directly related to task difficulty
and mental load during task performance [3]. However, the measure proposed
by Dhamala et al. (2002) requires large sample sizes and depends on manual
inspection steps, two requirements that constrain the usefulness of this measure
for the analysis of fMRI data.

Here, we propose a new method to estimate spatio-temporal complexity of
brain states that is based on multivariate entropy. Unlike in [3], our aim is to
describe changes of global brain states over time rather than globally describe
complexity. One common assumption is that complexity is strongly related to
information content. Hence, entropy functions, which are by definition informa-
tion measures [7], are well-suited candidates to estimate complexity. An intuitive
approach to estimate complexity of brain states would be to compute the multi-
variate differential entropy with respect to the corresponding functional images.
Unfortunately, we do not know the probability density function (pdf) that is nec-
essary for this estimation. If we assume that the functional images are Gaussian
distributed multivariate samples, the differential entropy can be computed by
evaluating a closed-form expression. However, estimating the required Gaussian
distribution parameters from high-dimensional, low sample size data prohibits a
straightforward entropy computation.

In the following, we will introduce Multivariate Principal Subspace Entropy
(MPSE) and show how it is derived from the differential entropy of multivariate
Gaussian distributed data. Then, we apply MPSE to a data set simulated with
a simple model to illustrate the main characteristics of MPSE. Subsequently, we
present results that were obtained by applying MPSE to task-driven fMRI time
series. Finally, we aim to explain our empirical findings by our simple model.

2 Methods

Let X = [x1, ...,xn] ∈ R
d×n denote a data matrix representing an fMRI time se-

ries. Each column xt of X represents an fMRI image corresponding to a discrete
time index t ∈ {1, ..., n}. In order to obtain spatio-temporal complexity estimates
at individual time indices, a temporally sliding window of an odd size w ∈ N

+

is employed so that 1 < w < n. Let Xτ =
[
xτ−�w

2 �, ...,xτ+�w
2 �

]
∈ R
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the data matrix that columnwise contains w windowed images corresponding to
a fix central window position τ ∈ Tw = {
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2

⌉
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⌊
w
2

⌋
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sample covariance matrix ĈXτ is defined as
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xi . (2)
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Since an fMRI time series usually comprises much fewer images (samples) than

voxels (dimensions), a sample covariance matrix ĈXτ
is necessarily rank defi-

cient, i.e. rk(ĈXτ
) ≤ w − 1 < d. Hence, the eigenvalue spectrum Λ(ĈXτ

) =
(λ1, ..., λd) contains at least d− (w − 1) zero eigenvalues.

The aim of the current paper is to estimate the spatio-temporal complexity
of a given data matrix Xτ by employing multivariate differential entropy. It is
assumed that the samples Xτ are observations drawn from a continuous random
vector x ∈ R

d that has some pdf p. The corresponding differential entropy H[p]
is defined as

H[p] = −
∫

x∈Rd

p(x) ln p(x) dx .

If we assume that p is a Gaussian pdf with a mean vector µ and a covariance
matrix C, i.e. p(x) is given by N (x | µ,C), then the corresponding differential
entropy is given by the closed-form expression (see e.g. [2])

H[p] =
1

2
ln |C|+ d

2
(1 + ln(2π)) . (3)

Note that (3) essentially depends on the determinant |C| and thereby on the
eigenvalue spectrum Λ(C), since |C| =

∏
λj∈Λ(C) λj . In order to compute (3)

the true Gaussian density parameters µ and C have to be estimated. This can
be done by computing the maximum likelihood estimates of µ and C based on
the data matrix Xτ that are given by (2) and (1) [2]. As mentioned above, the

sample covariance matrix ĈXτ
is rank deficient. Simply setting C = ĈXτ

in

(3) would lead to a singularity, since
∣∣∣ĈXτ

∣∣∣ = 0 and lim
x→0

lnx = −∞. In order to

elude the singularity we evaluate (3) in a lower k-dimensional principal subspace

of Xτ so that k = rk(ĈXτ
).

Let X̃
k

τ ∈ R
k×w denote the data matrix containing the k-dimensional princi-

pal subspace projections of the mean subtracted samples of Xτ , i.e.

X̃
k

τ = Uk(ĈXτ
)T (Xτ − (µ̂Xτ

1T
w)) ,

where Uk(ĈXτ
) = [u1, ...,uk] ∈ R

d×k denotes the matrix that contains the unit

eigenvectors of ĈXτ corresponding to its k largest eigenvalues. By construc-
tion the sample covariance matrix Ĉ

X̃
k
τ
is diagonal and contains the k leading

eigenvalues of ĈXτ
as diagonal elements. Note that diag(Ĉ

X̃
k
τ
)

∧
= Λ(Ĉ

X̃
k
τ
).

Since k is choosen so that k = rk(ĈXτ
), the rank sufficiency of Ĉ

X̃
k
τ
follows,

i.e. rk(Ĉ
X̃

k
τ
) = k. Let x̃k ∈ R

k denote the random vector representing the k-

dimensional principal subspace projection of x subject to Uk(ĈXτ
). Then the

pdf q(x̃k) is given byN (x̃k | 0k, ĈX̃
k
τ
) and the corresponding differential entropy

is

H[q] =
1

2
ln
∣∣∣Ĉ

X̃
k
τ

∣∣∣ + k

2
(1 + ln(2π)) . (4)
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Note that the differential entropy (4) is well-defined due to the rank sufficiency of

Ĉ
X̃

k
τ
. We call this quantity Multivariate Principal Subspace Entropy (MPSE).

MPSE(Xτ ) can be computed as follows:

MPSE(Xτ ) = H [q] =
1

2
ln

k∏
j=1

λj +
k

2
(1 + ln(2π))

=
1

2

k∑
j=1

lnλj +
k

2
(1 + ln(2π)) . (5)

A multivariate Gaussian distribution is a unimodal distribution, i.e. its entropy
depends on its generalized variance, which is given by the determinant of the
covariance matrix (see e.g. [6]). If the generalized variance in the principal sub-
space increases (decreases), MPSE given by (5) also increases (decreases). Note
that in contrast to the discrete Shannon entropy the differential entropy and
thus MPSE is not bounded and not necessarily nonnegative [2].

3 Data

3.1 Simulated Data

To assess the behavior of the spatio-temporal complexity estimator MPSE, we
simulated a number of d-variate time series that comprise phases with states of
different complexity. To this end, we modeled temporally alternating off-state
phases (off-state a) and more complex on-state phases (on-state b). We assume
that these two phases are represented by distinct temporally changing processes
that lie in orthogonal subspaces of different intrinsic dimensionalities da, db ∈
N

+, and also that the on-state phase process is higher dimensional than the
off-state phase process, i.e. db > da.

Let Xa ∈ R
da×n (Xb ∈ R

db×n) be randomly generated by drawing n ∈
N

+ samples from the da-variate (db-variate) Gaussian distribution N (0da , Ida)
(N (0db

, Idb
)). We furthermore introduce two binary task functions sa, sb ∈

{0, 1}n that are used to model the time course of off-state and on-state phases.
Finally, a matrix V is used to embed randomly generated low dimensional sam-
ples into a much higher d-dimensional target space. Let V ∈ R

d×(da+db) be a
randomly generated projection matrix consisting of (da + db) pairwise orthonor-
mal d-dimensional vectors, i.e. V TV = I(da+db). Hence, an entire simulated time
series X is generated as

X = V

[
Xa � (1da s

T
a )

Xb � (1db
sTb )

]
,

where � denotes the element-wise matrix product operator.
We chose a target space dimensionality of d = 5000. For each simulated time

series we modeled five off-state phases of length na ∈ N
+ and four on-state phases

of length nb ∈ N
+. Two different differences of dimensionality between state b

and state a were chosen: (1) a rather large difference (i.e. da = 20, db = 60) and
(2) a rather small difference (i.e. da = 55, db = 60).
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In the first simulation setting (exclusive setting), we assume that both states
a and b are temporally exclusive, i.e. either off-state a or on-state b is active. For
this setting, simulation parameters are chosen as follows: na = 15, nb = 10 (i.e.
n = 5na + 4nb = 115). In the second simulation setting (transition setting), we
additionally model a transition phase c for each alternation of states. A transition
phase is modeled as the concurrency of off-state a and on-state b, i.e. there are
short phases of length nc ∈ N

+ in which both states are simultaneously active.
In other words, a transition phase does not enforce the states to be temporal
exclusive and incorporates that one process has a certain shut down delay as
another process already becomes active. Note that the dimensionality of this
transition phase is dc = da + db. For this setting, we chose na = 13, nb = 8 and
nc = 2 (i.e. n = 5na + 4nb + 8nc = 113).

3.2 FMRI Data

In this section we introduce fMRI data from a task-driven fMRI study that
has been published elsewhere [1]. Six female subjects participated in an fMRI
experiment that comprised ten runs. Each run comprised four emotional periods
(20s) alternating with four resting periods (18s - 24s). During an emotional
period subjects were asked to submerge themselves into an emotional situation
(joy, anger, disgust, fear, sadness) and to facially express their emotional feelings.
A single word cue (e.g. ’joy’) on a black screen signaled an emotional period.
During resting periods subjects were asked to relax. A neutral fixation cross
signaled a resting period. There were two runs for each emotion per subject, i.e.
60 fMRI time series in total (6 subjects × 2 runs × 5 emotions). Each fMRI
time series comprises 80 whole brain functional images, that were acquired with
a TR (repetition time) = 2s.

FMRI time series were preprocessed including slice acquisition time correc-
tion, concurrent spatial realignment and correction of image distortions by use
of individual static field maps, normalization into standard MNI space and spa-
tial smoothing (10 mm Gaussian kernel) using SPM5 [9]. Only voxels within a
standard anatomical gray matter brain mask [8] were considered in our analy-
sis (i.e. 46,556 voxels per image). Furthermore, from each voxelwise fMRI time
series the temporal mean was subtracted and the linear trend was removed. A
detailed description of the fMRI experiment can be found in [1].

4 Results

4.1 Results on Simulated Data

Fig. 1 shows MPSE time courses of the simulated data described in section 3.1
using a window of size w = 5.

For the exclusive setting in our simulation and a rather large difference in
state dimensionality (da = 20, db = 60) the MPSE time course shows distinctly
higher values during on-state phases than during off-state phases (Fig. 1 (a)).
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Fig. 1. Average MPSE time courses of simulated time series with standard error
(N=30) using a window size w = 5. From each single MPSE time course the tempo-
ral mean was subtracted before averaging. Light gray (white) bars illustrate simulated
on-state (off-state) phases of dimensionality db (da). Dark gray bars indicate transition
phases of dimensionality (da + db).

If in the same simulation setting the difference in state dimensionality is chosen
rather small (da = 55, db = 60) the MPSE time course still attains high values
during on-state phases and low values during off-state phases (Fig. 1 (b)). The
on-state to off-state level difference in Fig. 1 (b), however, is smaller compared
to Fig. 1 (a). Furthermore, the MPSE time course in Fig. 1 (b) shows stronger
high-frequency fluctuations and noise than the MPSE time course in Fig. 1 (a).

For the transition setting in our simulation and a rather large difference in
state dimensionality (da = 20, db = 60) the average MPSE time course shows
again a high on-state and a low off-state level. In addition, an even higher third
level can be observed during transition phases (Fig. 1 (c)). If in the same simula-
tion setting the difference in state dimensionality is chosen rather small (da = 55,
db = 60) the transition level can stil be observed (Fig. 1 (d)), but, the MPSE
level difference between transition phase and on-state phase increases as the
difference in state dimensionality decreases (compare Fig. 1 (c) to Fig. 1 (d)).

4.2 Results on FMRI Data

Fig. 2 shows the average MPSE of the fMRI data set that was described in
section 3.2 for windows of size w ∈ {3, 5}. Applying MPSE to the fMRI data
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Fig. 2. Average MPSE time courses of 60 fMRI time series with standard error across
subjects (N=6) using window size w. The temporal mean of each single time course was
subtracted before averaging. Gray (white) bars indicate emotional (resting) periods.

obviously results in a time course that reflects the alternation between emotional
and resting periods in the fMRI experiment. For both window sizes the average
MPSE time course has higher values during emotional periods and lower values
during resting periods, i.e. there are task-condition specific levels. Interestingly,
the obtained time courses show distinct peaks at task transitions. Increasing the
value w from w = 3 to w = 5 seems to temporally smooth the average MPSE
time course. For the larger window w = 5 the off-state transition peaks become
smaller, but are still clearly visible.

5 Discussion

For simulated data with a large difference in state dimensionality, we showed that
MPSE is capable to successfully detect on-state and off-state phases. MPSE con-
siders only w samples at a time and, hence, (w− 1) non-zero eigenvalues due to
w < da < db. Although the population eigenvalues are equally sized (isotropic
Gaussian model) the estimated eigenvalue spectra give different MPSE levels for
different intrinsic dimensionalities (i.e. high MPSE level for high dimensionality
and low MPSE level for low dimensionality). This could be explained by the
fact that under these high-dimensional, low sample size simulation settings esti-
mated eigenvalues are Marc̆enko-Pastur distributed [5]. Roughly speaking, as the
ratio α between sample size and dimensionality decreases, estimated non-zero
eigenvalues and variance of the corresponding spectra increase. Note that the
Marc̆enko-Pastur law actually holds for the asymptotic case of infinite sample
sizes for some fix α. Even though we are dealing with very small sample sizes,
MPSE increases, due to larger eigenvalue estimates, as the intrinsic dimension-
ality increases. The same argument explains the high third MPSE level during
transition phases. The transition-peaks are rather high compared to the on-state
and off-state levels when difference in state dimensionalities is small. This is not
surprising, as – by construction – the intrinsic dimensionality of a transition
phase is almost twice as high as the dimensionality of an on- or off-state.
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For the real-world data, we assumed that during emotional periods brain ac-
tivity of subjects shows an increased complexity, due to the neural processing
induced by the experimental task. During resting periods, in contrast, complex-
ity was expected to decrease. Thus, we expected a correspondence between the
time course of a spatio-temporal complexity estimator and the time course of
the experimental task. MPSE estimates the time course of the experimental task
with high precision. There were significantly higher MPSE levels during emo-
tional than during resting periods. Furthermore, the MPSE time course shows
distinct peaks at the state transitions.

In sum, we have introduced MPSE as a measure to estimate spatio-temporal
complexity of fMRI time series. We have shown that MPSE is capable to detect
different experimental conditions for a real fMRI data set. Entropy levels were
higher during emotional periods and lower during resting periods. Furthermore,
we found evidence that during transitions between emotional and resting periods
complexity increases. Employing a simple model, we could reproduce (1) MPSE
level differences and (2) MPSE task transition peaks in simulated time series
that comprise state phases of different intrinsic dimensionalities.
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