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Abstract—We present the learning algorithm Orthogonal
Sparse Coding (OSC) to find an orthogonal basis in which a given
data set has a maximally sparse representation. OSC is based on
stochastic descent by Hebbian-like updates and Gram-Schmidt
orthogonalizations, and is motivated by an algorithm that we
introduce as the Canonical Approach (CA). First, we evaluate
how well OSC can recover a generating basis from synthetic
data. We show that, in contrast to competing methods, OSC
can recover the generating basis for quite low and, remarkably,
unknown sparsity levels. Moreover, on natural image patches and
on images of handwritten digits, OSC learns orthogonal bases
that attain significantly sparser representations compared to
alternative orthogonal transforms. Furthermore, we demonstrate
an application of OSC for image compression by showing that
the rate-distortion performance can be improved relative to
the JPEG standard. Finally, we demonstrate state of the art
image denoising performance of OSC dictionaries. Our results
demonstrate the potential of OSC for feature extraction, data
compression, and image denoising, which is due to two important
aspects: (i) the learned bases are adapted to the signal class, and
(ii) the sparse approximation problem can be solved efficiently
and exactly.

Index Terms—Sparse coding, sparse representation, dictionary
learning, blind source separation, sparse component analysis,
orthogonal mixture, transform coding, image compression, image
denoising.

I. INTRODUCTION

ACCORDING to the efficient-coding hypothesis, early
work on sparse coding proposed that the goal of visual

coding is to faithfully represent the visual input with minimal
neural activity, an idea that goes back to Barlow [1] and is
based on earlier work of Ernst Mach and Donald MacKay.
This principle of efficient coding has been later extended in
several ways and related to the statistics of natural images
[2], [3], [4]. Natural images occupy only a small fraction of
the entire signal space. As a consequence, they can indeed be
encoded sparsely, meaning that they can be represented by a
linear combination of rather few elementary signals out of a
given collection. Sparsity can also be observed in other classes
of natural signals, for instance acoustic signals [5].

The fact that natural images can be sparsely encoded has
already been used for image compression. By choosing an
adequate analytic transform, e.g. the Discrete Cosine Trans-
form (DCT) or suitable wavelets, many transform coefficients
are small and thus need not be encoded [6], [7]. An impor-
tant progress has been made by going from such predefined
transforms to dictionaries that are learned and thereby adapted
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to particular signal classes [4]. However, such learned dictio-
naries have not yet been widely used for image compression,
one reason being that the resulting non-orthogonal dictionaries
are more complex and computationally more demanding than
orthogonal ones.

A. Overcomplete vs. Orthogonal Dictionaries

Learning a dictionary for sparse coding can be seen as the
task to identify multiple linear subspaces the given training
samples are contained in. A dictionary is a collection of unit
length vectors, called atoms, such that any K-subset of it spans
a K-dimensional subspace of the input space. Suppose a data
sample can be represented by some given dictionary via a
sparse coefficient vector having K non-zero entries. These
coefficients then correspond to coordinates in a particular
subspace that is specified by the support of the coefficient
vector and the corresponding atoms.

Learning overcomplete dictionaries allows to arbitrarily
increase the collection of atoms to a size larger than the
dimensionality of the signal space which in turn increases the
number of possible subspaces that can be used for encoding.
Subspaces composed from an overcomplete dictionary are
mutually non-orthogonal which, in general, enables a better
adaptation to the training data set and can “represent a wider
range of signal phenomena” [8]. However, not to require
further conditions on the dictionary is problematic when it
comes to calculating optimal sparse data representations, i.e.,
optimal coefficient vectors including their support. For general
overcomplete dictionaries, this problem is provably NP-hard
[9]. Approximative greedy algorithms like Basis Pursuit or
Orthogonal Matching Pursuit can find optimal coefficients only
if the dictionary obeys particular incoherence properties such
as, for instance, the restricted isometry property [10]. These
incoherence properties require that dictionary atoms are not
too similar and can be seen as a relaxation of orthogonality.
However, unlike orthogonality, it is difficult to embed such
properties as constraints in dictionary learning algorithms.

Orthogonal dictionaries, on the other hand, are mathemati-
cally simple and, additionally, maximally incoherent. All pos-
sible subspaces are mutually orthogonal with the implication
that optimal coefficients can be calculated simply by inner
products. Moreover, an orthogonal dictionary can be easily
inverted. It serves as synthesis operator and its transpose as
analysis operator. Nevertheless, orthogonal bases learned for
sparse coding are able to provide efficient encodings as will
be shown by our numerical experiments.
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B. Learning an Orthogonal Basis for Sparse Coding

In the following, we address the task of learning an orthogo-
nal basis that provides an optimal K-sparse representation of a
given training data set. We define an orthogonal basis as a real
matrix U ∈ RN×N obeying UTU = IN . Given such a basis,
any signal x ∈ RN has a unique representation x = Ua by
the coefficient vector a ∈ RN . A signal x is said to be sparse
with respect to U, if many coefficients, i.e. many entries of a,
are zero or close to zero. Suppose U is given, then the optimal
K-sparse coefficient vector of a single sample x is found as
a solution of

a∗U,K(x) = arg min
a,‖a‖0≤K

‖x−Ua‖22 , (1)

where ‖·‖0 : RN → {0, ..., N} counts the number of non-
zero entries. Due to orthogonality and completeness of U
an optimal solution a∗U,K(x) can be easily determined by
keeping the K largest entries |an| of a = UTx and setting the
remaining entries to zero. The sparse approximation problem
(1) is a subproblem of our task to find the best orthogonal
sparse coding basis U∗K(X). Let X = (x1, ...,xL) be a given
training data set and A∗U,K(X) a matrix that column-wise
contains a solution to (1) for each xi. Finding U∗K(X) is a
nested optimization problem defined by

U∗K(X) = arg min
U∈O(N)

‖X−UA∗U,K(X)‖2F , (2)

where O(N) = {U ∈ RN×N | UTU = IN} denotes the
orthogonal group.

C. Related Work

1) Analytic Transform Design: The problem of finding a
suitable (universal) signal transform in order to efficiently
encode image patches and to compress images can be traced
back to the Fourier Transform and local versions thereof [11]
that finally converged to the first JPEG standard [6] based on
the DCT. Pioneering work in the field of wavelet analysis [12]
led to a signal decomposition scheme [13], [14] that provides
orthogonal multiscale transforms simply by translating and
dilating an elementary function (see, e.g. ,[15], [16]). Further
findings in the field of wavelet theory set the stage to more
efficient image compression codecs such as JPEG2000 [7].

2) Learning Overcomplete Dictionaries: Olshausen and
Field introduced the sparse coding principle and proposed
a batch learning algorithm to learn a redundant dictionary
that minimizes a regularized joint cost function composed
of a representation error term and a term that promotes the
sparsity of the representation [17]. Meanwhile, a number of
algorithms have been proposed that can learn overcomplete
dictionaries. Lewicki and Sejnowski proposed a probabilistic
approach by gradient ascent on a log posterior with respect
to the dictionary [18]. The authors also deduced that learning
an overcomplete sparse coding dictionary is a generalization
of Independent Component Analysis (ICA) [19], a method
designed to invert linear mixtures of statistically independent
source signals by maximizing the marginal non-Gaussianity
of the data representation [20]. Aharon et al. proposed K-
SVD [21], an algorithm that generalizes K-means clustering

and iterates two alternating stages. In the first stage, a pursuit
algorithm approximates the optimal K-sparse representations
of the training set. In the second stage, each dictionary atom
as well as associated coefficients are sequentially updated via
Singular Value Decomposition (SVD) of a particular error
matrix. Labusch et al. proposed Sparse Coding Neural Gas
(SCNG) [22], a soft-competitive online learning algorithm
based on Neural Gas [23] clustering. SCNG performs stochas-
tic gradient descent and similarly alternates between updating
the sparse coefficients and updating the dictionary atoms.
Lesage et al. proposed to learn an overcomplete sparse-coding
dictionary as unions of orthogonal bases [24], because it
relieves the sparse approximation problem. Alternative ap-
proaches to learn overcomplete dictionaries for sparse coding
can be found in [25], [26], [27], [28], [29] to name a few.

However, all the above learning algorithms do not attempt
to enforce orthogonality and thus, in general, learn non-
orthogonal overcomplete dictionaries which enables, for in-
stance, to capture invariance [8].

3) Learning Orthogonal Dictionaries: Nevertheless, a few
authors proposed to learn orthogonal dictionaries for sparse
coding. Coifman et al. proposed the Wavelet Packet Transform
[30], which is an early attempt to enhance orthogonal trans-
forms with a certain degree of adaptivity to the represented
signal. For a given signal, it allows to select a basis from a
large collection of dyadic time frequency atoms derived from
a specific pair of mother wavelet and scaling function.

Mishali and Eldar formulated the orthogonal sparse coding
problem as a blind source separation problem [31]. Given a set
of observations, the problem is to invert the linear mixture of
unknown K-sparse sources by an unknown orthogonal mixing
matrix. They proposed a method with two succeeding stages.
The first stage estimates the entire support pattern of the
coefficient matrix, i.e., all locations of non-zero coefficients.
The second stage iteratively adapts (i) the non-zero coefficients
and (ii) the orthogonal mixing matrix via SVD by using
the estimated support pattern. However, in [31] only low-
dimensional synthetic data sets were investigated, and merely
two rather high sparsity levels (K ∈ {2, 3}) were considered.
With lower sparsity levels the recovery performance of the
support pattern rapidly decreases and impairs the estimation
of the mixing matrix substantially.

Another issue with their first stage is the strict requirement
that the given data need to have an exactly K-sparse rep-
resentation (with exact zeros) in the generating basis, which
does not even tolerate small amplitude noise and is therefore
not applicable to real word data. For this reason, we can
evaluate this approach only with noiseless synthetic data (see
Subsection III-A).

Dobigeon and Tourneret proposed the Bayesian framework
BOCA for a similar source separation formulation that is, how-
ever, designed for an undercomplete orthogonal mixing matrix
[32]. BOCA relies on knowing specific prior distributions
for the unknown model parameters. The proposed approach
models the sparse sources as Bernoulli-Gaussian processes and
uses a uniform prior distribution on the Stiefel manifold for
the mixing matrix. A comparison of OSC or CA to BOCA is
out of the scope of this paper, because we here address the
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complete orthogonal dictionary learning task.
Gribonval and Schnass considered the problem of learning

an orthogonal sparse-coding basis by minimizing the `1-norm
of the coefficient matrix with respect to dictionary and coef-
ficient matrix such that their product synthesizes the training
data [33]. Their main results are identifiability conditions that
guarantee local convergence to the generating dictionary by
the `1 minimization approach. They showed that a particular
sparse model satisfies these conditions with high probability
provided that enough samples are given. However, an explicit
algorithm is not proposed and the convergence relies on a good
initialization.

In [34], Bao et al. proposed a batch algorithm to learn an
orthogonal sparse coding basis from patches of an image.
Their method is similar to the method proposed in [35],
but learns the orthogonal dictionary within the orthogonal
complement of a predefined (possibly empty) set of orthogonal
dictionary atoms which are not updated during learning. Their
method is related to what we will introduce as Canonical
Approach (CA) in Subsection II-A, as it computes closed form
solutions of the two underlying subproblems. However, [34]
addresses an unconstrained sparse model in Lagrangian form
with a weighting factor λ that controls the trade-off between
reconstruction error and sparsity. The dictionary update stage
of [34] and CA is the same, and has been used previously,
e.g., in [24] and [31]. The key difference between [34] and CA
is the sparse coding stage, which is in one case realized by a
global hard thresholding operator and in the other case realized
by retaining the K most relevant coefficients for each sample.
Since we are focused on the constrained K-sparse model, we
have not included the threshold based method proposed in
[34] in our experiments. In [34], the main learning algorithm
has also been extended to learn orthogonal dictionaries on
corrupted image patches with the objective to better solve
image restoration problems. Furthermore, [36] has adopted the
method proposed in [34] to solve a compressive MRI imaging
reconstruction problem.

To the best of our knowledge there are no further methods
which address problem (2) or can serve as a reference for the
experiments described in Section III.

D. Structure and Contribution of the Paper

In Section II, we first introduce the batch algorithm CA
(which is related to prior work) and subsequently, as our
main contribution, the online algorithm OSC to learn an
orthogonal sparse coding basis. For OSC, we provide a pseudo
code and estimate its computational complexity. We provide a
theorem which states that an OSC update reduces the cost for
the processed sample. This assures stochastic descent on the
cost function for the entire training data set and, hence, cost
reduction at least to a local minimum. We demonstrate it in a
simulation.

In Section III, we compare the performance of OSC and
alternative methods in terms of how well they recover a gen-
erating orthogonal basis from sparse synthetic data in noiseless
and noisy settings. We then apply OSC to real world data, (i)
natural image patches, and (ii) images of hand-written digits

and visualize the learned orthogonal dictionary atoms. Signal
classes different from natural image patches were marginally
considered by prior work on orthogonal dictionary learning.
Furthermore, the optimal K-term approximation performance
is analyzed on corresponding test data sets for different
parameter values K and compared to alternative orthogonal
transforms (analytic as well as learned).

In Section IV, we demonstrate the applicability of OSC
to image compression. We compare the rate distortion for
images compressed with JPEG, JPEG2000, and a modified
JPEG codec for which the 8×8 DCT has been replaced by
an 8×8 OSC basis. Finally, we use learned orthogonal sparse
coding bases for image denoising.

II. THE OSC ALGORITHM

A. The Canonical Approach and Motivation for OSC

First of all, we propose what we call the Canonical Ap-
proach (CA) to learn an orthogonal sparse coding basis. CA is
related to orthogonal dictionary learning approaches proposed
in [34] and [35]. CA can be seen as their natural modification
to match the problem formulation (2). Similar to traditional
sparse coding algorithms, this approach iteratively alternates
between (i) the determination of the optimal (column-wise) K-
sparse coefficient matrix A∗U,K(X) for the current, temporary
fixed basis U, and (ii) the determination of the optimal orthog-
onal basis U∗A(X) for the current, temporary fixed coefficient
matrix A. For our orthogonal setting, both subproblems have
closed form solutions.

For a temporary fixed U and a given training sample x, the
minimizer of the sparse approximation problem (1) is

a∗U,K(x) = DK(x,U)UTx , (3)

where DK(x,U) is a diagonal matrix having K entries equal
to 1 and otherwise entries equal to 0. DK(x,U) selects the
K largest projections |uT

nx|, i.e., the K largest entries |an|
of a = UTx. This step, applied to each training sample xi,
provides an optimal coefficient matrix A = A∗U,K(X) with
K-sparse columns.

Suppose such a coefficient matrix A (representing X) is
now temporary fixed, then the optimal orthogonal basis is
given by

U∗A(X) = VWT , (4)

where V and W are the outer matrices of the SVD of XAT =
VΣWT [37]. Please note that variants of (4) are also used, for
instance, in [24], [31], [34], and [35]. Setting U = U∗A(X)
as given by (4) and iterating all these steps yields the CA
algorithm.

We tested CA on synthetic K-sparse data for which the
ground truth is known (see Subsection III-A). It turns out that,
given the correct sparsity level K, CA is able to accurately
recover the generating basis as far as K is rather small (high
sparsity). However, In the case of larger K (lower sparsity)
CA gets stuck in local minima and does not converge. This
finding motivates the stochastic descent approach that will be
presented in the following.
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B. OSC Idea and Pseudo code

Orthogonal Sparse Coding (OSC1) can be seen as a gener-
alization of Principal Component Analysis (PCA). With (3) as
the solution to the sparse approximation problem (1), the cost
function which has to be minimized in (2) can be reformulated
as

EX,K(U) = −
L∑

i=1

xT
i UDK(xi,U)UTxi . (5)

We denote the minimizer of (5) by U∗K(X). Note that in (5) we
have merged both subproblems to a certain extent, a procedure
that has been proven to be also crucial for good convergence
of online PCA algorithms. If DK were a fixed matrix and not
dependent on xi and U, e.g. the first K values in the diagonal
would be constantly set to one, then PCA would provide a
minimizer of (5). In contrast to PCA, however, OSC selects
for each xi an individual DK depending on U.

Since the minimizer of (5) cannot be obtained in closed
form, we perform stochastic descent analogous to online PCA
algorithms. When adapting U, the algorithm switches between
gradient descents (Hebbian-like updates) and Gram-Schmidt
orthogonalization steps.

Algorithm 1 Orthogonal Sparse Coding (OSC)
Input: training data set X = (x1, ..., xL) ∈ RN×L

number of learning steps tmax

initial and final learning rate εinit ≥ εfinal

sparsity level K (default: K = N )
Output: orthogonal basis U = (u1, ..., uN ) ∈ RN×N

1: Start with random orthogonal basis U
2: for all t = 0, ..., tmax do
3: εt ← εinit (εfinal/εinit)

t/tmax

4: select sample x from X randomly and set xres ← x

5: determine a sequence n1, ..., nN , such that
(
uT
n1

x
)2 ≥

... ≥
(
uT
nN

x
)2

holds
6: for all k = 1, ..., N do
7: for all l = 1, ..., (k − 1) do
8: unk

← unk
−
(
uT
nk

unl

)
unl

9: end for
10: if k ≤ K then
11: y ← uT

nk
xres

12: unk
← unk

+ εt · y · xres

13: end if
14: normalize unk

to unit length
15: xres ← xres −

(
uT
nk

xres

)
unk

16: end for
17: end for

The OSC algorithm starts with a randomly initialized basis
U. For each learning step an entire update of U takes place.
At the beginning of each learning step t, the current learning
rate εt is set and a training sample x is randomly selected from
the given training data set X. First, OSC determines an index
sequence n1, ..., nN that sorts the squared coefficients of x in

1A first sketch of the OSC algorithm and preliminary results have been
presented at the workshop New Challenges in Neural Computation 2013 [38].

the current basis U, s.t. (uT
n1

x)2 ≥ (uT
n2

x)2 ≥ ... ≥ (uT
nN

x)2.
Note that the contribution of the selected sample x to the cost
function (5) is given by

EK(x,U) = −xTUDK(x,U)UTx

= −
K∑

k=1

(uT
nk

x)2 . (6)

As a consequence, costs are reduced if the sum of the K
largest squared coefficients is increased. Loosely speaking,
this can be interpreted as concentrating the energy distribu-
tion of the sparse coefficients of x. The determined index
sequence defines the order of basis vector updates, starting
with the basis vector which contributes most to (6). Before
a basis vector unk

is updated, it is orthogonalized with
respect to span({un1 , ...,unk−1

}), the span of basis vectors
that were already updated during the current learning step.
Then, the orthogonalized basis vector unk

is updated by
gradient descent depending on the residual vector xres (the
original training sample x likewise orthogonalized with re-
spect to span({un1 , ...,unk−1

})) such that its contribution
−(uT

nk
xres)

2 in (6) decreases. This leads to the Hebbian-like
update rule

y ← uT
nk

xres (7)
∆unk

← εt · y · xres . (8)

The updated basis vector unk
is normalized to unit length.

Subsequently, xres is orthogonalized with respect to unk
, thus

becoming the residual vector for the update of unk+1
.

How many basis vectors are updated with the learning rule
depends on the sparsity parameter K. Please note, however,
that due to the required orthogonalization, all basis vectors
are modified even if only K were updated by (8). A learning
step is completed, when the last basis vector unN

has been
normalized. With this scheme of iterative Gram-Schmidt or-
thogonalization, U is most certainly an orthogonal basis. The
learning rate εt cools down with the number of conducted
learning steps. Algorithm 1 lists OSC in pseudo code.

C. Computational Complexity of OSC

For a single OSC learning step, drawing a training sample x,
setting residual vector xres (line 4) and sorting the coefficients
(line 5) has complexity O(N2) + O(N logN). The loop in
lines 6-16 iterates O(N) times over all basis vectors unk

.
The Gram-Schmidt steps for each unk

(lines 7-9) have at
most a complexity of O(N2). A single Hebbian-like update
(lines 11-12) of a unk

has a complexity of O(N). The length
normalization of unk

(line 14) and the update of xres (line 15)
take likewise O(N). Putting all together and taking the outer
loop over the learning steps into account gives a computational
complexity of

O
(
tmax

(
N logN +KN +N2 +N3

))
, (9)

which is bounded by O(tmaxN
3).
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D. Convergence Properties of OSC
OSC is an online learning algorithm that updates the sparse

coding basis U for each presented training sample x. In the
following we provide a theorem which assures that a learning
step by OSC increases the sparsity of the representation of
the given x, i.e. decreases the cost contribution of this sample
to the overall cost function. Hence, OSC performs stochastic
descent on the cost function which has to be minimized. For
small enough step sizes ε this can be proven, but seems to be
valid also for large ε according to our numerical experiments.

Theorem 1: Given an orthogonal basis U. If ε > 0 is
small enough, applying an OSC learning step to an arbitrary
non-zero x yields a new orthogonal basis U′ such that for
the sequences (uT

n1
x)2 ≥ (uT

n2
x)2 ≥ ... ≥ (uT

nN
x)2 and

(u′
T
n1

x)2 ≥ (u′
T
n2

x)2 ≥ ... ≥ (u′
T
nN

x)2 the ordering

(u′Tnk+1
x)2

(u′Tnk
x)2

≤
(uT

nk+1
x)2

(uT
nk

x)2
(10)

holds for all k = 1, ..., N − 1.
Theorem 1 states that by an OSC learning step the mag-

nitude of a coefficient decreases relative to its predecessor in
the sequence of sorted coefficients. This means, that after an
OSC learning step the squared coefficients obey a stronger
decay. Figure 1 illustrates, from an experiment with natural
image patches, the sorted squared coefficients before and after
an OSC learning step. Clearly, after the learning step more
energy is distributed over less coefficients. However, the total
amount of energy is preserved, because U is an orthogonal
basis. Hence, the sparsity of the encoding of the given x is
increased.

10 20 30 40 50 60

Basis Vector Rank k

( u
T n
k
x
) 2

Figure 1. Sorted squared coefficients of an 8×8 natural image patch in basis
U, before (dashed, blue line) and after (solid, red line) an OSC learning step.

From Theorem 1 follows directly
Corollary 1: Given an orthogonal basis U. Applying an

OSC learning step with an arbitrary x leads to an U′ such
that for each K = 1, ..., N

−
K∑

k=1

(u′
T
nk

x)2 ≤ −
K∑

k=1

(uT
nk

x)2 ⇔

‖x−U′DK(x,U′)U′Tx‖22 ≤ ‖x−UDK(x,U)UTx‖22 .

This means that an OSC learning step reduces the costs (6)
with respect to the presented training sample. It might not be
obvious that OSC minimizes cost function (5) with respect to
the entire training data set. However, a stochastic descent of
(5) is due to the pattern-by-pattern scheme of OSC similar
to a stochastic gradient descent. From the experiment with
natural image patches described in Subsection III-B, Figure
2 illustrates the temporal course of the total costs (5) for the
OSC basis U over a full learning phase. It can be seen that
OSC reduces the total costs (5).

2 · 106 4 · 106 6 · 106 8 · 106

Learning Step t

E
X

,K

( U
t
)

K = 4

K = 8

K = 16

Figure 2. Training error evaluated by cost function (5) during a full learning
phase of OSC on natural image patches (see experiment in Subsection III-B).

E. K-OSC and ”full” OSC
In general, EX,K(U) has different minima for different K

and OSC will provide different solutions U∗K . However, there
are situations where it is suitable to choose user parameter
K of the OSC algorithm as K = N and take the output
of this ”full” OSC as a kind of universal solution U∗ which
minimizes (5) for many different K. In these cases it is not
necessary to learn an individual basis for each individual K.

Such a situation is given, for example, if U∗K does not
change although K is further increased. Starting with cost
function (5) and some rearrangements we can write

EX,K+1(U) = −
N∑

n=1

K+1∑
k=1

∑
x∈Sn

k (U)

(uT
nx)2

= EX,K(U)−
N∑

n=1

∑
x∈Sn

K+1(U)

(uT
nx)2 .(11)

Sn
k (U) is the set of those x for which (uT

nx)2 is the k-th
largest term in the sequence (uT

n1
x)2 ≥ (uT

n2
x)2 ≥ ... ≥

(uT
nN

x)2. Since U∗K is a minimum of the first term in (11),
a sufficient condition for U∗K to remain a minimum also of
EX,K+1 is U∗K to be a minimum also of the second term in
(11). This is the case if the gradient of the second term with
respect to each un vanishes at U = U∗K , i.e.,∑

x∈Sn
K+1(U∗

K)

u∗n
Tx = 0 ∀ n ∈ {1, ..., N} , (12)
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with u∗n being the n-th column vector of U∗K .
Condition (12) holds, for example, if the x are K-sparse in

U∗K , since each element in the sum of the gradient is zero.
This is still valid if the signals are K-sparse in U∗K except
for additive isotropic noise, since for symmetry reasons the
contributions in the sum cancel out. Hence, if we have K-
sparse signals without or with isotropic noise, working with
the ”full” version of OSC, i.e. with U∗, gives us the correct
solution, even if we do not know the given sparsity level K.

Another scenario appropriate for using U∗ is given if each
signal is a linear superposition of orthogonal atoms, which
are drawn randomly and independently (without replacement)
from the dictionary V = (v1, ...,vN ). The coefficients are
drawn independently from the probability distribution P1 for
the first chosen atom, from P2 for the second chosen atom,
etc. Because of the independencies we have V = U∗1 = U∗2 =
... = U∗N−1 = U∗. Again, it is convenient to use the ”full”
OSC (K = N ), instead of having to decide how to choose the
parameter K.

There are, of course, further scenarios where U∗ is either
the exact or at least a good approximative solution for many
different K values. Indeed, in our experiments we have con-
sistently observed this convenient property (see Subsections
III-A, III-B, and III-C). Obviously, an algorithm that does not
rely on knowing the sparsity level K is more practical.

III. RESULTS

In the following, we label results obtained by the “full”
OSC variant (K = N ) simply as “OSC” and use otherwise
the annotation “K-OSC”.

A. Results on Synthetic Data

We investigated how well K-SVD, the approach of Mishali
et al. ([31]), CA, K-OSC, and OSC can recover a generating
orthogonal basis from K-sparse synthetic data. Note, that K-
SVD is an algorithm for finding arbitrary, non-orthogonal
sparse coding dictionaries and does therefore not benefit from
the orthogonality of an underlying dictionary. Nevertheless,
orthogonality is a good-natured scenario for K-SVD, because
the mutual coherence is minimal.

To generate a synthetic data set, we fixed signal dimension-
ality to N = 256 and sample size to L = 1000, whereas
the sparsity level K ∈ {2, 6, ..., 58, 62} was gradually varied.
Each data sample was generated as 16 × 16 patch being
K-sparse in the non-standard 2D Haar wavelet basis. The
support pattern of each sample, i.e., the K locations of non-
zero coefficients in the Haar wavelet domain were uniformly
selected at random. Then, the non-zero coefficients were drawn
randomly from a standard Gaussian distribution. In order to
investigate deviations of recovery rates over multiple runs, we
created 10 data sets for each sparsity level.

We applied the five algorithms to the generated data sets and
provided all but OSC with the known K as user parameter.
Each method conducted 100 learning epochs. To measure
recovery performance for each run we followed a procedure
similar to the one used in [21]. We first determined the
“best matching pairs” between estimated and generating basis

vectors. This was done by first sorting the overlaps2 of all N2

possible basis vector pairs in decreasing order. Subsequently,
the “best matching pairs” were assigned according to that
sequence with the requirement that estimated basis vectors
and generating basis vectors obey a one-to-one assignment.
We considered a generating basis vector as recovered, if it has
an overlap of at least 0.8 to its matched estimated version.
The recovery rate of a full basis is expressed as the ratio of
recovered basis vectors.
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Figure 3. Mean recovery rates and standard deviations for synthetic data sets
(L = 1000 patches of size 16× 16 being K-sparse in the 2D Haar wavelet
basis).

Figure 3 illustrates mean recovery rate and standard de-
viations of the synthetic experiment over 10 runs for each
value of K. At the basis identification task, the investigated
methods reveal individual limits in terms of the sparsity level.
The approach of Mishali et al. ([31]) performs worst losing
its perfect recovery performance at K > 6. The second worst
performing method is K-SVD which does not obtain perfect
recovery but at least achieves recovery rates > 0.9 for K ≤ 18.
CA yields recovery rates > 0.97 for K ≤ 26 which decrease
significantly at K > 30. K-OSC and OSC are equally best
performing at the identification task. The OSC and K-OSC
recovery performances are > 0.97 for K ≤ 34 and decrease
below 0.9 at K > 38. We would like to emphasize that in
contrast to all other methods the true sparsity levels were not
provided to OSC.

We repeated the synthetic experiment in the same way, but
added 5 dB Gaussian noise to each data set (see Figure 5).
Note that the approach of Mishali et al. ([31]) could not be
used for our comparison, because due to the additive noise the
support recovery stage completely fails and returns maximally
non-sparse support patterns. With 5 dB additive Gaussian noise
the recovery performance is degraded for all the remaining
methods, i.e., recovery rates decrease faster as K increases.

2The overlap between two unit length vectors v and w is defined as |vTw|.
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(a) K-SVD (b) Mishali et al. ([31])

(c) CA (d) OSC

Figure 4. Bases recovered from a synthetic data set (L = 1000 patches of
size 16×16 being K = 34-sparse (≈ 13.3% non-zero coefficients) in the 2D
Haar wavelet basis). For this rather large K, OSC is able, in contrast to K-
SVD, the approach of Mishali et al. ([31]), and CA, to extract the underlying
basis (see also Figure 3). For display purposes, the entries of each basis patch
(except the DC component) are shifted to have zero mean and are scaled to
unit supremum norm.
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Figure 5. Mean recovery rates and standard deviations for synthetic data sets
(L = 1000 patches of size 16× 16 being K-sparse in the 2D Haar wavelet
basis) with 5 dB additive Gaussian noise.

However, with increasing K the recovery performance of OSC
and K-OSC decays the slowest.

B. Results on Natural Image Patches

We let OSC learn orthogonal bases to sparsely encode
natural image patches. We extracted image patches from set

Figure 6. Orthogonal sparse coding basis for natural image patches, obtained
with OSC. The set of basis functions resembles a wavelet decomposition.

one of the Nature Scene Collection [39], i.e., from images of
nature scenes containing no man made objects or people. The
uncompressed RGB images have a resolution of 2844× 4284
pixels. The color channels are linearly scaled, each with a
depth of 16 bits per pixel (bpp). To each color channel the log-
arithm to the base of 2 and a subsequent scaling into the double
precision floating point range [0, 1] was applied. Subsequently,
the color images were converted to grayscale images. From the
entire set of 308 images, we randomly selected 250 images for
learning. From each image, we extracted 400 patches of size
16× 16 pixels at random positions. These 105 image patches
were used for training. In the same manner, a test data set with
23200 patches was generated from the remaining 58 images.
Data preprocessing comprised the sample-wise subtraction of
the DC component and of the mean vector.

We conducted tmax = 107 learning steps with OSC. The
initial and final learning rates were manually set to εinit = 10
and εfinal = 10−2 without an extensive parameter validation.

Figure 6 illustrates the orthogonal basis learned by OSC on
natural image patches. The OSC basis resembles a wavelet
decomposition. On different scales, the basis patches show
selectivity for inputs with particular frequencies, orientations,
and spatial localizations.

For the test data set, Figure 7 illustrates the average optimal
K-term approximation performance of different bases mea-
sured by the signal-to-noise-ratio (SNR). On the one hand, we
compare OSC to the predefined orthogonal transform bases of
2D DCT and non-standard 2D Haar wavelets which are known
to provide decent sparse representations. On the other hand,
we compare OSC to bases learned by PCA3, CA, and K-SVD4.

3With PCA, K-term approximations are derived from the K first PCs
4With K-SVD, K-term approximations are obtained by Batch OMP [40]
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Figure 7. Average optimal K-term approximation performance on the test
data set containing natural image patches.

Note that by K-SVD non-orthogonal complete dictionaries
were learned. As for OSC and K-OSC we let CA and K-SVD
learn for 100 epochs. Note that a comparison to the approach
of Mishali et al. ([31]) was not possible, because its support
recovery stage requires the existence of a strictly K-sparse
representation and returned, in our attempts, maximally non-
sparse support patterns for the training data.

For K ≤ 32, K-SVD performs slightly better than OSC, K-
OSC, DCT, and CA which have nearly equal approximation
performances. For larger K, OSC and K-OSC equally perform
best at the task to sparsely encode the test data. Both achieve
a slightly better encoding performance compared to the DCT
whereas the superiority compared to Haar wavelets, PCA,
CA, and K-SVD is more striking. It is remarkable that the
single OSC basis (see Figure 6) yields the same K-term
approximation performance as the K-OSC bases which were
individually learned for each tested sparsity level. It appears
that this universality property of OSC is not only limited to
particular artificial data settings, but also holds for natural
image data.

We also investigated the stability of OSC by fixing the
training set as well as the learning parameters and applied the
algorithm repeatedly with different initial random bases and
different random training sequences. On the fixed test data
set, we computed the average optimal K-term approximation
performance for each OSC basis learned in our 20 runs. We
found, that the standard deviation of the K-term approxima-
tion performance was less than 0.081 dB for any K ≤ 254, and
even less than 0.017 dB for any K ≤ 230 (i.e. K/N ≤ 0.9).

C. Results on Images of Handwritten Digits

The same experiment was conducted with the MNIST data
set [41], i.e., with images of handwritten digits. The training
data set comprises 6 · 104 and the test data set 104 grayscale
images of size 28 × 28 with a gray-level depth of 8 bit.
We transformed the images to the double precision floating

point range [0, 1] and resized5 them to 16 × 16 pixels using
bicubic interpolation. From each sample its DC component
and subsequently the mean vector of the training data set was
subtracted. We conducted tmax = 3.6 ·107 learning steps with
OSC. The initial and final learning rates were set to εinit = 2.8
and εfinal = 2.8 · 10−3, respectively.

Figure 8 depicts the learned OSC basis patches. Note that
many OSC basis patches learned on the MNIST training set
show sensitivity for particular digits or digit combinations.
Furthermore, some basis patches show sensitivity to localized
grating patterns with different orientations. Note, that some of
these grating patterns have curved shapes.

In Figure 9, we again compare the average optimal K-
term approximation performance of OSC, K-OSC, 2D DCT,
2D Haar wavelets, PCA, CA, and K-SVD, this time on the
MNIST test data set. K-SVD has a slightly better performance
for small K ≤ 32. For the remaining sparsity levels OSC
and K-OSC have a clearly superior K-term approximation
performance compared to the alternative methods. In order
to achieve an average reconstruction performance of, e.g. 40
dB, OSC uses on average approximately 10% less non-zero
coefficients than the second best performing Haar wavelet
basis. Note that the single OSC basis yields, again, nearly the
same K-term approximation performance as the K-OSC bases
to which the sparsity level of the reconstruction was provided.

Figure 8. Orthogonal sparse coding basis for images of handwritten digits,
obtained with OSC on the MNIST training set. The set of basis functions
shows sensitivity for particular digits and digit combinations.

IV. APPLICATIONS

A. Image Compression
To demonstrate the applicability of OSC, we conducted

image compression experiments with gray level images (8 bit

5The images were resized such that a comparison to 2D Haar wavelets
became possible.
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Figure 9. Average optimal K-term approximation performance on the MNIST
test data set.

gray level depth) of a freely available benchmark data set [42]
that contains 15 large uncompressed images. We divided the
data set into 9 training images as well as 6 test images.

We derived an OSC codec from the JPEG baseline codec
[6], where the 8×8 DCT has been replaced by an 8×8 OSC
basis which was learned as described in Subsection III-B.
A JPEG encoder processes the quantized AC coefficients
of each image tile in a zig-zag pattern, which implicitly
defines an ordering of the DCT basis functions by increasing
frequency (and decreasing relevance). For the 8×8 OSC basis,
we generated an analogous ordering. Therefore, it was counted
how often, on average over all training samples, the coefficient
of each OSC basis vector appeared among the N/2 largest
coefficients. This yielded a ranking histogram, which was not
only used to derive the ordering but also to generate the AC
quantization table for the quality level 50 (on a scale from 1 to
100). The obtained ranking histogram was rescaled to have the
same minimal and maximal quantization value as the JPEG
luminance quantization table for the AC coefficients at that
quality level. Quantization values for any other quality level
are derived from this table as defined in the JPEG baseline
standard. We also applied a zero run-length encoding of the
AC coefficients and generated a Huffman code from patches,
which were extracted from the training images.

For each test image we conducted a rate distortion analysis
by varying the quality level. To measure the reconstruction
performance, we evaluated the Multi-Scale Structural Sim-
ilarity Index (MS-SSIM) [43] which is plotted against the
bitrate (bpp), i.e., the file size of the compressed image (in
bits) divided by the number of pixels. The comparison to the
JPEG codec was done by applying the program pnmtojpeg,
which uses the Independent JPEG Groups JPEG library. The
used parameters were: -grayscale, -dct=float, and
-quality=n. For the sake of a broader assessment, we
also provide rate distortion curves for the JPEG2000 codec,
although it is not based on an orthogonal basis but on biorthog-
onal Cohen-Daubechies-Feauveau wavelets. We used the Open
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Figure 10. Rate distortion analysis for image cathedral.pgm

JPEG tool image_to_j2k with default parameters.
Usually, we observed that the MS-SSIM for all three

codecs converges to a common rate distortion curve as the
bitrate exceeds an image dependent value around 0.5 bpp.
For lower bitrates we consistently obtained better compression
performance with the OSC codec than with the JPEG baseline
standard (see Figure 10 for a prototypical rate distortion of
the test image cathedral.pgm, see Appendix for the rate
distortion analysis for the remaining test images).

Nevertheless, at low bitrates the JPEG2000 codec is still
superior. Note, however, that it benefits from the multi-scale
representation of images in the wavelet domain. Both, the
JPEG and OSC codecs are patch based and suffer from
blocking artifacts at very low bitrates. This might be one
reason for their limitations compared to JPEG2000.

B. Image Denoising

We conducted experiments to assess the applicability of
OSC to image denoising. The dictionaries were learned on
the training data set described in Subsection III-B. Following
the denoising framework proposed in [44], we distorted 9 gray
value test images (512 × 512 pixels) with additive Gaussian
noise with standard deviations σ ∈ {2, 5, 10, 15, 20, 25, 50}.
After the noise was added, the noisy images were clipped to
the range [0, 255]. From a noisy image, patches (16×16 pixels)
were extracted from all locations and sparsely approximated
by OMP applying a regularization with respect to the full size
image reconstruction error. Note that a sparse approximation
computed by OMP is optimal if the dictionary is orthogonal,
i.e., the most relevant coefficients are retained. The denoised
image is constructed by fusing the sparsely approximated
patches. The gray value of each pixel is averaged from all its
overlapping patches. For the entire image denoising procedure
we used the ompdenoise2.m function of the KSVDBox
v13 in combination with OMPBox v10 [40] with parameters
as proposed in [44].

We compared image denoising performance between dictio-
naries learned by K-SVD, CA and OSC for 100 epochs. For
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σ 2 5 10 15 20 25 50
Image cameraman (512× 512)

K-SVD 46.07 40.31 36.52 33.89 31.75 30.00 24.37
CA 46.36 40.64 36.57 33.72 31.46 29.74 23.68

OSC 46.32 40.69 36.56 33.71 31.42 29.61 23.77
Image house (512× 512)

K-SVD 48.07 42.83 38.33 36.12 34.66 33.31 27.18
CA 48.31 42.62 38.09 35.93 34.34 32.84 25.88

OSC 48.30 42.41 37.95 35.74 34.11 32.58 26.58
Image lena (512× 512)

K-SVD 42.25 37.50 34.50 32.76 31.35 30.13 25.07
CA 43.40 38.23 34.88 32.75 31.17 29.83 24.29

OSC 43.25 38.24 35.00 32.88 31.28 29.88 24.57
Image peppers (512× 512)

K-SVD 40.84 35.23 33.03 31.77 30.59 29.48 24.83
CA 42.68 36.57 33.32 31.66 30.35 29.17 23.88

OSC 42.53 36.48 33.38 31.75 30.39 29.16 24.20
Image barboon (512× 512)

K-SVD 44.06 37.23 32.49 29.89 28.02 26.55 21.64
CA 44.28 37.77 32.90 30.05 28.03 26.48 21.37

OSC 44.46 37.88 32.86 29.98 27.94 26.39 21.46
Image pirate (512× 512)

K-SVD 41.31 36.15 32.23 30.31 28.94 27.79 23.62
CA 43.15 37.17 32.97 30.59 28.92 27.62 23.10

OSC 43.08 37.18 32.96 30.56 28.87 27.56 23.25
Image barbara (512× 512)

K-SVD 38.74 35.64 32.11 29.74 27.94 26.50 22.02
CA 43.24 37.55 33.34 30.90 29.06 27.55 21.91

OSC 43.20 37.64 33.54 31.07 29.17 27.63 22.17
Image boat (512× 512)

K-SVD 40.74 35.52 32.13 30.19 28.81 27.61 23.27
CA 42.92 36.81 33.00 30.72 28.96 27.60 22.80

OSC 42.78 36.76 33.01 30.73 28.98 27.60 22.93
Image fingerprint (512× 512)

K-SVD 42.57 35.61 31.78 29.56 27.90 26.51 20.11
CA 42.79 36.29 31.93 29.49 27.76 26.32 19.29

OSC 42.72 36.30 31.96 29.48 27.68 26.18 19.78

Table I
IMAGE DENOISING BASED ON SPARSE APPROXIMATIONS OF 16× 16

IMAGE PATCHES. DENOISING PERFORMANCE IS MEASURED IN TERMS OF
PSNR (DB) BETWEEN ORIGINAL IMAGE AND DENOISED ESTIMATE.

CA, we report results obtained with user parameter K∗ = 28,
because it yielded the best results of the investigated param-
eters K ∈ {20, 24, 28, 32}. For K-SVD, we report results
obtained with user parameter combination (K∗, cbsize∗) =
(16, 1024), because it yielded the best results of the investi-
gated parameters (K, cbsize) ∈ {4, 8, 12, 16} × {512, 1024}.
The denoising performance is listed in Table I in terms of
PSNR (dB) averaged over 5 runs. The largest PSNR for
each combination of image and noise level is highlighted in
bold face. The experiments show that the K-SVD, CA, and
OSC dictionary perform comparably well depending on the
chosen images and noise levels. However, for K-SVD and CA,
performance depends on the chosen parameters codebook size
(only for K-SVD) and sparsity level K, while OSC does not
require the optimization of such parameters.

V. DISCUSSION AND CONCLUSION

In this paper, we addressed the problem of learning orthog-
onal bases for sparse coding.

Inspired by traditional sparse coding algorithms, we first
proposed the Canonical Approach (CA) which alternates be-
tween the adaptation of the basis and the update of the sparse

coefficients. We showed that CA yields high performance at
recovering a generating orthogonal basis from synthetic data,
if the sparsity of the data is known and rather high.

As the main part of the paper we presented Orthogonal
Sparse Coding (OSC), an unsupervised online learning al-
gorithm, which is based on Hebbian learning and iterative
Gram-Schmidt orthogonalization. OSC is able to identify the
generating orthogonal basis from synthetic data even if the
sparsity of the data is unknown or low. In contrast, K-SVD,
CA, and the approach of Mishali et al. ([31]) had difficulties
to converge at the basis identification task, particularly for the
more challenging settings.

On natural image patches, OSC learns a basis that resembles
wavelets with sensitivity to particular frequencies, orientations,
and spatial localizations. In terms of optimal K-term approxi-
mation performance, OSC performs clearly better than the 2D
Haar basis, PCA, CA, and K-SVD (except for very small K)
and slightly better than the 2D DCT basis.

On images of handwritten digits, OSC learns a basis of
patches that are sensitive to certain digits or combinations of
digits, because they have adapted to the specific image class.
Furthermore, the basis patches show localized gratings of vari-
ous shapes. Again, the average optimal K-term reconstruction
performance of the learned OSC basis is better than alternative
predefined and learned bases.

For both, the synthetic and the real world data sets, we
found that learning a single basis with OSC (setting user
parameter K = N ) provides a “universal” solution which
gives equally good optimal K-term approximations for various
sparsity levels K as compared to learning specific bases
with the K-OSC algorithm for each K individually. This is
very advantageous, since the “true” sparsity level K is often
unknown in practice.

In contrast to PCA, encoding and dimensionality reduction
are not based on a fixed linear subspace, but the best encoding
subspace is selected individually for each data sample. Our
results show that this additional freedom of choice is beneficial
in the case of natural images and even more so for more
specific signals like handwritten digits.

Moreover, we demonstrated the applicability of OSC for
image compression by showing that OSC-based compression
yields a better rate-distortion performance than JPEG, although
it remains inferior to JPEG2000. We also demonstrated that
orthogonal dictionaries learned by CA and OSC are useful for
image denoising. CA and OSC dictionaries achieve denoising
performance comparable to redundant dictionaries learned by
K-SVD.

Regarding possible extensions, one should note that OSC
is a flexible algorithm which can also learn undercomplete
orthogonal dictionaries, i.e., orthogonal M -frames with M <
N . With such an additional user-defined parameter M for the
dictionary size, the orthogonal M -frame U ∈ RN×M would
be updated as in Algorithm 1 except for lines 6 and 7, where N
would be replaced by M . A further extension could be to learn
multiple orthogonal bases from only one training set. In this
case, OSC would update, for each data point, the best sparse
coding basis only. Finally, one could use OSC for compressed
sensing and adaptive hierarchical sensing as outlined in [45].
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APPENDIX

PROOF OF THEOREM 1

Proof: In the following, we use the assumption that ε is
small. We develop all expressions up to first order in ε and
treat terms of order ε2 and higher as vanishing.

Without any loss of generality, we assume (uT
1 x)2 ≥

(uT
2 x)2 ≥ ... ≥ (uT

Nx)2 which defines the order of basis
vector updates. Each uk, except for u1, is updated in two
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steps. First, the Gram-Schmidt orthogonalization

vk = uk −
k−1∑
l=1

(u′Tl uk)u′l , (13)

followed by the normalized Hebbian-like main update

u′k =
vk + ε(vT

k xk)xk

‖vk + ε(vT
k xk)xk‖2

, (14)

where

xk = x−
k−1∑
l=1

(u′Tl x)u′l . (15)

u1 is only updated by (14) due to (13). In that sense v1 = u1

and x1 = x due to (15).
We will show by induction that

vk = uk − ε(uT
k x)

k−1∑
l=1

(uT
l x)ul +O(ε2) . (16)

Note that by (16) it holds ‖vk‖2 ≈ 1 + O(ε2). Hence, the
Taylor expansion of update step (14) up to first order in ε is

u′k = vk + ε(vT
k xk)(xk − (vT

k xk)vk) +O(ε2) . (17)

Note that (14) is a Oja learning rule, i.e., a Hebbian learning
rule with a normalization constraint. We apply the same
expansion as in Section 4 of [46].

Furthermore, since vT
k xk = vT

k x and with (16) we have
vT
k xk = uT

k x+O(ε) as well as (vT
k xk)vk = (uT

k x)uk+O(ε).
Hence, (17) can be restated as

u′k = vk + ε
(
uT
k x
) (

xk −
(
uT
k x
)
uk

)
+O(ε2) . (18)

We will now show (16) by induction.

Initial Step k = 1. According to (13), we have by definition
v1 = u1 which satisfies (16).

Induction Step (k−1)→ k. According to (13), we have by
definition

vk = uk −
k−1∑
l=1

(u′Tl uk)u′l .

Due to induction hypothesis (16), u′l can be restated according
to (18). In addition to (16) we will use uT

l uk = 0 and vT
l uk =

O(ε2) as well as uT
k xl = uT

k x +O(ε).

vk = uk −
k−1∑
l=1

[
(vl + ε(uT

l x)(xl − (uT
l x)ul))

Tuk

]
u′l

+O(ε2)

= uk − ε(uT
k x)

k−1∑
l=1

(uT
l x)u′l +O(ε2)

= uk − ε(uT
k x) ·

k−1∑
l=1

(uT
l x)(vl + ε(uT

l x)(xl − (uT
l x)ul)) +O(ε2)

= uk − ε(uT
k x)

k−1∑
l=1

(uT
l x)ul +O(ε2)

The induction is complete.
Combining (18) and (16) gives us up to first order in ε

u′k = uk + ε(uT
k x)

(
xk −

k∑
l=1

(uT
l x)ul

)
.

Hence, for small ε and with (15) we obtain

(u′
T
k+1x)2

(u′Tk x)2
=

(uT
k+1x)2

(uT
k x)2

(
1 + ε

[
xT
k+1x−

k+1∑
l=1

(uT
l x)2

])2

(
1 + ε

[
xT
k x−

k∑
l=1

(uT
l x)2

])2

=
(uT

k+1x)2

(uT
k x)2

(
1 + ε

[
||x||2 −

k∑
l=1

(u′Tl x)2 −
k+1∑
l=1

(uT
l x)2

])2

(
1 + ε

[
||x||2 −

k−1∑
l=1

(u′Tl x)2 −
k∑

l=1

(uT
l x)2

])2

≤
(uT

k+1x)2

(uT
k x)2

,

since the square bracket in the nominator is smaller than the
square bracket in the denominator.

ZOOM IN OF COMPRESSED IMAGE CATHEDRAL

(a) original crop (b) JPEG2000

(c) OSC (d) JPEG

Figure 11. An image region (120× 120 pixels) cropped from the upper left
part of test image cathedral after compression by the JPEG2000, OSC, and
JPEG codecs at compression rate 0.29 bpp.
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COMPRESSION RESULTS OF REMAINING TEST IMAGES
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