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Abstract

Knowledge of three dimensional structure is essential to understand the function of a pro-
tein. Although the overall fold is made from the whole details of its sequence, a small group 
of residues, often called as structural motifs, play a crucial role in determining the pro-
tein fold and its stability. Identification of such structural motifs requires sufficient number 
of sequence and structural homologs to define conservation and evolutionary information. 
Unfortunately, there are many structures in the protein structure databases have no homolo-
gous structures or sequences. In this work, we report an SVM method, SMpred, to iden-
tify structural motifs from single protein structure without using sequence and structural 
homologs. SMpred method was trained and tested using 132 proteins domains containing 
581 motifs. SMpred method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% 
specificity. The performance of SMpred was evaluated with MegaMotifBase using 188 pro-
teins containing 1161 motifs. Out of 1161 motifs, SMpred correctly identified 1503 struc-
tural motifs reported in MegaMotifBase. Further, we showed that SMpred is useful approach 
for the length deviant superfamilies and single member superfamilies. This result suggests 
the usefulness of our approach for facilitating the identification of structural motifs in protein 
structure in the absence of sequence and structural homologs. The dataset and executable for 
the SMpred algorithm is available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/
SMpred.htm.

Key words: Protein folding; Structural motifs; Support vector machine; Fingerprint; Protein 
function.

Introduction

The overall fold provides suitable scaffold for a protein to perform its biologi-
cal function. According to the Anfinsen hypothesis, the information necessary to 
achieve 3d structure of a protein in a given environment is contained in its amino 
acid sequence (1). Currently with the extraordinary upsurge in computational hard-
ware and tools, determinations of protein structure and function from sequence and 
evolutionary data by modeling have become very routines (2-13). Previous studies 
revealed that many protein domains adopt the same fold structures even if they have 
statistically insignificant sequence similarity (14, 15). This indicates the existence 
of a small group of residues that play crucial roles in determining the fold and its 
stability, although the overall fold is made from the whole details of its sequence 
(16, 17). These residues, often termed as structural motifs, are conserved during 
evolution in both sequence and structure and may form the common structural core 
by maintaining a particular spatial pattern (16, 18, 19). Identification of such struc-
tural motifs is potentially useful in protein structure prediction, protein engineering, 
modelling experiments, mutation studies, distant homology detection, etc (20-23). 
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Sequentially conserved residues, often termed as sequence motifs, are useful in 
understanding the conservational variation and have been successfully linked to 
functionally important sites indicating higher selection pressure on them (24-26). 
A common approach to identify such sequentially conserved motifs is to measure 
the amino acid sequence conservation from multiple sequence alignments of evolu-
tionary related protein sequences, based on the assumption that they are relatively 
conserved during evolution (24, 26, 27). Several algorithms and databases have 
been developed for discovering the sequentially conserved motifs and scanning the 
sequence database using motifs (22, 24, 28-30).

Unlike sequentially conserved motifs, identification of structural motif is not an easy 
task as it has two major issues. The first one is the requirement of sufficient num-
ber of structural homologs to define the conservation of structural features. Many 
protein structures reported in the protein structure database do not have sufficient 
number of homologous sequences and structures (18). The second one is the quality 
of alignment (31, 32). The accuracy of structural motif identification depends upon 
the quality of the alignments which drops when more structures are aligned. 

There have been several methods reported in the recent past for the identification 
of structural motifs from protein structures. PROMOTIF (33), SPASM (34), Spratt 
(35), DAVROS (36) are some of the methods that identify and analyze structural 
motifs for protein structures related at the family level. SMotif server identifies set 
of structural motifs from structurally aligned protein structures by examining the 
conservation of amino acid preference and other important structural features like 
secondary structural content, hydrogen bonding pattern and residue packing (37). 
Recently a neural network method has been reported to identify structurally con-
served residues from a single protein structure using homologous sequences and 
high quality multiple sequence alignment (38). The importance of structural motifs 
is further underscored by MegaMotifBase database which provides a compilation 
of structural motifs related at the family and superfamily level (39). 

Although there have been efficient methods to detect structural motifs, none of 
these methods are specifically dedicated to the identification of structural motifs 
from a single protein structure without using an evolutionary information derived 
from homologous sequences and/or structures. In this work, we present an SVM 
approach, SMpred, to identify structural motifs from a single protein structure in 
the absence of homologous sequences and/or structures. 

Materials and Methods

Datasets

The dataset for this work was obtained from MegaMotifBase database (39). Mega-
MotifBase provides a comprehensive collection of structural motifs for 1194 super-
families. Structural motifs for each superfamily in this database was identified using 
SMotif algorithm from the structurally aligned superfamily members by measuring 
the conservation of sequence and structural features such as secondary structural con-
tent, hydrogen bonding pattern and residue packing. In addition, this database provides 
structural motifs for the individual structure by consulting the structural alignments.

In this work, we considered 132 protein domains from 132 superfamilies that con-
tain at least five structural members (Please see supplementary material). Each 
protein domain has less than 20% sequence identity with other protein domains. 
Structural motifs for each structure were obtained from the MegaMotifBase data-
base. Positive dataset was constructed using 581 structural motifs containing 1880 
residues. The minimum and maximum length of the motifs is 3 residues and 22 res-
idues respectively. Remaining 10683 residues that reside in the non-motif regions 
were considered for the negative dataset.
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Training dataset: 1307 residues were randomly selected from 1880 residues for the 
positive dataset. Equal number of non-motif residues randomly selected from the 
negative dataset.

Test dataset: Test dataset consists of remaining 573 residues from the positive data-
set and 9376 non-motif residues from the negative set.

Evaluation dataset: We created another dataset of 188 proteins containing 1161 
structural motifs that are not present in training and testing dataset. Structural motifs 
for each protein were obtained from MegaMotifBase database (39). The minimum 
and maximum length of the motifs is 3 residues and 19 residues respectively. The 
performance of SMpred was evaluated with MegaMotifBase using this dataset.

Features

Each residue in the dataset is represented by 100 features (Please see supplemen-
tary material). For each residue, spatial neighbors were identified from the protein 
structure. Spatial neighbors were defined as residues that are present within 5A 
distance from a given residue in the 3d structure (40). The details of the each feature 
used in this study are mentioned below.

Amino Acid Type and Structural Features: For each residue, amino acid type is rep-
resented in the form of binary variables (0 or 1). Structural features such as solvent 
accessibility, secondary structures, hydrogen bonds and residue compactness were 
computed from the individual protein structure using the JOY package (41). 

Frequency of Amino Acids and Functional group in Spatial Neighbors: For each 
residue, amino acid composition was computed from its spatial neighbours. In 
addition, we categorized 20 amino acids into 10 functional groups based on the 
presence of side chain chemical group such as phenyl (F/W/Y), carboxyl (D/E), 
imidazole (H), primary amine (K), guanidino (R), thiol (C), sulfur (M), amido 
(Q/N), hydroxyl (S/T) and nonpolar (A/G/I/L/V/P) (40). Frequencies of 10 func-
tional groups in the spatial neighbours were calculated for each residue. 

Structural Features in Spatial Neighbors: The content of structural features such as 
secondary structure, hydrogen bond, residue compactness and solvent accessibility 
were computed from spatial neighbors of each residue in the dataset.

Physicochemical Properties: 12 physico chemical properties were obtained from 
AAINDEX database (42). The selected physico-chemical properties include 
molecular weight, hydrophobicity, hydrophilicity, hydration potential, refractivity, 
average accessible surface area, free energy transfer, flexibility, residue volume, 
mutability, melting point, optical activity, side chain volume, polarity, and isoelec-
tric points. For each residue, physico-chemical property value was calculated as the 
sum of physico-chemical property value for all spatial neighbors of a given residue, 
divided by the number of spatial neighbors.

SVM Binary Classification

Support Vector Machine (SVM) has been successfully used to solve various prob-
lems in Bioinformatics. For example, SVM has been used in predicting protein 
subcellular location (43), membrane protein type (44, 45), protein structural class 
(46), specificity of GalNAc-transferase (47), HIV protease cleavage sites in protein 
(48), beta turn types (49), protein signal sequences and their cleavage sites (50), 
alpha turn types (51), B-cell epitope (52), protein structural classes (53) catalytic 
triads of serine hydrolases (54). SVM is a supervised machine learning method 
which is based on the statistical learning theory (55). When used as a binary clas-
sifier, SVM constructs a hyperplane in a kernel feature space that acts as the deci-
sion surface between the two classes. This is achieved by maximizing the margin 
of separation between the hyperplane and those points nearest to it. The details of 
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the formulation and solution methodology of SVM for binary classification task 
can be found elsewhere (55, 56). Only relevant details are provided here.

Let xi  Rn, i = 1, 2,…,n be input training instances and yi  {+1, –1} be their cor-
responding target class. Let N be the total number of instances.

Decision on class affiliation can be made depending upon the sign of the function f(x): 

 f x yii

m
iK xi x j b( ) ( , )


 

1
∑  [1]

where m is the number of input instances having non-zero positive values of the 
Lagrange multipliers (αi)(usually a subset of n known as the support vectors) 
obtained by solving a quadratic optimization problem and b is the bias term.

K (xi, xj) denotes the kernel function. In present study, simulations were performed 
using the RBF function, defined by

 K xi x j xi x j( , ) exp   2



  

[2]

where γ is the RBF kernel parameter

All the computations were performed using LIBSVM – 2.81 standard package (57).
Various user-defined parameters i.e., kernel parameter, γ and regularization param-
eter, C were optimized employing a grid search.

In order to identify the prominent features that separate the positive and negative 
classes, we used Info Gain algorithm with the ranker method. This method was imple-
mented using Weka 3.5 (58). We calculate the information gain for each feature, and 
rank them according to this measure, which indicates the gain of information. 

Performance Evaluation of SVM

A 10-fold cross-validation experiment was adopted to evaluate the performance of 
SVM models (52). The dataset was randomly divided into 10 subsets. The training 
and testing were carried out 10 times for each model using one distinct set for test-
ing and the remaining nine for training. The performance of the model was reported 
as the average performance over 10 sets.

For the purpose of assessing the generalization capabilities, we calculated the accu-
racy, sensitivity, specificity, positive predictive value (PPV), negative predictive 
value (NPV) and Matthew’s Correlation Coefficients (MCC).

 
Accuracy = (TP TN)

(TP FP TN FN)



    
[3]

 
Sensitivity =

 

TP

(TP FN)  
[4]

 
Specificity =

TN

(TN FP)  
[5]

 PPV= TP

TP FP
 [6]

 
NPV=

 

TN

TN FN  
[7]
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MCC

TP TN FP FN

(TP FP) (TN FN) (TP FN) (TN FP)




   

∗ ∗
 [8]

where TP-True Positive, FP-False Positive, TN-True Negative, FN-False Nega-
tive, PPV-Positive Predictive Value, NPV-Negative Predictive Value.

The Matthew’s correlation coefficient ranges from –1 ≤ MCC ≤ 1. A value of MCC = 
1 indicates the best possible prediction while MCC = -1 indicates the worst possible 
prediction (or anti-correlation). Finally, MCC = 0 would be expected for a random 
prediction scheme.

Results and Discussion

Classification Result for SMpred

The SMpred classifier was trained using the dataset containing 1307 residues that 
reside in motif region (positive samples) and 1307 residues residing in non-motif 
regions (negative samples) while the performance of the classifier was tested on 
the dataset containing remaining 573 residues residing in motif region (positive 
samples) and 9376 residues residing in non-motif regions. 

Our method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% speci-
ficity in the test dataset using all features. We applied a feature reduction protocol 
to eliminate the redundant features. As seen in Table I, feature selection (reduc-
tion) generally does not deteriorate the classification performance much until the 
number of features decreases to 10. It can be seen in Table I that the usage of 
smaller number of features only leads to a very small decrease in the specific-
ity rate but overall accuracy and sensitivity rate is significantly improved. With 
10 features, we obtained 80.80% accuracy with 84.47% sensitivity and 77.14% 
specificity. 

Identification of structural motifs by SMpred involves three steps. (i) SMpred 
accepts protein structure in the PDB format as an input. (ii) It computes physi-
cochemical properties, sequence and structural features for each residue and its 
spatial neighbors. (iii) It identifies structural motifs and displays the motifs in a 
convenient tabular format. The steps involved in the structural motif identification 
is shown in Figure 1.

Evaluation of SMpred with MegaMotifBase

We evaluated the performance of SMpred with the MegaMotifBase database using 
188 protein structures. 1161 structural motifs from 188 structures were obtained 
from MegaMotifBase. Out of 1161 motifs, SMpred correctly identified 1503 motifs. 

Table I
Classification results achieved on the test dataset using different feature subsets.

Feature subset Sensitivity (%) Specificity (%) MCC PPV NPV Accuracy (%)

10 84.47 77.14 0.617 78.69 83.20 80.80
20 83.07 80.98 0.640 81.36 82.67 82.02
30 82.37 81.50 0.638 81.66 82.18 81.93
40 81.33 79.58 0.609 79.93 80.96 80.45
50 77.31 79.76 0.570 79.24 77.81 78.53
60 80.80 80.63 0.614 80.66 80.73 80.71
70 78.36 79.06 0.574 78.91 78.47 78.70
80 77.84 78.36 0.562 78.24 77.91 78.09
90 78.01 78.18 0.562 78.14 78.01 78.09
All features 79.06 78.53 0.575 78.64 78.91 78.79
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In 93 proteins, SMpred correctly identified all the motifs listed in the MegaMotif-
Base. More than 70% of the motifs were identified in the remaining 95 proteins. 
Table II shows the performance of MegaMotifBase and SMpred in 10 superfami-

lies. The complete list of 188 proteins is provided in supplementary 
material.

Motif Identification for length-deviant Superfamilies

Length variation in proteins has been the object of several analysis and 
many groups have performed independent studies on the domain length 
variation (59). It has been shown that large length difference exists 
between the members of a protein structural domain superfamily and 
such expansion correlates with the presence of introns and accretion 
of functional and structural motifs (59). It has also been suggested that 
additional lengths may have functional or a structural role such as ther-
mal stability, subunit interaction, substrate specificity, etc., (59, 60). 

Most algorithms that identify motifs from the alignments consider only 
those regions that are common to all members in the alignment (i.e., 
gapless column in the alignment) and ignore the additional length. The 
best example for the length-deviant superfamily is Ferritin like super-
family (SCOP superfamily code: 47240) which has an average size of 
250 residues (32). This superfamily includes a small domain such as 
ruberythrin (Domain code: 1dvba1) which has 147 residues and larger 
domain such as methane monooxyganenase hydroxylase/MMO (PDB 
code: 1mty; Chain D) which has 512 residues. Structure guided align-
ment generated for this superfamily shows that although individual 
domains vary in size between 147 and 512 residues, only 127 residue 
sites (residues 101 to 255 in case of 1mtyd) are common to all mem-
bers of this superfamily due to many insertions and deletions.

In MegaMotifBase, 8 structural motifs were reported for 1mtyd (61). We observed 
that these 8 motifs are located between residues 101 and 255. The extra length 
in this protein due to insertion is completely ignored in MegaMotifBase. SMpred 
when applied to this protein identified 15 motifs (Table III). Out of 15 motifs, 7 

Figure 1: Steps involved in the identification of structural motifs in 
protein structure.

Table II
Evaluation of SMpred with MegaMotifBase. This table shows number of motifs identified by Mega-
MotifBase and SMpred in 10 multimember superfamilies. Common motif is a number of motifs that 
are recognized by both methods. 

Domain code Superfamily
No of Motifs in 
MegaMotifBase

No of Motifs  
identified by SMpred

Common 
Motifs

1lyqa- E set domains 2 5 2
1jv2a2 Integrin domains 3 4 3
1qfja1 Riboflavin synthase 

domain-like
5 6 5

1pmla- Kringle-like 2 3 2
1ayj-- Scorpion toxin-like 3 4 3
1e4ea2 Glutathione syn-

thetase ATP-bind-
ing domain-like

8 9 8

1b87a- Acyl-CoA 
N-acyltransferases 

6 9 6

1i52a- Nucleotide-
diphospho-sugar 
transferases

8 11 8

1dxxa1 Calponin-homology 
domain, CH-domain

4 5 4

1hzpa2 Thiolase-like 6 8 6
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motifs are present in the region between 101 and 255. Remaining 8 
motifs occur in the extra length region (Figure 2). 

We analyzed the identified motifs to understand their possible roles 
in the extra length regions. The crystal structure of 1mty is composed 
of six subunits namely B, C, D, E, G and H. Subunit D interacts with 
subunits B and G (61). Our analysis shows that these additional motifs 
may have significant role in the subunit interaction. For example, 
motifs 270-291 and 466-468 play a role in the subunit interaction by 
forming hydrogen bonds at the interface. The observed hydrogen bonds 
include: hydrogen bond between Asn272 (motif 270-291) and Tyr148 
(Chain G), hydrogen bond between Cys466 (motif 466-468) and Asp71 
(Chain B) and hydrogen bond between Gln467 (motif 466-468) and 
Asp50 (Chain G). In addition, a hydrophobic interaction was observed 
between Val438 in chain D (motif 437-439) and Val164 in chain G. 
Previous study suggested that residues 348-363 serve as building block 
fragments which are critical for achieving the native fold (40). As seen 
in Table III, SMpred identified two motifs (motifs 346-348 and 344-
356) that fall between residues 348 and 363. This result shows that 
the motifs identified by SMpred in extra length region could play an 
important role in the subunit interaction and fold stability. 

Motif Identification for Single Member Superfamilies by SMpred

A majority of the entries in the protein structural database has no structural homologs. 
For example, out of 1194 superfamilies reported in PASS2 database (32), 544 super-
families are single member superfamilies for which it is hard to identify motif due 
to the lack of structural homologs. MegaMotifBase provides structural motifs for 
each single member superfamily in the form of sequence-structural templates. These 
motifs were identified from the sequentially conserved segments that have high con-
tent of structural features such as secondary structure, hydrogen bond, solvent inac-
cessible residues and residue packing. It should be noted that the structural features 
were derived from single protein structure and there is no guarantee that these fea-
tures are conserved. Therefore, motif derivation is error prone.

Since SMpred is capable of identifying structural motifs without using sequence 
or structural homologs, this method can be used to identify motifs for single member 

Table III
Structural motifs in methane monooxyganenase hydroxylase/MMO (PDB code: 1mty; Chain D). 
“Yes” indicates the presence of motif in the additional length regions and “No” indicates the pres-
ence of motif in the regions which are conserved across the superfamily members. 

No
Motifs identified  

by SMpred
Motifs reported in 
MegaMotifBase

Occurrence in 
additional length

1 81-84 - Yes
2 98-125 110-122 No
3 137-142 133-151 No
4 178-181 - No
5 186-188 - No
6 197-222 199-202; 204-206;220-222 No
7 231-241 229-232;235-239 No
8 249-254 252-254 No
9 270-291 - Yes
10 304-309 - Yes
11 346-348 - Yes
12 354-356 - Yes
13 437-439 - Yes
14 446-448 - Yes
15 466-468 - Yes

Figure 2: Motifs identified by SMpred in methane monooxygane-
nase hydroxylase/MMO (PDB code: 1mty; Chain D). Regions which 
are conserved across all superfamily members are shown in blue. 
Additional length is shown in green. Motifs identified by SMpred in 
the additional length are marked in red. 
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superfamilies. To assess the performance of SMpred, we selected N-acetylmu-
ramoyl-L-alanine amidase-like superfamily (SCOP superfamily code: 55846) con-
taining bacteriophage T7 lysozyme domain (domain code: 1LBA--) as a structural 
member. This superfamily has been reported as a single member superfamily in 
MegaMotifBase database which corresponds to SCOP 1.63 release (17). As shown 
in Table IV, MegaMotifBase listed two structural motifs (residue numbers in PDB: 
66-88 and 76-84) for this protein whereas SMpred identified 6 structural motifs. 
Out of 6 motifs, only one motif overlaps with MegaMotifBase definition. 

Fortunately, this superfamily has expanded with 8 additional structural members 
in the recent SCOP database (SCOP 1.75) (17). This gives us an opportunity to 
verify whether the motifs identified by SMpred are significant or not. We aligned 
T7 lysozyme domain with 8 additional structural members using STAMP program 
(63) which superposes the protein structures and subsequently generates multiple 
structural alignment. SMotif algorithm when applied on the structural alignment 
identified 4 structural motifs. As seen in Table IV, SMpred correctly identified 
all the four motifs from single protein structure. This shows that SMpred is able 
to capture conserved structural features from single protein structure without the 
knowledge of homologous sequences and structures.

We performed brief analysis to understand the possible roles of the identified 
motifs. The bacteriophage T7 lysozyme is a bifunctional protein that cuts amide 
bonds in the bacterial cell wall and binds to and inhibits transcription by T7 RNA 
polymerase (64). As shown in Table IV, motifs 13-19 and 46-50 were identified 
by SMotif and SMpred. It has been shown that His17 and Tyr46 are required for 
amidase activity. In addition, Tyr46 may also have significant structural role (64). 
Further, SMpred identified two motifs (motifs 31-33 and 119-121) which are not 
recognized by SMotif and MegaMotifBase. Previous study has suggested that 
Arg30, Glu31 and Arg33 play roles in the inhibition of T7 RNA polymerase (64). 
This result shows the capability of SMpred in recognizing the significant struc-
tural motifs from single protein structure in the absence of sequence and structural 
homologs.

An Example: Sedolisin 

Although the structural motifs are generally associated with structural role, some 
of them might have functional role. For example, structural motifs play 
both structural and functional roles in sedolisin. Sedolisin (pdbcode 
1ga6) belongs to a family of carboxyl serine peptidases with a unique 
catalytic triad consisting of Glu80, Asp84 and Ser287 (65). The struc-
ture of sedolisin comprised a single domain consisting of a 7 stranded 
parallel beta sheet flanked by a number of helices. 

SMpred identified 14 structural motifs in Sedolisin (30-49; 79-92; 
99-102; 114-119; 129-135; 151-154; 163-167; 188-194; 199-206; 216-
222; 260-267; 284-300; 314-316 and 353-356) (Figure 3). It has been 
reported that sedolisin structure has two proline residues, Pro192 and 
Pro260, in areas crucial to the preservation of the fold (61). Both pro-
lines (motifs 188-194 and 284-300) were detected by SMpred. Two of 
the identified structural motifs (motifs 79-92 and 284-300) contain cat-
alytic residues Glu80, Asp84 and Ser287. Glu80 forms hydrogen bond 
with Ser287 and also interact, through its side chain, with Asp84. Previ-
ous study reported that mutation in Asp84 leads to a 104 fold decrease 
in catalytic activity whereas mutation in Ser287 leads to complete loss 
of catalytic activity (65). This suggests that these two structural motifs 
play catalytic role in sedolisin. In some cases, structural motifs pro-
vide optimal environment for the protein to perform its function. For 
example, sedolisin has five metal binding residues (328,329,344,346 

Table IV
Performance of SMpred in single member superfam-
ily (Superfamily: N-acetylmuramoyl-L-alanine ami-
dase-like; SCOP superfamily code: 55846; Domain 
code; 1LBA--)

No SMpred SMotif MegaMotifBase

1 13-19 14-18 -
2 31-33 - -
3 46-50 47-50 -
4 - - 66-88
4 77-82 76-81 76-84
5 102-107 103-106 -
6 119-121 - -

Figure 3: Structural motifs identified by SMpred in Sedolisin (pdbcode 
1ga6). Structural motifs are shown in cyan. The catalytic triad (Glu80, 
Asp84 and Ser287) is shown green with sticks representation. Two pro-
lines (blue) and metal binding residues (cyan) are shown in sticks. 
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and 348) which are located in flexible loop regions. It is a more reliable assumption 
that motif 314-316 and motif 353-356 could play a role in orientating these residues 
suitable for metal binding. 

Conclusion

Structural motifs play crucial roles in protein structure and function. We presented 
an SVM method, SMpred, to identify structural motifs from single protein struc-
ture without using sequence or structural homologs and their alignments. The per-
formance of SMpred was compared with MegaMotifBase database. Our analysis 
showed that SMpred is a suitable method to identify structural motifs in length 
deviant superfamily. Successful recognition of structural motifs in single member 
superfamily showed that SMpred is a useful approach to identify structural motifs 
for proteins that have no sequence and structural homologs. The supplementary 
material and SMpred codes are available at http://www3.ntu.edu.sg/home/EPN-
Sugan/index_files/SMpred.htm.
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