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Abstract—In this paper, we present an efficient approach for
audio scene classification. We aim at learning representations for
scene examples by exploring the structure of their class labels.
A category taxonomy is automatically learned by collectively
optimizing a tree-structured clustering of the given labels into
multiple metaclasses. A scene recording is then transformed into
a label-tree embedding image. Elements of the image represent
the likelihoods that the scene instance belongs to the metaclasses.
We investigate classification with label-tree embedding features
learned from different low-level features as well as their fusion. We
show that the combination of multiple features is essential to obtain
good performance. While averaging label-tree embedding images
over time yields good performance, we argue that average pooling
possesses an intrinsic shortcoming. We alternatively propose an
improved classification scheme to bypass this limitation. We aim
at automatically learning common templates that are useful for
the classification task from these images using simple but tailored
convolutional neural networks. The trained networks are then
employed as a feature extractor that matches the learned templates
across a label-tree embedding image and produce the maximum
matching scores as features for classification. Since audio scenes
exhibit rich content, template learning and matching on low-level
features would be inefficient. With label-tree embedding features,
we have quantized and reduced the low-level features into the
likelihoods of the metaclasses, on which the template learning
and matching are efficient. We study both training convolutional
neural networks on stacked label-tree embedding images and mul-
tistream networks. Experimental results on the DCASE2016 and
LITIS Rouen datasets demonstrate the efficiency of the proposed
methods.

Index Terms—Audio scene classification, label tree embedding,
convolutional neural network, multi-stream, template matching.
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I. INTRODUCTION

THE goal of audio scene classification (ASC) is to recog-
nize a surrounding environment using acoustic signals. It

enables many applications, such as surveillance [1], context-
aware services [2], [3], and robotic navigation [4]. In addition,
the ability to recognize an acoustic scene can also help to im-
prove performance of the closely related task of audio event
detection [5]. Therefore, ASC remains to be one of the im-
portant challenges in the field of computational auditory scene
analysis [6], [7].

An acoustic scene can be thought of as a mixture of back-
ground noise and various foreground sound events. In order to
automatically recognize a scene, a proper feature representation
is needed, which, unfortunately, is not easily obtained due to
the complexity of the content. Different low-level features have
been proposed in prior works, such as Mel frequency cepstral
coefficients (MFCCs) [8], [9] and Gammatone filterbank coef-
ficients [10]. These features are usually borrowed from related
problems like speech recognition and audio event classification.
Besides that, several features have also been particularly de-
signed for the task and demonstrated good performance. For
instance, Histograms of Oriented Gradients (HOG) were pro-
posed in [11]–[13] and a Gabor dictionary was used in [14]. A
scene instance can also be separated into background noise and
foreground sounds, and the features of both parts can be used to
characterize the scene [13], [15]–[18].

Nevertheless, most (if not all) prior works used a “flat” classi-
fication scheme. On the other hand, the inherent structure of the
scene category set, which may be useful for the feature learn-
ing or the classification task at hand, has not been explored.
This work aims at filling this gap for the ASC task. The objec-
tive is to uncover a class hierarchy by automatically clustering
similar scene categories into meta-classes with the proposed
label tree learning algorithm. Afterwards, the class hierarchy
is used to construct an explicit embedding to transform each
segment of an audio scene into a label tree embedding feature
vector. Each element of the feature vector carries the likelihood
with which a given audio segment belongs to the corresponding
meta-class. As a result, the target scene instance is transformed
into a two-dimensional image via the learned label tree embed-
ding. The image is formed as the output of classifiers for dif-
ferent subsets of labels (rows) for each time frame in the sound
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excerpt (columns). We study the class hierarchies learned from
different low-level feature sets, including Gammatone cepstral
coefficients [10], [19], MFCCs [20], and log-frequency filter
bank coefficients [21], [22], as well as their fusion. An average
pooling over time can then be applied on a label tree embedding
(LTE) image to yield a global LTE feature vector for classi-
fication. These learned representations are shown to be useful
for the ASC task since a good classification accuracy can be
obtained even with a simple linear classifier [23]. A kernel-
based fusion scheme is further proposed to combine global LTE
features corresponding to different low-level features.

Despite their complex sound composition, audio scenes of
the same category expose many things in common, i.e. frequent
foreground events and background noise. The question is how
to discover and match these patterns to leverage the classifi-
cation task. We propose to use a convolutional neural network
(CNN) [24] for this purpose. The proposed CNN architecture
is very simple, as it consists of only three layers. These are a
convolutional, pooling, and softmax layer. The combination of
the former two is targeted for feature extraction whereas classi-
fication is accomplished with the latter one. The convolutional
kernels play the role of the templates that will be learned by
the CNN. Convolving a kernel on a scene instance, i.e. tem-
plate matching, results in a feature map which indicates how
well the template is matched to different parts of the scene. In
turn, the pooling layer retains the single maximum value, i.e.
the maximum matching score, of each feature map as the final
feature. These features are finally concatenated and fed into the
softmax layer for classification. The CNN is trained to maxi-
mize the classification accuracy on the training set. Therefore,
the networks are supposed to uncover useful patterns from the
scenes for classification, opposing to the average pooling over
time which tends to blend the foreground events and background
noise. During testing, we do not use the learned CNN as the final
classifier but only as a feature extractor. The features learned by
the network are fed to a linear Support Vector Machine (SVM)
classifier as in [25]–[27].

We argue that discovering templates from low-level features
would be inefficient due to the rich content of the scenes. Alter-
natively, we employ the LTE images as the input to the CNN.
With LTE features, we have quantized and reduced the complex
content of the scenes into the likelihoods of the meta-classes
on which the template learning and matching can be performed
more easily. We investigate two settings for CNN training. The
first one trains a single CNN on multiple-channel LTE images,
which consist of stacked individual LTE images learned from
different low-level features. The second exploits a multi-stream
CNN which combines single-stream CNNs learned on different
LTE types using probabilistic fusion [28], [29]. As expected,
this method leads to significant accuracy improvements on the
employed datasets. Furthermore, similar to the case of classi-
fication with global LTE features, combining multiple features
either by stacking or multi-stream settings is vital for good per-
formance.

The rest of this paper is organized as follows. Some re-
lated works on audio scene classification are presented in
Section II. After that, we describe our proposed methods at a

high abstraction level in Section III. The learning algorithm for
the label tree embeddings and the classification schemes using
global LTE features are then elaborated in Section IV followed
by the classification using 1-max pooling CNNs in Section V.
Subsequently, Section VI presents experimental results on the
employed datasets, followed by the discussion in Section VII
and conclusions in Section VIII.

II. RELATED WORKS

The previous works on audio scene classification can be
roughly grouped into two main classes.

Low-level feature-based approach: These approaches repre-
sent audio scenes by low-level feature primitives. Time-domain
features (e.g. short-time energy, zero crossing rate), frequency-
domain features (e.g. spectral centroid, spectral flux), auto-
regression based features (e.g. linear prediction coefficients
(LPC)), and cepstral features (e.g. MFCCs, Gammatone ceptral
coefficients) have been prevalent in the literature [3], [8], [15],
[20]. As an improvement, Roma et al. utilized recursive quanti-
tative analyzing (RQA) to analyze the recurrent behaviour in the
MFCC coefficients over time [30]. Time-frequency representa-
tions have also been proposed. Inspired by the HOG represen-
tations in the field of image processing, Rakotomamonjy and
Gasso adapted HOG representations on constant-Q transform
spectrogram images for audio scene representation [11]. Bisot
et al. demonstrated that a combination of HOG and subband
power distribution (SPD) features can further improve the clas-
sification accuracy [12]. Chu et al. [31] obtained an ensemble of
time-frequency features via a matching pursuit decomposition of
the audio signal. Agcaer [32] made use of amplitude modulation
spectrum features obtained by two-stage recursive filter banks.
A small subset of features is then optimized by the Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES)[33]. After
the feature extraction step, the classification is finally accom-
plished by some back-end classifiers. Various classifiers have
been used, such as Linear Discriminant Analysis (LDA) [32],
Hidden Markov Models (HMMs) [3], Gaussian Mixture Mod-
els (GMMs) [20], [31], SVMs [11], [30], and Deep Neural
Networks (DNNs) [8].

High-level feature-based approaches: These approaches use
a set of high-level features to represent audio scenes. These
features are usually obtained through classifying or clustering
on low-level features. In [34], Aucouturier et al. obtained bag-
of-features (BOF) representations by estimating the distribu-
tion of frame-based MFCC features using a GMM. Lee et al.
used a sparse restricted Boltzmann machine (RBM) followed
by a max-pooling scheme to select the Mel-frequency time-
frequency features that correspond to foreground events [35].
The selected features are then averaged to form a scene-level
feature vector. Bisot et al. demonstrated that time-frequency fea-
tures can be learned under an unsupervised setting with kernel
principal component analysis (KPCA) and nonnegative matrix
factorization (NMF). At higher semantic levels, due to the fact
that a scene can be very well characterized by its foreground
sound events [16], [18], Heittola et al. described a scene by
the histogram of foreground audio events which are outputted
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Fig. 1. Overview of scene classification with global LTE features. Via the LTE algorithm, six LTE images with three different low-level feature sets and
background noise subtraction switched on and off, respectively, are obtained for a scene instance. The average pooling over time is then carried out to produce
global LTE feature vectors, which are used for classification with an SVM. Fusion of multiple LTE feature channels is also investigated.

by an event detector [17]. In [15], background noise, extracted
by tracking minimum statistics over time-frequency space [36],
has also been shown to be capable of characterizing a scene.
Ye et al. [13] proposed to take into account both background
noise and foreground events to represent a scene. Two BOF
vectors were learned via a GMM and Fisher Vector encoding,
one for background noise and another for foreground events.
The final classification is accomplished by probabilistic fusion
of two SVM classifiers on two feature channels. More recently,
generic features via similarity to speech patterns [23] and trans-
fer learning from visual knowledge [37] have been reported to
give good generalization.

Although good performance on different audio scene bench-
mark datasets has been reported for the above mentioned ap-
proaches, they have a common shortcoming. They used a “flat”
classification scheme and do not explore the structured nature of
the scene categories for classification. Our previous work [23]
demonstrated that learned representations that take into account
the structure of scene data can be highly discriminative, as state-
of-the-art performance can be obtained even with simple linear
classifiers. The label tree embeddings used in this work also bear
some resemblance with those in [21], [38] in which label tree
embeddings of speech patterns were learned to extract generic
features for audio events.

Deep CNNs have also recently been employed to tackle the
audio scene classification task in the context of the DCASE
2016 challenge [20], [39], such as those in [40]–[43]. These
CNNs share the same processing pipeline. The 30-second scene
snippets are first decomposed into multiple small segments.
Segment-wise classification is then performed followed by an
aggregation step to combine segment-wise classification results
with some voting schemes to yield the final classification
labels. Compared to these deep and large networks, our CNN
architecture is much smaller and simpler, allowing it to handle

the whole signals as input and learn features for signal-wise
classification. The max pooling scheme used in our proposed
network architecture has also been shown useful for robust
audio event recognition in our previous work [24] and for text
classification [44].

This work extends our previous works in [23], [24] in five
major aspects. (1) We study LTE representation learning with
different low-level feature sets as well as their combination.
(2) We perform audio background subtraction prior to the LTE
representation learning and show that the resulting LTE repre-
sentations are useful, particularly for the processing with the
proposed CNN afterward. (3) Instead of employing the trained
CNN for classification with its softmax layer as in [23], we
treat the network as a feature extractor and use the extracted
features to train a linear SVM for classification as in [25]–[27].
The linear SVM offers better generalization thanks to its well-
known maximum-margin property. (4) We study training CNNs
not only on single LTE types but also on stacked LTE images
learned from different types of low-level features. The latter al-
lows the network to learn useful patterns across different LTE
channels, leading to better performance compared to the former
one. (5) Last but not least, as multi-stream CNNs have been
successful for many classification tasks, we also examine and
evaluate here a multi-stream CNN which probabilistically fuses
single-channel CNNs trained on different LTE types.

III. APPROACH OVERVIEW

Our approach can be divided into three parts, label tree em-
bedding, CNNs for template learning and matching, and clas-
sification with linear SVMs, which can be explained at a high
abstraction level as in Figs. 1–3, respectively.

Using the proposed LTE learning algorithm in Section IV, a
scene instance is mapped into a 2-dimensional LTE image of
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Fig. 2. Illustration of the proposed CNN architecture on a P -channel LTE
image. The network consists of two filter sets with widths w = 3 and w = 5 at
the convolutional layer. Each filter set contains two individual filters.

Fig. 3. Illustration of classification with linear SVMs using features extracted
from the trained CNNs. Probabilistic fusion with multi-stream CNNs is also
studied.

size F × T where F is the number of derived features and T
is the time frames. The exact interpretation of F and T will
be described later in Section IV. We investigate three differ-
ent low-level feature sets for LTE learning, including Gam-
matone cepstral coefficients [10], [19], MFCCs [20], and log-
frequency filter bank coefficients [21], [22]. We also study how
the presence/absence of background noise affects the LTE rep-
resentations. We preprocess the input signals using minimum
statistics noise estimation and subtraction [36] whenever we
need to remove background noise. As a result, six LTE im-
ages are obtained for a single scene instance, namely LTE0-
Gam, LTE0-MFCC, LTE0-Log, LTE1-Gam, LTE1-MFCC, and
LTE1-Log where “0” and “1” denote presence/absence of the

TABLE I
LTE COMBINATION SYSTEMS

LTE system Constituents

LTE-Gam LTE0-Gam, LTE1-Gam
LTE-MFCC LTE0-MFCC, LTE1-MFCC
LTE-Log LTE0-Log, LTE1-Log
LTE0-Fusion3 LTE0-Gam, LTE0-MFCC, LTE0-Log
LTE1-Fusion3 LTE1-Gam, LTE1-MFCC, LTE1-Log
LTE-Fusion6 LTE0-Gam, LTE0-MFCC, LTE0-Log,

LTE1-Gam, LTE1-MFCC, LTE1-Log

TABLE II
SINGLE-STREAM CNN SYSTEMS WITH COMBINED LTE IMAGES

CNN system LTE image constituents

CNN-Gam LTE0-Gam, LTE1-Gam
CNN-MFCC LTE0-MFCC, LTE1-MFCC
CNN-Log LTE0-Log, LTE1-Log
CNN0-Fusion3 LTE0-Gam, LTE0-MFCC, LTE0-Log
CNN1-Fusion3 LTE1-Gam, LTE1-MFCC, LTE1-Log
CNN-Fusion6 LTE0-Gam, LTE0-MFCC, LTE0-Log,

LTE1-Gam, LTE1-MFCC, LTE1-Log

TABLE III
MULTISTREAM CNN SYSTEMS THAT FUSES MULTIPLE SINGLE-STREAM CNNS

Multi-stream CNN system Single-stream CNN constituents Fusion scheme

CNN-Multi-Mean CNN-Gam, CNN-MFCC, CNN-Log mean
CNN-Multi-Max CNN-Gam, CNN-MFCC, CNN-Log max
CNN-Fusion3-Multi-Mean CNN0-Fusion3, CNN1-Fusion3 mean
CNN-Fusion3-Multi-Max CNN0-Fusion3, CNN1-Fusion3 max

background noise. The average pooling over time is then ap-
plied to the LTE images to produce global LTE feature vectors
which are presented to SVM classifiers for classification. We
study the combinations of complementary LTE channels de-
rived from the same types of low-level features (LTE-Gam,
LTE-MFCC, and LTE-Log), the combinations of those LTEs
with the presence/absence of background noise (LTE0-Fusion3,
LTE1-Fusion3), and the combination of all the six LTE fea-
ture vectors altogether (LTE-Fusion6). The summary of these
combinations is given in Table I.

Arguing the drawbacks of the above-described average pool-
ing, we alternatively propose to automatically learn templates
that are useful for the task from the LTE images using the pro-
posed CNN architecture in Fig. 2. We train different CNNs
with different combinations of LTE images as summarized in
Table II. In order to combine multiple LTE images, we stack
them together to make a multiple-channel LTE image on which
3-dimensional kernels will be learned by the CNNs. Afterwards,
the trained CNNs are utilized to perform template matching on
inputted LTE images for feature extraction. Finally, the extracted
features are classified by linear SVMs. We will show that this
classification scheme leads to significant improvements over the
one with global LTE features.

We further study probabilistic fusion of different CNNs in
multi-stream settings. These multi-stream CNN systems either
combine three single-stream CNNs with different feature types
or those two with background noise switched on/off. Table III
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illustrates a summary of them. Both mean and max fusion strate-
gies will be investigated.

IV. CLASSIFICATION WITH LTE REPRESENTATIONS

A. LTE Representations for Audio Scenes

1) Learning a Label Tree: Let us consider a database (e.g. a
scene database) with a label setL = {1, . . . , C} ofC categories.
Given the label set and the examples from the database, we aim
at learning a label tree that encodes the hierarchical structure of
the class labels [21], [38]. The idea is to recursively partition
the label set L into disjoint subsets in such a way that the ex-
amples of the obtained subsets can be easily separated from one
another. To explain the procedure, let the set of examples ex-
tracted from the training data be given by S = {(xn , cn )}|S|n=1 .
Moreover, let x ∈ RM denote a low-level feature vector of
size M , let c ∈ L be a class label, and let | · | denote the set
cardinality.

A learning algorithm is used to grow the label tree in a recur-
sive manner so that each of its nodes is associated with a label
subset of the entire setL. The algorithm starts with the root node
which is linked to L. Without loss of generality, let us consider
a current split node with a label subset � ⊂ L. We then want to
split � into two smaller subsets �L and �R that fulfill the follow-
ing conditions: �L �= ∅, �R �= ∅, �L ∪ �R = �, and �L ∩ �R = ∅.
Among 2|�|−1 − 1 such possible partitions {�L , �R}, we then
select the optimal one such that �L and �R can be separated with
as few errors as possible using a binary classifier. Afterwards,
the subsets �L and �R are forwarded to the left and right child
nodes of the current node, respectively. The recursive splitting
procedure is terminated as soon as a leaf node with a single class
label is reached.

Let us denote the sample subset corresponding to a label
subset � as S� ⊂ S. The algorithm for partitioning S� into
{SL� ,SR� } is presented as Algorithm 1. In the algorithm, the
multi-class classifier M� is trained using random forest classifi-
cation [45] with 200 trees. The elements Aij of the matrix A are

Fig. 4. A part of the label tree learned from the LITIS Rouen dataset with
Gammatone cepstral coefficients.

computed by

Aij =
1

∣
∣
∣S�eval,i

∣
∣
∣

∑

x∈S�e va l , i

P (j|x,M�), (2)

where S�eval,i ⊂ S�eval is the set of samples with the label i.
P (j|x,M�) denotes the probability that the classifier M� pre-
dicts the sample x as class j. Aij with i �= j expresses how
likely a sample of class i is wrongly predicted to belong to class
j by the classifier.

With the partition criterion in (1), categories that are difficult
to separate from one another are clustered into the same subset.
As a result, we can expect to obtain meta-classes �L and �R that
can be easily separated from each other. Since it is hard to solve
the optimization problem in (1) directly, we alternatively solve
a relaxed version of it using spectral clustering [46] applied on
the matrix Ā.

We demonstrate in Fig. 4 a part of the label tree learned
from the LITIS Rouen dataset [11] with Gammatone cepstral
coefficients (more details in Section IV-B).

2) LTE Representations: After completion of the learning
process, the obtained label tree consists of (C − 1) split nodes
in total. Furthermore, the original label set L has been divided
into (C − 1) × 2 disjoint subsets. Let us consider a split-node
index i with 1 ≤ i ≤ C − 1. We then want to derive the label
tree embedding Ψ : RM → R(C−1)×2 where

Ψ(x) =
(

ψL1 (x), ψR1 (x), . . . , ψLC−1(x), ψRC−1(x)
)

. (3)

In the above expression, ψLi (x) and ψRi (x) represent the likeli-
hoods with which the test sample x belongs to two meta-classes
associated with the left and right child nodes of the split node
i. That is, using the embedding, we transform x into a vec-
tor Ψ(x) containing meta-class likelihoods. Finally, the vector
Ψ(x) is used as a high-level representation for x.

At the split node i associated with the label subset �i and
the optimal partitioning {�Li , �Ri }, the likelihoods ψLi (x) and
ψRi (x) can be computed as follows. Considering the samples
with their labels in �Li and �Ri as negative and positive examples,
respectively, we train a binary random-forest classifier M�i

using the sample set S�i as training data. The number of trees
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is set to 200. The likelihoods ψLi (x) and ψRi (x) then read

ψLi (x) = P (negative|x,M�i ), (4)

ψRi (x) = P (positive|x,M�i ), (5)

where P (negative|x,M�i ) and P (positive|x,M�i ) denote the
posterior probabilities for classifying the test sample x into
the negative and positive class, respectively, given the classifier
M�i . These posterior probabilities can be obtained easily, as
the random forest classification naturally supports probability
output [45].

B. Recognition Using LTE Representations

Using the above framework, we derived the following LTE
representations with different low-level feature sets: (1) Gam-
matone cepstral coefficients (LTE0-Gam and LTE1-Gam), (2)
MFCCs (LTE0-MFCC and LTE1-MFCC), log frequency fil-
ter banks (LTE0-Log and LTE1-Log), and their fusion (LTE-
Gam, LTE-MFCC, LTE-Log, LTE0-Fusion3, LTE1-Fusion3,
and LTE-Fusion6). An overview of the LTE representations was
given in Section III. In the experiments, we did not use the whole
30-second audio snippets as data samples in the label tree em-
bedding algorithm. Instead, the snippets were decomposed into
T = 238 segments of length 250 ms with a hop size of 125 ms.
Furthermore, the segments were labeled with the label of the
snippet. These segments were then used as data examples in
the algorithm. By doing this we try to capture meaningful fore-
ground events occurring in the long recordings, whose lengths
are typically in the order of some hundreds of milliseconds.
With each audio segment being represented by an LTE feature
vector, we obtain an F × T LTE image for the 30-second scene
instance where F = (C − 1) × 2.

LTE0-Gam and LTE1-Gam: In this case, we characterize an
audio segment by M = 64 Gammatone ceptral coefficients. To
accomplish this, the audio segment is decomposed into 50 ms
frames with a hop size of 25 ms. 64 Gammatone cepstral co-
efficients are then extracted for each frame [19]. The feature
vector for the whole segment is finally computed by averaging
the frame-wise feature vectors.

LTE0-MFCC and LTE1-MFCC: For these LTE features, we
employM = 60 MFCC features in replacement for Gammatone
cepstral coefficients in LTE0-Gam and LTE1-Gam. MFCCs are
calculated for each 50 ms frame with a Hamming window and
40 mel bands. Beside the first 20 coefficients (including 0th
order coefficients), 20 delta coefficients, and 20 acceleration
coefficients are also calculated using a window length of nine
frames.

LTE0-Log and LTE1-Log: Here, we utilize 20 log-frequency
filter bank coefficients, their first and second derivatives in fre-
quency direction, zero-crossing rate, short-time energy, four
sub-band energies, spectral centroid, and spectral bandwidth,
similar to our previous works [21], [22]. The total number of
features is M = 65.

In order to perform classification with the LTE features, we
use average pooling on each F × T LTE image over time to
obtain the global F -dimensional feature vector for each scene

instance. Note that in order to extract LTE images for the training
instances, we conducted 10-fold cross-validation on training
data.

LTE-Gam, LTE-MFCC, LTE-Log, LTE0-Fusion3, LTE1-
Fusion3, and LTE-Fusion6: In order to take advantage of repre-
sentations from different perspectives (i.e. the different low-
level feature types and the presence/absence of background
noise), we combine different global LTE feature vectors using
the extended Gaussian-χ2 kernel [47] given by

K(xi ,xj ) = exp
(

−
∑

k

1
D̄k

D
(

Ψk (xi),Ψk (xj )
))

(6)

where D
(

Ψk (xi),Ψk (xj )
)

is the χ2 distance between the
global LTE feature vectors of the embedded scene instances
Ψk (xi) and Ψk (xj ) with respect to the k-th channel where

k ∈ {LTE0-Gam,LTE1-Gam}, (7)

k ∈ {LTE0-MFCC,LTE1-MFCC}, (8)

k ∈ {LTE0-Log,LTE1-Log}, (9)

k ∈ {LTE0-Gam,LTE0-MFCC,LTE0-Log}, (10)

k ∈ {LTE1-Gam,LTE1-MFCC,LTE1-Log}, (11)

k ∈ {LTE0-Gam,LTE0-MFCC,LTE0-Log,

LTE1-Gam,LTE1-MFCC,LTE1-Log}, (12)

for LTE-Gam, LTE-Gam, LTE-Gam, LTE0-Fusion3, LTE1-
Fusion3, and LTE-Fusion6, respectively. D̄k denotes the av-
erage χ2 distance between the embedded scene instances in the
training data for the k-th channel.

V. LTE TEMPLATE LEARNING AND MATCHING WITH CNNS

A. Potential Issues With the Average Pooling

We argue that the average pooling on the LTE images results
in global feature vectors that are not optimal. Beside back-
ground noise, an audio scene typically contains different kinds
of foreground events, which are sparsely and irregularly dis-
tributed. It can be interpreted as foreground events embedded in
background noise. Although foreground events [16]–[18], [35]
and background noise [15] have been used as signatures for
audio scenes, they should be considered separately [13]. Unfor-
tunately, with the average pooling, we tend to mix up the sparse
foreground events into the dominating background noise. To
overcome this issue, we alternatively propose to discover tem-
plates that are useful for the classification task from the LTE
images. The proposed CNN architecture designed for this pur-
pose is relatively simple. It consists of one convolutional layer,
one pooling layer, and one softmax layer as illustrated in Fig. 2.
Different from typical CNN architectures, the size of the convo-
lutional filters at the convolutional layer is not fixed. We allow
multiple filters with different sizes to be learned simultaneously.
In addition, since our intention is to perform pattern matching,
we do not pursue subsampling at the pooling layer as usual but
reduce each feature map to the most prominent matching score.
The learned templates potentially correspond to discriminative
foreground events as well as background noise.
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B. CNNs for Pattern Learning and Matching

1) Multichannel LTE Images: The inputs to the networks
are the entire LTE images. Our experiments reveal that differ-
ent low-level features (e.g. Gammatone cepstral coefficients,
MFCCs, and log-frequency filter banks) used to derive LTE
images are good for different scene categories. In addition,
background noise is also shown to be useful. Therefore, it is
reasonable to let the CNNs look at multiple LTE images at the
same time to discover the most useful templates across different
channels. To accomplish this, we stack the individual LTE im-
ages to produce a multi-channel LTE image of size P × F × T
for the scene instance when P is the number of single LTE im-
ages. We train the following CNNs: CNN-Gam, CNN-MFCC,
CNN-Log, CNN0-Fusion3, CNN1-Fusion3, and CNN-Fusion6
as described in Section III.

2) Convolutional Layer: Let S ∈ RP ×F ×T denote an input
LTE image and let w ∈ RP ×F ×w be the impulse response of
a 3-dimensional linear filter with a temporal width of w. We
convolve the filter with the LTE image in the time direction.
Let S[i : j] further denote the audio segments (i.e. the adjacent
LTE image slices) from i to j. Convolving a filter w with the
LTE image S results in an output vector O = (o1 , . . . , oT −w+1)
whose elements are given by

oi = (S ∗ w)i =
∑

k,l,m

(S[i : i+ w − 1] � w)k,l,m . (13)

Here ∗ and � indicate the convolution and element-wise multi-
plication operations, respectively. After that, an activation func-
tion h is applied to the output vector to yield the feature map
A = (a1 , . . . , aT −w+1) where

ai = h(oi + b). (14)

In (14), b ∈ R denotes a bias term. We use Rectified Linear
Units (ReLU) [48] as the activation function due to their low
computational cost:

h(x) = max(0, x). (15)

To encourage the network to learn multiple complementary
templates, we design the network to have Q different filters of
the same temporal width concurrently. Moreover, since patterns
in a scene (e.g. foreground events) may have different durations,
we include R such filter sets with different temporal widths, to
be able to to capture them more efficiently. The total number of
filters is therefore Q×R.

3) Max Pooling Layer: The feature map obtained by con-
volving a filter over an LTE image indicates how well the tem-
plate is matched to different parts of the images. We then employ
max pooling on the feature map to obtain a single most dominant
feature [24], [44] which corresponds to the maximum matching
score. This pooling strategy offers a unique advantage. Despite
the varying dimensionalities of the feature maps (due to differ-
ent widths of the filters and variable lengths of the input signals),
the pooled feature vectors always have the same size [24], [44],
[49]. Therefore, the signals can be of any arbitrary size. There
is no need to fix them to a uniform duration (e.g. 30 seconds),
as in the common setting for the task.

With its feature map reduced to a single most dominant fea-
ture by the 1-max pooling function, each filter in the convo-
lutional layer is expected to be optimized to capture a useful
pattern that could occur at any time in a scene. Pooling all
feature maps of Q×R filters results in a feature vector of
size Q×R.

4) Softmax Layer: Classification is accomplished by a stan-
dard softmax layer. Being presented with the fixed-size feature
vector obtained after the pooling layer, the softmax layer com-
putes the posterior probability over the class labels. The network
parameters θ are eventually tuned to minimize the cross-entropy
error for N training samples:

E(θ) = − 1
N

N∑

i=1

yi log(ŷi(θ)) +
λ

2
||θ||22 . (16)

By doing this, the KL-divergence between the predicted poste-
rior distribution ŷ and the one-hot encoded groundtruth distribu-
tion y will be minimized. In (16), λ is the hyper-parameter that
trades off the error term and the �2-norm regularization term.
For further regularization, we exploit dropout [50] by randomly
setting zeros to the entries of the weight vector with a predefined
probability. The network training is performed using the Adam
optimizer [51].

C. Classification With CNN Features

Instead of using a trained CNN directly for classification, we
evaluate it on a scene instance and extract the feature vector
behind the pooling layer to represent the scene instance. The
feature vectors extracted from the training scene examples are
then used to train a linear SVM classifier which is finally em-
ployed to classify the feature vectors extracted from the unseen
examples in the test set.

Using SVMs (especially linear ones) in combination with
convolutional nets as part of a multistage process has been pro-
posed in the literature [25]–[27]. A CNN is first trained to learn
good invariant representations which are then treated as input
and fed into SVMs for classification. The rationale of using
support vector machines as an alternative to softmax for classi-
fication is their maximum margin property which usually leads
to better generalization [52].

To benefit from CNN features learned from different LTE
types (e.g. CNN-Gam, CNN-MFCC, and CNN-Log), we per-
form classification with multi-stream CNNs which have been
shown efficient for different classification tasks [28], [29]. We
fuse the classification probabilities outputted by the linear SVMs
on individual CNN streams using mean and max strategies. The
raw SVM scores are first converted and calibrated into a proper
posterior probability as in [53], [54]. It should be noted that
one can alternatively use the posterior probabilities outputted
by the softmax layer for this purpose, but in our experiments,
the use of SVMs turned out to be superior. Let us denote the
classification probabilities from the k-th out of K streams on
a test scene instance as Pk = (Pk

1 , P
k
2 , . . . , P

k
C ) ∈ RC

+ with C
being the number of classes. The mean classification probability
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is then P̄ = (P̄1 , P̄2 , . . . , P̄C ) where

P̄i =
1
K

K∑

k=1

Pk
i for 1 ≤ i ≤ C. (17)

The predicted label ĉ is determined by

ĉ = arg max
i

P̄i . (18)

For the max strategy, the fused classification probability is given
by P̆ = (P̆1 , P̆2 , . . . , P̆C ) where

P̆i = max(Pk
i ) for 1 ≤ k ≤ K. (19)

Likewise, the predicted label ĉ is determined as in (18).
A similar procedure is conducted for CNN-Fusion3-Multi-

Mean and CNN-Fusion3-Multi-Max which combine two
streams CNN0-Fusion3 and CNN1-Fusion3.

VI. EXPERIMENTS

A. Datasets

We employed the following two datasets in our experiments:
DCASE2016 dataset: The setup is based on the development

data as described in Task 1 of the DCASE 2016 challenge [20],
[39]. The signals were recorded with a sampling frequency of
44100 Hz. The development data consists of 15 scene classes
with 78 30-second audio signals per class. The data is divided
into 4 folds for cross-validation purpose. The average classifica-
tion accuracy over all folds will be reported in our experiments.
Since it was found by the challenge organizers that there exist
errors in some recordings, we simply removed erroneous seg-
ments from the signals. This error removal resulted in some LTE
images with T < 238 columns. We performed circular padding
to make them 238 columns.

LITIS Rouen dataset: This dataset includes 19 urban scene
classes with 3026 30-second-long examples in total [11]. Its
overall duration is 1500 minutes, which is, to our knowledge,
the largest publicly available ASC dataset so far. The audio sig-
nals were recorded at a sampling frequency of 22050 Hz. Each
scene category is associated with a specific location, for exam-
ple a train station, an airplane, or an open market. The dataset is
provided with 20 training/testing splits. Our experiments obey
this standard setting and the average performance will be re-
ported. Opposed to the DCASE2016 dataset, F1-score will be
used as the main evaluation metric since this dataset exhibits
significant imbalance in the number of samples per class.

B. Experimental Setup

For classification with the global LTE features (i.e. LTE0-
Gam, LTE0-MFCC, LTE0-Log, LTE1-Gam, LTE1-MFCC, and
LTE1-Log), we trained the final scene classifiers using one-vs-
one χ2-kernel SVMs. For LTE-Gam, LTE-MFCC, LTE-Log,
LTE0-Fusion3, LTE1-Fusion3, and LTE-Fusion6, the classifi-
cation was accomplished using nonlinear SVMs with the kernel
given in (6). We conducted 10-fold cross-validation to tune the
hyperparameters of the SVMs. For the CNNs, different hyper-
parameters are involved and specified in Table IV. The filter

TABLE IV
HYPERPARAMETERS OF THE PROPOSED CNN NETWORKS

Hyper-parameter Value

Filter width w {3, 5, 7}
Learning rate for the Adam optimizer 0.0001
Dropout rate 0.5
Regularization parameter λ 0.001

TABLE V
PERFORMANCE OBTAINED BY LTE-BASED CLASSIFIERS

Classifier Type DCASE2016 LITIS Rouen

LTE0-Gam 73.4 90.0
LTE0-MFCC 73.9 87.4
LTE0-Log 72.7 89.9
LTE1-Gam 71.1 94.0
LTE1-MFCC 71.4 92.0
LTE1-Log 73.1 92.8
LTE-Gam 75.9 94.7
LTE-MFCC 73.6 93.3
LTE-Log 75.5 94.5
LTE0-Fusion3 75.3 92.4
LTE1-Fusion3 75.3 95.7
LTE-Fusion6 77.6 95.0

Classification accuracy (%) is used for the
DCASE2016 dataset and F1-score (%) is used for
the LITIS Rouen dataset.

width w was set to 3, 5, and 7 segments, which is equivalent
to durations of 0.5, 0.75, and 1 seconds, respectively. We set
the number of filters to Q = {100, 200, 300, 400, 500, 1000}
in order to study its influence on the classification performance.
The CNNs were trained for 500 epochs with a minibatch size of
50. The hyperparameters of the final linear SVMs that classify
the CNN features were also tuned via 10-fold cross-validation.

C. Experimental Results

1) Performance of Global LTE Features: The classification
performance obtained by the global LTE systems are shown in
Table V for the two datasets. In terms of individual LTE features,
as can be seen, the three employed low-level feature sets perform
differently. For example, while LTE0-MFCC performs best on
DCASE2016, LTE1-Gam dominates others on LITIS Rouen.
Overall, the LTE features derived from low-level features in
the absence of background noise offer better performance than
those with background noise on the DCASE2016 dataset, ex-
cept for LTE0-Log. However, opposite results can be seen on
the LITIS Rouen dataset. As expected, the combination of com-
plementary LTE features, i.e. both cases of the presence and ab-
sence of background noise, of the same low-level feature types
significantly boosts the performance. For instance, LTE-Gam
outperforms the best single LTE systems on both datasets (i.e.
LTE0-Gam on DCASE2016 and LTE1-Gam on LITIS Rouen
by 2.5% and 0.7% absolute, respectively). These results confirm
that background subtraction preprocessing before feature learn-
ing is useful for the task. LTE0-Fusion3 and LTE1-Fusion3
also show significant improvements over their individual
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Fig. 5. DCASE2016 dataset. Performance obtained by CNNs in terms of classification accuracy with different values of Q.

Fig. 6. LITIS Rouen dataset. Performance obtained by CNNs in terms of F1-score with different values of Q.

ingredients. Particularly, LTE1-Fusion3 lead to 2.2% and 1.7%
absolute gains compared to its best single LTE constituents on
the DCASE2016 and LITIS Rouen datasets, respectively. How-
ever, LTE-Fusion6, which integrates all six single LTE features,
experiences performance drops by 0.7% absolute on LITIS
Rouen compared to LTE1-Fusion3. A possible reason is that
the fusion kernel given in (6) is suboptimal for this case.

2) Performance of CNN Features: The performances ob-
tained by classification with CNN features with different values
of Q are shown in Figs. 5 and 6 for DCASE2016 and LITIS
Rouen, respectively.

The previous findings with the global LTE classification can
also be seen here. The performance of different low-level fea-
tures varies depending on datasets. While CNN-Gam outper-
forms two others on LITIS Rouen, CNN-Log is found the best
on DCASE2016. However, their performance differences be-
come much smaller than those in the classification with the
global LTEs. Background noise is still essential under this clas-
sification scheme. This can be seen from a better classification
performance of CNN1-Fusion3 compared to CNN0-Fusion3

on the LITIS Rouen dataset. Removal of background noise,
however, plays an even more important role than before. It is
not only because CNN0-Fusion3 outperforms its counterpart
CNN1-Fusion3 on the DCASE2016 dataset, but also because it
helps to leverage the performance of CNN-Fusion6 over both
datasets. We actually saw negative results previously with LTE-
Fusion6 in Section VI-C1. CNN-Fusion6 outperforms all other
single-stream CNNs under this classification scheme. The rea-
son is that stacking all six LTE images enforces the CNNs to
learn more robust templates across all LTE channels.

Multi-stream CNN fusion schemes lead to performance gains
compared to their individual constituents in most of the cases,
but their performance is not comparable with that of CNN-
Fusion6. Nevertheless, the rule of thumb is that combination of
various feature types is necessary, if not vital, to guarantee good
performance.

Although the performance fluctuates for different numbers
of filters Q, the variation is small. For instance, with CNN-
Fusion6 on the LITIS Rouen dataset, the difference between
the peak (96.5% at Q = 500) and the worse case (96.1% at
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TABLE VI
DCASE2016 DATASET. PERFORMANCE COMPARISON

Systems Accuracy

LTE-Gam 75.9
LTE-MFCC 73.6
LTE-Log 75.5
LTE0-Fusion3 75.3
LTE1-Fusion3 75.3
LTE-Fusion6 77.6
CNN-Gam 76.9
CNN-MFCC 76.7
CNN-Log 77.6
CNN-Multi-Mean 79.5
CNN-Multi-Max 79.0
CNN0-Fusion3 79.1
CNN1-Fusion3 78.3
CNN-Fusion3-Multi-Mean 78.5
CNN-Fusion3-Multi-Max 78.5
CNN-Fusion6 81.2
DCASE2016 baseline [20] 72.5

TABLE VII
LITIS ROUEN DATASET. PERFORMANCE COMPARISON

Systems Precision F1-score Accuracy

LTE-Gam 94.5 94.7 94.9
LTE-MFCC 93.0 93.3 93.5
LTE-Log 94.3 94.5 94.5
LTE0-Fusion3 92.2 92.4 92.6
LTE1-Fusion3 95.5 95.7 95.8
LTE-Fusion6 94.7 95.0 95.2
CNN-Gam 95.5 95.8 95.8
CNN-MFCC 93.4 93.7 94.0
CNN-Log 94.7 95.0 95.1
CNN-Multi-Mean 95.7 96.0 96.0
CNN-Multi-Max 95.5 95.8 95.9
CNN0-Fusion3 92.2 92.6 92.9
CNN1-Fusion3 96.1 96.3 96.3
CNN-Fusion3-Multi-Mean 95.3 95.7 95.8
CNN-Fusion3-Multi-Max 95.5 95.8 95.8
CNN-Fusion6 96.3 96.5 96.6
HOG [11] 91.7 − −
DNN+MFCC [8] 92.2 − −
HOG+SPD [12] 93.3 92.8 93.4
Sparse NMF [55] − 94.1 −
Convolutive NMF [55] − 94.5 −
Kernel PCA [55] − 95.6 −
FisherHOG+ProbSVM [13] − − 96.0

Q = 100) is only 0.4%. This implies that an arbitrarily chosen
Q can guarantee a good classification accuracy. In general, for
more complex datasets, we need larger number of filters to
achieve the best performance. For example, Q = 400 seems to
be reasonable for the DCASE2016 dataset while Q = 500 is
most suitable for the LITIS Rouen dataset. A Q larger than
these optimal values results in redundancy of the filter set which
brings up little help if not degenerating the performance.

3) Performance Comparison: For the sake of comparison,
we present the performance of our systems on the DCASE2016
(Q = 400) and LITIS Rouen (Q = 500) datasets together with
other results reported in the literature in Tables VI and VII,
respectively. Note that we only include those of our systems
with multiple LTE features for clarity. The results for our

TABLE VIII
PERFORMANCE WITH DIFFERENT SEGMENT SIZES

Systems 250 ms 500 ms

DCASE2016 LTE-Fusion6 77.6 77.0
CNN-Fusion6 81.2 80.2

LITIS Rouen LTE-Fusion6 95.0 95.3
CNN-Fusion6 96.5 96.1

classification systems are marked in bold when all competitors
are outperformed. Since prior works reported their performances
on the LITIS Rouen dataset with different metrics (i.e. average
class-wise precision [8], [11], F1-score [12], [55], and overall
accuracy [12], [13]), the performances of our systems are also
provided on all of these metrics for a proper comparison. Note
that the state-of-the-art performance on the LITIS Rouen dataset
is reported in our recent work [23]. However, it was achieved
with the augmentation of external speech data. Here, we focus
on studying the representative power of the scene audio signals
per se. For the case of DCASE2016, we employ the baseline
provided by the challenge for comparison [20].

As can be seen, while our LTE fusion systems surpass the
competitors in most of the cases, the CNN systems even perform
better, being superior over all the opponents on both datasets.
For the DCASE2016 dataset, our systems consistently achieve
better accuracies than that of the DCASE2016 baseline. The
accuracy gains range from 2.8% with LTE0-Fusion3 to 8.7%
with CNN-Fusion6. A similar system submitted for Task1 of
the DCASE2016 challenge achieved an accuracy of 83.3% on
the test data, which is ranked 14 of 35 submissions. Note that,
different from the classification scheme described here, this sub-
mission system directly used the softmax layer of the trained
CNNs for classification. For the LITIS Rouen dataset, our sys-
tems show better performance than most of, if not all, the com-
pared systems. Moreover, CNN-Fusion6 yields top performance
on all evaluation metrics and outperforms the best reported re-
sults by 3.0%, 0.9%, and 0.6% absolute in terms of precision,
F1-score, and accuracy, respectively.

VII. DISCUSSION

A. Influence of the Segment Size

In the experiments in Section VI, we fixed the segment size to
250 ms with a step size of 125 ms. It is worth studying how the
segment size influences the overall classification performance,
taking LTE-Fusion6 and CNN-Fusion6 for example. We dou-
bled the segment size, i.e. 500 ms and a step size of 250 ms, and
repeated experiments on these systems. We compare the perfor-
mance obtained with two different segment sizes in Table VIII.
It can be seen that with the shorter segment sizes we achieve
better performance than with the larger ones, except for the
LTE-Fusion6 system on the LITIS Rouen dataset, most likely
due to the drawback of the average pooling. The performance
gains obtained by LTE-Fusion6/CNN-Fusion6 on DCASE2016
and LITIS Rouen are 0.6%/1.0% and−0.3%/0.5%, respectively.
The benefits of using shorter segments are two-fold. Firstly, we
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Fig. 7. Classification performance as a function of the length of the test signals.

have more training examples which benefit the LTE representa-
tion learning algorithm. Secondly, they will result in larger LTE
images which leverage the following averaging/max pooling.
However, the segment size should not be too short since then
we focus on too much detail of the signals, causing unreliable
estimation of the posterior probabilities by the random forest
classifier used during LTE feature learning.

B. Early Recognition

We also study the possibility that a scene instance can be
recognized early, i.e. when a recording less than 30 seconds of
the scene is observed. Such early recognition ability is an im-
portant property to guarantee the quality-of-service, especially
for safety-related applications. Although audio signals are usu-
ally provided with a fixed length of 30 seconds [9], [11], [20],
we think this should not be strict. With a long signal we ex-
pect to accumulate more statistics about the scene and hence
gain reliability in recognition, however, this observation relaxes
for different kinds of scenes. For instance, for “office” scenes
where foreground events are sparse and irregular, the recordings
should be long. In contrast, for “busy street” ones, shorter signals
may be advantageous. Since investigating this aspect for every
scene category would be too demanding and out of scope of this
work, we study here the overall classification performance for
simplicity.

We, again, employed the LTE-Fusion6 and CNN-Fusion6
systems in this study. We utilized the systems trained on full
30-second long signals to evaluate on test signals with different
lengths of {5, 10, 15, 20, 25, 30} seconds. We show variations
of the classification accuracy in Fig. 7. Note that the duration
difference of the training and test signals is not a problem here
since the average pooling produces fixed-size global feature
vectors for them all in the LTE-Fusion6. In addition, the CNNs
can handle input signals with varying lengths thanks to the

1-max pooling scheme [24]. As expected, the overall trend can
be clearly seen that the accuracy grows with the signal length.
It is due to the fact that with longer signals the systems not only
know more about the scenes but also experience less mismatch
between training and test data. At 15 seconds, we are able to
obtain an accuracy of more than 75% on DCASE2016 and an
F1-score of more than 92% on LITIS Rouen. The good thing
is that these performances are better or on par with previous
works tested on full 30-second long signals (c.f. Tables VI
and VII). That is, using our systems, one can recognize a
scene 50% faster with only a small penalty in classification
accuracy.

VIII. CONCLUSION

We presented an efficient approach to tackle the audio scene
classification task. Our systems relies on label tree embedding
image features automatically learned to encode the structure of
the data. We studied scene classification using global feature
vectors obtained from these images and analyzed the perfor-
mance of different variants of these features learned from dif-
ferent low-level feature sets as well as their combination. An im-
proved classification method was then introduced. Simple CNNs
were trained on LTE images to learn templates that are useful
for the classification task. Afterwards, the learned templates
were matched on an input LTE image for feature extraction
and the final classification was accomplished by linear SVMs.
Two different settings were investigated: single-stream CNNs
with stacked LTE images as well as multi-stream CNNs fol-
lowed by probabilistic fusion. Experiments on the DCASE2016
and LITIS Rouen datasets show that the classification accura-
cies obtained by our systems outperform all the reported results
in previous works. Furthermore, combination of various fea-
tures with and without background noise is essential for a good
performance. Finally, in this work we used random forest clas-
sifiers in the LTE learning algorithm. Alternatively, stronger
classifiers, such as DNNs, can be further explored for this pur-
pose. A high-quality classifier that is able to estimate the meta-
class posterior probability more precisely is expected to im-
prove the learned LTE features and, as a result, the subsequent
processing steps.
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