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Abstract

We present a spatio-temporal analysis of motion at occluding boundaries. The main
result is an analytical description of the motions and the distortions that occur
at the occluding boundary. Based on this result we analyze occluding motions in
the Fourier domain and show that the distortion term has an hyperbolic decay
independent of the shape of the occluding boundary. Moreover, we derive the exact
expression for the distortion term for the case of straight boundaries. The results
are illustrated by using simulations with synthetic movies.

1 Introduction

Motion estimation is essential in a variety of image processing and computer
vision tasks, like video coding, tracking, directional filtering and denoising,
scene analysis, etc. Accordingly, motion estimation is still a major subject of
research interest for the image processing community. Especially, the accurate
estimation of motion at occluding boundaries remains a challenging problem.
Proposed techniques include adaptive regularization [1], superposition mod-
els [2], distributed representations [3], multiple-frame integration [4], spectral
analysis [5–7], image and motion mixture models [8], and robust estimation
methods [9,10]. Nevertheless, a satisfactory technique has not yet been de-
veloped due to a lack of theoretical understanding [11]. One way to better
understand occluded motions is to analyze how exactly superposition mod-
els [2,6] fail at occlusions. We here derive a new spatial constraint for the
distortions induced by the occluding boundary and analyze the result in the
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Fourier domain. The results are based on earlier work on transparent and oc-
cluded motions [12–15]. The model of occlusion that we use is due to Fleet and
Langley [5] who also analyzed occluded motions in the Fourier domain. This
type of analysis was further developed in [7,11]. Alternative spatial approaches
have been developed in [3,4]. Before presenting the new results in the spatial
and Fourier domain, we will briefly review the problem of motion estimation
by pointing out the transitions needed from single to transparent and finally
occluded motions.

1.1 Single motion

We represent an image sequence by a function f(x, t), where x = (x, y) and t
are the space and time variables. Under the hypothesis that image intensity
changes only due to motion, the well-known Brightness Constancy Constraint
Equation (BCCE) applies [16]:

df

dt
= vxfx + vyfy + ft = 0, (1)

where v = (vx, vy) is the velocity and fx, fy, ft denote the partial derivatives
of f. Different methods have been proposed to estimate the motion field by
using Equation (1). A review of available methods can be found in [17].

1.2 Transparent motions

Equation (1) has been extended for the case of multiple transparent motions by
Shizawa and Mase [18,2]. They model transparent motions as the superposition

f(x, t) = g1(x, t) + g2(x, t) (2)

of two image sequences. Under the assumption of locally constant motions,
the layers can be modeled as g1(x, t) = g1(x − tu) and g2(x, t) = g2(x − tv)
both moving with constant velocities u and v respectively. Let the operator
α(u) = ux

∂
∂x

+uy
∂
∂y

+ ∂
∂t

denote the derivative along u+et, where et represents

the time axis. The operator α(v) is defined in a similar way. Under the above
hypothesis, α(u), α(v) commute and therefore

α(u)α(v)f(x, t) = 0. (3)
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1.3 Occluded motions

Let us suppose that a foreground object moves with constant velocity u and
the background moves with constant velocity v. The image sequence can be
modeled by [5]

f(x, t) = χ(x− tu)g1(x− tu) +
[
1− χ(x− tu)

]
g2(x− tv). (4)

where

χ(x) =

1 if x ∈ Ω

0 otherwise
(5)

and Ω is the support of the foreground object.

Since the motion constraint α(u)f(x, t) = 0 is valid in the interior of Ω and
the constraint α(v)f(x, t) = 0 is valid in the exterior of Ω, the constraint
α(u)α(v)f(x, t) = 0 is valid everywhere but at the occluding boundary. We
therefore analyze the distortion induced by the occluding boundary, i.e. the
residual of the superposition constraint.

2 Spatial analysis of motion at occluding boundaries

We apply the operator α(u)α(v) to the motion model at the occluding bound-
ary under the hypothesis of ‘locally constant motions’.

By applying the operator α(u) to Equation (4), we obtain

α(u)f(x, t) =
[
1− χ(x− tu)

]
α(u)

[
g2(x− tv)

]
. (6)

α(u)[g2(x − tv)] in the above equation simplifies to (u − v) · ∇g2(x − tv).
Therefore,

α(u)α(v)f(x, t) = −α(v)
[
χ(x− tu)

]
(u− v) · ∇g2(x− tv). (7)

The derivatives of the discontinuous mask χ need to be taken in the sense of
distribution theory [19]. In Appendix A, we show that

α(v)
[
χ(x− tu)

]
= (u− v) ·N(x− tu) δ(B(x− tu)) (8)

where B(x) = 0 determines the boundary of Ω and N(x) = ∇B(x) is the unit
normal to the boundary. We have therefore proven the following

Proposition 1 If an image sequence is given by Equation (4) then

α(u)α(v)f(x, t) = q(x, t,u,v)δ(B(x− tu)), (9)
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where

q(x, t,u,v) = −(u− v) ·N(x− tu) (u− v) · ∇g2(x− tv). (10)

Equation (9) has a simple intuitive meaning: α(u)α(v)f(x, t) vanishes almost
everywhere but at the occluding boundary where it becomes a Dirac distrib-
ution due to the discontinuity at the boundary of the mask χ. Thus, motion
estimation fails at occlusions because both Equations (1) and (3) are not valid
at points on the occluding boundary. The valid equation is Equation (9). To es-
timate two occluding motions we can therefore either use Equation (3) but do
not integrate at occlusion points where we have motion discontinuities [14,15],
or solve Equation (9) to perform the estimation.

Moreover, there are a few conclusions to be drawn from Equations (9) and (10):
the distortion is (i) restricted to the occluding boundary, (ii) minimal when
the normal to the boundary is orthogonal to the relative motion (the difference
between fore- and background motions) and maximal when the two vectors are
aligned, (iii) proportional to the intensity gradient of the background pattern.
Some of these relationships are illustrated in the Fourier domain by Figures 2
to 4.

3 Fourier analysis of motion at occluding boundaries

The Fourier-domain analysis of motion is known to be intuitive and has led to
novel methods, e.g., based on the observation that a single motion corresponds
to a plane. The Fourier analysis of occluded motions, however, has so far been
restricted to the case of straight image boundaries. We shall here overcome
this restriction by using the result of the previous section. In the following we
represent by capital letters the Fourier transform of the corresponding signal,
e.g., F is the Fourier transform of f.

To simplify notation, we set

h(x) = −(u− v) ·N(x)δ(B(x)). (11)

With this notation, the residual in the right-hand side of Equation (9) becomes

r(x, t) = (u− v) · ∇g2(x− tv)h(x− tu) (12)

and in the Fourier domain

R(ξ, ξt) = 2πj
[
(u− v) · ξ G2(ξ)δ(v · ξ + ξt)

]
∗

[
H(ξ)δ(u · ξ + ξt)

]
. (13)
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The expansion of the above convolution involves the integration of

δ(v · ω + ωt) δ(u · ξ + ξt − u · ω − ωt) (14)

in the variables ω, ωt. That is, we have to integrate a δ-line with support L
defined by the solution of

v · ω + ωt = 0

u · ω + ωt = u · ξ + ξt.
(15)

The cross section of this δ-line is d = |(u + et)× (v + et)|−1 (see [20]). Note
that (u− v) · ω = u · ξ + ξt and thus factors out of the integral. Therefore,

R(ξ, ξt) = 2dπj(u · ξ + ξt)
∫

L
G2(ω)H(ξ − ω) ds, (16)

where s is the arc-length of L. We have therefore proven the following

Proposition 2 The spectrum of f(x, t) is given by

F (ξ, ξt) = A(ξ)δ(u · ξ + ξt) + B(ξ)δ(v · ξ + ξt) + C(ξ, ξt) (17)

where

C(ξ, ξt) =
d

2πj(v · ξ + ξt)

∫
L

G2(ω)H(ξ − ω) ds. (18)

The first two components of the sum in Equation (17) are the two motion
planes and the third component defined by Equation (18) is the distortion
term.

Note that the shape of the distortion term is determined by the hyperbolic
decay, as long as H(ω) is limited, because the support L of the integral does
not change if ξ + ξtet belongs to the plane u · ξ + ξt = c. For any practical
purpose it is safe to assume H(ω) since

|H(ω)| ≤ |u− v|length(B). (19)

The spectrum of occlusion has been analyzed by Beauchemin et al. under the
assumption of a straight boundary [21,22,7,11,23]. They found that, in this
case,

A(ξ) =
[
πδ(ξ) +

1

jN · ξ
δ(N⊥ · ξ)

]
∗G1(ξ)

B(ξ) = (1− π)G2(ξ),
(20)

where N⊥ is a unity vector normal to N. They also recognized the hyperbolic
decay of C(ξ, ξt) but the exact expression of the distortion remained unspec-
ified. We will now use the above results to determine C(ξ, ξt). If the support
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Ω of the occluding signal is a half-plane, the border of occlusion is the line
B(x) = N · x = 0 and we can evaluate the integral in Equation (18). In this
case, we have

h(x) = −(u− v) ·N δ(N · x) (21)

and in the Fourier domain

H(ξ) = −(u− v) ·N δ(N⊥ · ξ). (22)

Replacement of H(ξ) in Equation (18) (or directly in Equation (13)) gives us

C(ξ, ξt) =
sign((u− v) ·N)

2πj(v · ξ + ξt)
G2(ω) (23)

where

ω = ω(ξ, ξt) =
(u · ξ + ξt)N + ξ ·N⊥(u− v)⊥

(u− v) ·N
. (24)

Therefore, it is straightforward to conclude that the profile of the distortion
function is hyperbolic along lines with orientation N− u ·Net because along
such lines ω(ξ, ξt) is constant; and has the same profile as the occluded signal
along the planes v · ξ + ξt = c.

4 Experimental results

The experimental results are based on synthetic imagery and are meant to
illustrate the above theoretical results. We use noise patterns for both the
foreground and the background. The shapes of foreground and background
are shown in Figure 1. The radius of the small circle was 30 pixels and of the
large circle 128 pixels. Both foreground and background move and the direc-
tions of motion are indicated in the captions of Figures 2 and 3. In addition,
noise (SNR 30 dB) was added to the resulting movies such as to view the
spectral structures relative to this realistic noise level. The movies are 128
pixels large in all three directions and have been windowed with a Hanning
window such that the shown spectra visualize local properties of the movies.
In all figures the residual is depicted by subtracting the spectra of occlusion
and transparency. Accordingly to Equation 18 the most blurred plane corre-
sponds to the spectrum of occlusion. This is clearly seen in Figures 2 (c); 3
(b) and (c); and 4 (b), (c) and (f) . For better visualization, the amplitude
spectrum is shown after taking the logarithm.

Figure 2 shows results obtained for a straight occluding boundary - see Fig-
ure 1 (a). By comparison of (a) and (b) we note that, according to Equa-
tion (10), transparent and occluded motions are equivalent if the motions of
the occluding layers are such that the distortion term is zero (relative motion
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(a) (b) (c) (d)

Fig. 1. The shape of different objects with noisy texture moving in front of a noisy
background. Superposition is either transparent or occluding.

perpendicular to the boundary normal). Panel (c) shows, again for a straight
boundary, the maximum distortion (the relative motion is perpendicular to the
boundary). Panel (d) show the distortion due to occlusion, i.e., the difference
between (c) and (a).

Figure 3 shows results analogous to those in Figure 2 (b), (c) and (d) but for
curved boundaries - see Figure 1 (b). Note in panel (b) that the curvature
of the boundary induces a distortion not present in panel (b) of Figure 2.
Also note that the distortion is increased when the relative motion direction
is approximately perpendicular to the boundary - see panel (c). The distortion
due to occlusion is shown in panel (d). No substantial difference is observable
between the maximal distortion for curved and straight boundaries - compare
Figure 2 (d) against 3 (d).

Figure 4 show results for highly curved boundaries. It demonstrates that 2D
features like dots and corners are good features to track even in the case of
occluded motions - see Figure 1 (c) and (d). For the corner, the distortion
is less than for straight boundaries and it varies less with the directions of
motion, compare against Figure 2 (c) and Figure 3 (c). panels (b) and (c).
For the small circle in (f) the distortion obviously does not depend on the
directions of motions relative to the normal since the normals point in all
directions. The distortion due to occlusion are shown in panels (d) and (g) for
the corner and small circle respectively.

5 Discussion

Although the problem of estimating motion at occluding boundaries has al-
ready been studied extensively, we have here added an important missing part,
which is an equation that describes motion at the occluding boundary includ-
ing the expression for the distortion term given both in the spatial and the
Fourier domains.
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(a) (b)

(c) (d)

Fig. 2. Straight boundaries. Shown are the amplitude spectra (ξt = 64) of (a) a
transparent sequence with velocities u = (1, 1) and v = (−1, 1); (b) an occlusion
sequence with straight boundary and velocities u = (1, 1) and v = (1,−1) for the
foreground and background respectively; (c) an occlusion sequence with straight
boundary and velocities u = (1, 1) and v = (−1, 1); (d) the difference between
(c) and (a). Note how the distortion due to the occlusion depends on the relative
motion and the normal to the boundary: no distortion in (b), maximal distortion
in (c). In (d) we can clearly see the hyperbolic decay of the distortion term.

By our spatial analysis we have been able to show precisely what distortions
are to be expected when algorithms based on superposition models are used
to estimate motion at occlusions. This result is the basis for the subsequent
Fourier analysis.

Fourier analysis has revealed that the decay of the distortion is hyperbolic for
both straight and curved boundaries. Previously this result had been validated
only for straight boundaries [21,22,7,11,23]. Moreover, we have determined the
exact expression for the distortion term for the case of straight boundaries.

Our synthetic examples illustrate the results by showing that (i) both trans-
parent and occluded motions lie in two planes if the relative motions are
orthogonal to the normal of the occluding boundary, (ii) the distortion is sim-
ilar in shape for straight and curved boundaries and somewhat smaller for
curved boundaries because the normal changes within the integration region,
(iii) motion estimation is more reliable at corners and curved boundaries due
to a smaller distortion term.
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(a) (b)

(c) (d)

Fig. 3. Curved boundaries. Shown are the amplitude spectra (ξt = 64) of (a) a trans-
parent sequence with a large circular foreground object that moves with velocity
u = (1, 1) over a background that moves with v = (1,−1); (b) same as in (a) but
occlusion. (c) same as in (b) but velocity v = (−1, 1); (d) the difference between
(c) and (a). Maximal and minimal distortion is again observable.

We conclude that the performance of algorithms based on either superposi-
tion models or the estimation of motion planes in the Fourier domain will be
largely affected by the direction of the relative motion and the orientation of
the boundary. In the particular but frequent case of stationary backgrounds,
the distortion term depends only on the direction of motion relative to the
orientation of the occluding boundary.
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(a) (b)

(c) (d)

(e) (f)

(g)
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A Appendix – Evaluation of α(v)
[
χ(x− tu)

]

Since the mask χ is discontinuous, derivatives must be treated using the theory
of distributions, i.e., they are defined by ‘identities’ such as

〈∂χ

∂x
, φ〉 = −

∫
χ(x)

∂φ

∂x
(x) dx, (A.1)

where φ is a Schwartz test function, e.g., a smooth function with compact
support.

We will first show that

−α(v)
[
χ(x− tu)

]
= (u− v) · ∇χ(x− tu). (A.2)
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In fact,

−〈α(v)
[
χ(x− tu)

]
, φ〉 =

∫
χ(x− tu)

[
v · ∇φ(x, t) + φt(x, t)

]
dx dt. (A.3)

By introducing the change of coordinates y = x− tu and observing that

∂φ(y + tu, t)

∂t
= u · ∇φ(y + tu, t) + φt(y + tu, t) (A.4)

integrates to zero, we obtain

−〈α(v)
[
χ(x− tu)

]
, φ〉 =

∫
χ(y) (v − u) · ∇φ(y + tu, t) dy dt

=
∫

(u− v) · ∇χ(y) φ(y + tu, t) dy dt.
(A.5)

A change back to the variable x will result in Equation (A.2).

We now evaluate (u− v) · ∇χ. To simplify, we set w = u− v. We then have,

〈w · ∇χ, φ〉 = −
∫

χ(x)w · ∇φ(x) dx = −
∫
Ω
w · ∇φ(x) dx. (A.6)

Since w · ∇φ(x) = div wφ(x), we make use of Gauss’ theorem in the plane to
conclude that

〈w · ∇χ, φ〉 = −
∫

B
w ·N(x) φ(x) ds, (A.7)

where ds is the arc-length element of B.

Remembering that δ(B(x)) is defined by the line integral [20]

〈δ(B(x)), φ〉 =
∫

B
φ(x) ds, (A.8)

we obtain

〈w · ∇χ, φ〉 = −〈δ(B(x)),w ·Nφ〉 = −〈w ·Nδ(B(x)), φ〉, (A.9)

and therefore
(u− v) · ∇χ = −(u− v) ·Nδ(B(x)). (A.10)

We finally obtain

α(v)
[
χ(x− tu)

]
= −(u− v) ·N(x− tu) δ(B(x− tu)). (A.11)
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