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Abstract— Detecting the sites on genomic DNA at which DNA
binding proteins bind is a highly relevant task in bioinformatics.
For example, the bindings sites of transcription factors are key
elements of regulatory networks and determine the location of
genes on a genome. Usually, for a given DNA binding protein,
only a few DNA-subsequences at which the protein binds are
known experimentally. The task then is to deduce the global
binding characteristics of the protein based on these few positive
examples. A widespread approach is the so-called Profile-Matrix
(PM). The PM-approach can be interpreted as a linear classifier
(binding word class/non-binding word class) within the space of
sequence words, with the profile of the experimentally verified
binding sites determining its parameters. In this paper a novel
approach called Binding-Matrix (BM) is introduced. Like the
PM, the BM realizes a linear classification, but in contrast to the
Profile-Matrix approach the parameters (matrix) of the classifier
is now determined by maximum likelihood estimation. Tested on
data from the TRANSFAC database, the maximum likelihood
estimation leads to an increase in classification performance by
about an order of magnitude.

I. INTRODUCTION

A number of different proteins bind to a genome. Some
of these DNA-binding proteins only bind to specific locations
where they have to execute certain functions. These proteins
are called sequence specific DNA-binding proteins. To execute
its function at specific sites, a sequence specific DNA-binding
protein has to bind at these sites with a binding energy that
exceeds a certain threshold. Besides the sites where it has to
perform its function there might be sites where the execution
of this function might be detrimental. There, this protein may
not bind, i.e. the binding energy has to be below the threshold.
Then there is a vast majority of sites where the binding of the
protein may take place without any consequences.

The DNA-binding domain of the protein interacts with a
DNA-segment consisting of L bases b ∈ {A, C, G, T}. Such
a DNA-segment we call a sequence word. The sequence word
wi the protein ”sees” at site i determines whether i is a binding
site for the protein or not. The word length L varies from
protein to protein and typically ranges between L = 10 and
L = 20. There are 4L different words w or ”patterns” of length
L (this, however, does not mean necessarily that each of these
words appears on a genome, in particular if 4L > N with N
as the number of base pairs of the genome). The set of these
words we denote by W . Each word of this set is classified by
the protein either as being a binding word belonging to the
binding word class WB or a non-binding word belonging to
the non-binding word class WNB .

Specific DNA-binding proteins play a crucial role in the

transcription of genes. The sequence specific DNA-binding
proteins involved in the transcription of genes are called
transcription factors. Knowledge about their binding charac-
teristics, i.e. to which words on the genome they will bind,
is crucial for understanding and modeling the transcription
machinery which reads the information stored in the genome.
Further, transcription factors are integral parts of the so-called
genetic regulatory networks. Genetic regulatory networks con-
trol the expression of genes which can now be measured on
large scales due to the success of the microarray technol-
ogy. For understanding and modeling these genetic regulatory
networks knowledge about the binding characteristics of the
transcription factor is crucial. These binding characteristics,
however, cannot (yet) be determined from first principles but
must be deduced from experimental observations. Usually, for
a transcription factor only a few binding words are known
experimentally. These few binding words then have to be used
as training sample for a classifier which tries to mimic the
classification behavior of the protein and to predict whether a
word is seen by the protein as binding word or not.

The basis of most state-of-the-art methods for predicting
whether a word at a certain site leads to binding of the protein
or not is the so-called Profile-Matrix approach (for an overview
of the different methods see [1], [2]). If we have κ = |WE

B |
experimentally verified binding words with WE

B ⊆ WB as the
set of these experimentally verified binding words, and if κbl/κ
denotes the occurence frequency of base b at position l in
these experimentally verified binding words, then the elements
pbl of the Profile-Matrix p are given by pbl = κbl/κ. To
judge whether a query word w is a binding word or not, one
calculates a score. For this purpose for w one chooses the so-
called orthogonal coding. In this coding w is a 4L-dimensional
vector (or 4×L-matrix) with component wbl = 1 if and only
if the word w contains base b at position l, otherwise wbl = 0.
Then the score is given by

S(w) =
∑

b∈{A,C,G,T}

L∑

l=1

pblwbl = p
T
w. (1)

If S(w) exceeds a prespecified threshold Smin, one assumes
w to be a binding word [3]–[5]. The Profile-Matrix p can be
regarded as the average experimentally verified binding word,
i.e.

p =
1

κ

∑

w∈WE

B

w = 〈w〉E



with [〈w〉E ]bl = κbl/κ is valid. All the words whose overlap
to this average binding word is large enough one assumes to
be binding words.

II. THE STRUCTURE OF THE PATTERN SPACE

To approach the classification task and its learning in a more
principled way, we first analyze the pattern space, i.e. the space
of sequence words the protein ”sees”.

In the orthogonal coding the 4L possible words w can be
interpreted as points in a 4L-dimensional space. These points
are arranged in an interesting structure. They all lie on a 4L-
dimensional hypersphere, since ||w||2 = L is valid. At the
same time they lie on a 3L-dimensional linear subspace, since∑

b(wbl − 1/4) = 0 is valid for each l = 1, . . . , L. This
3L-dimensional linear subspace is the so-called continuous
sequence space [6]. With w̄ = (1/4, 1/4, . . . , 1/4)T as the
center of gravity of all the words w ∈ W one obtains
w̄

T (w − w
′) = 0 for all pairs w,w′. Hence, the 3L-

dimensional linear subspace is orthogonal to w̄. Further, all
the words have the same distance from w̄. This means, in
addition to lying on a 4L-dimensional hypersphere around
the origin and lying on a 3L-dimensional linear subspace,
the words w are arranged on a 3L-dimensional hypersphere
around their own center of gravity. For symmetry reasons the
words are distributed homogeneously over the surface of this
3L-dimensional hypersphere. This is illustrated schematically
in Fig. 1.

w

w
w

Fig. 1. Left: A low-dimensional sketch of the distribution of the words
w within the 4L-dimensional orthogonal coding space. Within this space
the words lie on a 3L-dimensional hypersphere (circle) around their center
of gravity w̄. Right: On this 3L-dimensional hypersphere (circle) the words
(dots) are distributed homogeneously. Binding words are shown as filled dots.
The dotted line indicates the hyperplane which divides the set of words into
binding words and non-binding words.

III. BINDING ENERGY DETERMINES CLASSIFICATION

BEHAVIOR

Elaborate experimental studies have shown that each base
at a binding site i contributes to the binding energy Ei

independently of the other bases in the word wi, at least in a
very good approximation [7]–[10]. With ebl as the binding
energy contribution of base b at position l, and under the
assumption of independent contributions from each base, one

obtains

E(w) =
∑

b∈{A,C,G,T}

L∑

l=1

eblwbl = e
T
w (2)

as the binding energy if the protein ”sees” the word w (see,
e.g. [11]). If this binding energy E(w) exceeds a threshold
Emin, one assumes that the protein binds to this word strongly
and long enough to execute its function. Then w is a binding
word, and the locations on the genome where this word occurs
are binding sites.

Obviously, with independent binding energy contributions
from each base the protein linearly divides the space of
sequence words into binding and non-binding words. The
vector with the binding energy contributions e determines
the orientation of the dividing hyperplane. The protein acts
as a linear classifier which divides the pattern space into
two classes. The parameters which determine its classification
behavior are the ebl and Emin.

If we compare equation (1) and equation (2), both equa-
tions have the same structure. The heuristically derived PM-
approach implements a linear classification and, in this respect,
is the correct ansatz. However, one can question whether the
base occurence frequencies p are the best estimation for the
right hyperplane orientation e. Is this approach optimal from
a machine learning point of view?

IV. THE ESTIMATION TASK

As we have pointed out, the K = 4L words w are
homogeneously distributed on a 3L-dimensional hypersphere,
the center of which is given by w̄ = (1/4, 1/4, . . . , 1/4)T . The
linear classification of the protein according to (2) now divides
the hypersphere into two parts. The binding words w ∈ WB

lie on one segment, while the non-binding words w ∈ WNB

are located on the other one. This is illustrated in Fig. 1.
Usually, the part with the binding words is much smaller than
the part with the non-binding words. For example, for the
human splice acceptor sites one observes for the relative size of
these two classes K/k ≈ 1000, with k = |WB | as the number
of binding words. This is the general order of magnitude
for K/k, which can be connected to the binding sequence
information content, as introduced in [12] and analyzed in
detail in [13].

From experiments only binding words are known. Non-
binding words, for several reasons, can hardly be determined
experimentally. Hence, only positive examples are given and
can be used for estimating the right classification parameters
e. In addition, the number κ of experimentally verified binding
words is quite small, of the order of 10 to 100. The task is
to estimate the dividing hyperplane (e, Emin) based on these
few training words.

The Profile-Matrix simply takes the vector p = 〈w〉E
pointing onto the center of gravity of the experimentally
verified binding words as an estimation for the orientation of
the hyperplane which divides the hypersphere into the binding
word segment and the non-binding word segment. This is



equivalent to taking the vector pointing from the center of
gravity w̄ of all words (the center of the 3L-dimensional
hypersphere) onto 〈w〉E . This can be seen if we calculate
the scalar product of an arbitrary word w with the vector
〈w〉E − w̄. One obtains

(〈w〉E − w̄)
T

w = 〈w〉TEw − w̄
T
w

= p
T
w − L/4,

since w̄ = (1/4, 1/4, . . . , 1/4)T , and since w contains L
ones and 3L zeros. Except for an offset in the threshold
Smin this is equivalent to (1). Additional technical details
about transformations of the normal vector which leave the
classification invariant are provided in the Appendix.

V. BINDING-MATRIX AS

MAXIMUM-LIKELIHOOD-ESTIMATION

The Profile-Matrix approach does not yield the maximum
likelihood estimation of the orientation of the dividing hyper-
plane e. For estimating e by maximum likelihood, we have to
determine those (e, Emin) which maximize the likelihood

P (WE
B
|e, Emin) =

∏

w∈WE

B

P (w|e, Emin) (3)

of obtaining WE
B

as the set of experimentally verified binding
words. P (w|e, Emin) is the likelihood of finding word w at
a binding site, given the binding parameters (e, Emin).

P (w|e, Emin) is only non-zero for words which lie on the
binding word hypersphere segment, i.e. for which e

T
w ≥

Emin is valid. Words which fulfill this constraint are equally
likely to be found at binding sites. Hence, for words on the
binding word hypersphere segment P (w|e, Emin) = 1/k is
valid.

The likelihood P (WE
B
|e, Emin) of finding the whole set

WE
B

as binding words is only non-zero for hyperplanes
(e, Emin) for which all the w ∈ WE

B
are on the binding word

segment. If this is the case, P (WE
B
|e, Emin) = k−κ is valid.

Obviously, this expression increases with smaller values for k,
i.e. for smaller binding word segments. Hence, we obtain as
maximum likelihood estimation for (e, Emin) the hyperplane
which cuts off the smallest binding word hypersphere segment
by leaving all w ∈ WE

B
on this segment.

This is equivalent to the plane q which separates the training
data points w ∈ WE

B
from the center of gravity w̄ with the

maximum distance d. This is illustrated in Fig. 2. The 4×L-
matrix (or 4L-vector) q which determines the orientation of
this plane we call Binding-Matrix (BM). For determining the
Binding-Matrix we have to find the distance d and normal
vector q for which

d
!
= max (4)

under the constraints

||q||2 = 1 and q
T (w − w̄) ≥ d ∀ w ∈ WE

B
.

This is a constrained optimization problem with a linear target
function, a quadratic constrained (normalization of the normal
vector of the plane) and κ linear constraints. We will show

d

w

Fig. 2. The maximum likelihood estimation of the binding word distribution
is given by the smallest sphere segment which still carries all training data
points. Hence, one has to look for the plane which ”cuts off” the smallest
segment while keeping all data points on this segment. This is the plane
which has the largest distance d to the center of the sphere.

that, under certain conditions, this can be transformed into a
Quadratic-Programming-Problem.

VI. QUADRATIC-PROGRAMMING-PROBLEM

We assume that the binding word segment is smaller than
the non-binding word segment. This is the biologically relevant
case. Then, the maximal distance dmax is positive and we can
restrict our search on positive d. Under these conditions we
can obtain the Binding-Matrix by solving the slightly modified
constrained optimization problem

d2 !
= max (5)

under the constraints

||q||2 = 1, d > 0, and q
T (w − w̄) ≥ d ∀ w ∈ WE

B
.

Similar to the calculation of the maximum margin in the
Support-Vector-Machine framework [14], we now can define
q
′ = q/d and obtain d2 = ||q′||−2. This transforms our

constrained optimization problem above into the Quadratic-
Programming-Problem

||q′||2
!
= min q

′T (w − w̄) ≥ 1 ∀ w ∈ WE
B

. (6)

This Quadratic-Programming-Problem can easily be solved by
a number of standard procedures. After having obtained q

′,
there are a number of different ways to normalize q

′, all of
which leave the classification result invariant. In the Appendix
we describe canonical forms of the classifier matrix.

The BM as the solution of this Quadratic-Programming-
Problem is determined only by a subset of the training data,
i.e., only by those training data points which mark the bound-
aries of the smallest sphere segment. In some respects these
”support binding words” correspond to the support vectors of
the SVM.

VII. RESULTS AND COMPARISON

For predicting whether the word wi at position i on the
genome is a binding word and, therefore, i is a binding site,
the BM is employed in the same way as the PM. First, the
so-called score value S(wi) = q

T
wi is calculated, and if this

score exceeds a prespecified minimum value Smin, the word
wi is considered to be a binding word and i to be a binding
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Fig. 3. The ”true” hyperplane ”cuts off” a segment containing k binding
words. The estimated hyperplane can be shifted by choosing different thresh-
old values. The threshold value for which the estimated hyperplane ”cuts off”
the smallest segment including the ”true” segment is the threshold value for
100% sensitivity. The lower the number k̃ of words which are then recognizes
as binding words, the better the estimation.

site. This implements the linear classification with the BM
determining the dividing hyperplane.

For all linear classifiers investigated here, the threshold
value Smin determines how many words are classified as bind-
ing words (see Fig. 3). Thus, the threshold value Smin can be
used to control the sensitivity/specificity of the binding word
recognition procedure. Lowering the threshold value increases
sensitivity for a decrease in specificity and vice versa. As one
reduces Smin, more and more words are classified as binding
words. Consequently, sensitivity is increased. At a certain
setting of Smin, all binding words are correctly classified, i.e.
sensitivity reaches 100%. By lowering the threshold beyond
this point, only more and more false positives are introduced,
resulting in reduced specificity.

The number of words which are predicted to be binding
words at the threshold setting which yields 100% sensitivity
is denoted by k̃. This is illustrated in Fig. 3. The k̃ words
include all k ”true” binding words (by definition), and a
number of false positives, i.e. non-binding words which are
incorrectly predicted to be binding words. Thus, the smaller
k̃, i.e. the smaller the difference k̃−k, the larger the specificity
1 − (k̃ − k)/(K − k) at 100% sensitivity and the better
the estimation approach. This fact is used for testing and
comparing the different approaches.

The true number of binding words, k, is unknown in prac-
tice, and, therefore, specificity cannot be measured directly.
However, comparative specificity assessment is possible. Con-
sider two normal vectors u and v, with values k̃u and k̃v,
and assume that u achieves a higher specificity than v at
100% sensitivity. This implies that 1 − (k̃u − k)/(K − k) >
1− (k̃v−k)/(K−k). From this, one obtains k̃u/K < k̃v/K.
Thus, a smaller k̃/K ratio indicates higher specificity.

The problem of testing and comparing the classification
performance of the PM and the BM is the very low number of
binding words which are typically known for a transcription
factor, i.e., the low number of data points. The most compre-
hensive database for transcription factors is the TRANSFAC
database [15]. Even there, the sets of experimentally verified
binding words only have a size ranging between κ = 1 and
κ = 73. A division of such small data sets into training and test

sets reduces the number of training data even further. There-
fore, we perform two different tests. The first test includes
almost all transcription factors, also the ones with small sets
of binding words, and performs a leave-one-out test (test set
of size 1 only). The second test includes only transcription
factors with large sets of binding words, which then allow
larger test sets. In these tests 2/3 of the data set were used for
training and 1/3 for testing.

After having calculated the Profile-Matrix and Binding-
Matrix from the training set, one has to test whether the unseen
test words will be recognized as binding words. This, however,
depends on the threshold value Smin one chooses. For our
performance tests, we ask how far one has to reduce the
threshold value Smin to reach a sensitivity which recognizes
all known binding words, including those in the test set. This
is taken as an approximation of the point of 100% sensitivity
and used to estimate k̃/K, the fraction of of words which
have to be classified as binding words for this sensitivity. The
estimation is performed by generating and scoring 100 000
random words and determining the fraction of words which
satisfy S(w) ≥ Smin. As discussed above, the lower the
fraction k̃/K, the higher the specificity at 100% sensitivity
and the better the real hyperplane is estimated.

From the TRANSFAC data base we were able to select 95
binding word sets with a size of at least 5. For these sets, the
leave-one-out-test was performed. One binding word of the
binding word set is removed for testing, the rest is used for
training. This is repeated until each binding word has been
used for testing. Over all data sets we obtained 1604 k̃/K
values. The average binding word set size was κ = 17 and
the maximum number was κ = 73. In Fig. 4 the result is
shown for the PM, the BM and a simple consensus sequence.
The consensus sequence in its orthogonal coding is a matrix
(vector) c which in each column l = 1, . . . , L contains a one
(cbl = 1) for the base b which occurs most frequently and three
zeros (cbl = 0). As for the PM and BM a score S(w) = c

T
w

is calculated, and if this score exceeds the chosen threshold
Smin, the word w is classified as a binding word.

The top of Fig. 4 shows a box-plot of the distribution of
the k̃/K values one obtains for each approach. The Binding-
Matrix can reduce the fraction k̃/K of words which have to be
classified as binding words to recognize all the known binding
words by about an order of magnitude compared to the Profile-
Matrix. This increase in specificity is about the increase the
PM was able to achieve compared to the consensus sequence.
The consensus sequence was the common approach before it
was improved by the Profile-Matrix.

Figure 4 also shows the result one obtains if one restricts the
leave-one-out test to binding word sets of at least 30 words.
There are 13 such sets, and one obtains 508 k̃/K values, i.e. on
average each set consisted of κ = 39 experimentally verified
binding words. In this case the performance increase becomes
even more significant.

For the 13 sets of binding words from TRANSFAC which
contain at least κ = 30 binding words, in addition to the leave-
one-out test, the performance test based on larger test sets
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Fig. 4. The results of the leave-one-out-test for transcription factors with at
least 5 (top) and at least 30 (bottom) experimentally verified binding words.
The box-plots show the distribution of the k̃/K values. The k̃/K value is
an indicator for the specificity of the classifier at 100% sensitivity. Boxes
indicate the quartiles, the horizontal line in the box shows the median. The
bars extend to the minimal and the maximal value. Compared to the Profile-
Matrix (PM), the Binding-Matrix (BM) achieves an increase in recognition
performance of about an order of magnitude, about the same increase the PM
was able to achieve compared to the Consensus Sequence (Cons).

was carried out. The test sets were generated by randomly
chosing 1/3 of the binding words of a set. The remaining
words were put into the corresponding training set. For each
of the 13 binding word sets, 10 000 such separations into
training and test sets were generated independently, and k̃/K
was estimated as described above.

Figure 5 shows the result of this performance test. For
the Consensus Sequence and the Profile-Matrix the k̃/K
distribution is about the same as in the leave-one-out test
(bottom of Fig. 4). A reduced training set size does not seem
to reduce the estimation quality. This might be due to the fact
that the specificity levels achieved by the Consensus Sequence
and the Profile-Matrix is already comparatively low. More than
90% of the sites classified as binding sites one has to expect
to be false positives at this sensitivity level. This is different
for the Binding-Matrix. In both tests only the binding matrix
was able to reach k̃/K values of the order of magnitude of
10−3, which one expects from experimental observations and
theoretical analyzes [12], [13]. On this specificity level one
can expect that the classifier reacts much more sensitively
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Fig. 5. Results of the performance evaluation based on 1/3 test sets. Boxes
indicate the quartiles, the horizontal line in the box shows the median. The
bars extend to the minimal and the maximal value.

to withheld training data. Indeed, the Binding-Matrix loses
estimation performance by reducing the training data set by
1/3. The improvement by the Binding-Matrix now amounts to
approximately half an order of magnitude instead of one order
of magnitude as in the leave-one-out test.

VIII. CONCLUSION

We have presented a novel approach to the problem of
predicting the binding sites of sequence specific DNA-binding
proteins, e.g., transcription factors. The approach determines
the distribution of binding words within the space of orthogo-
nally coded words by maximum likelihood estimation. Since
there are good reasons to assume that bases contribute inde-
pendently to the binding energy, at least to a good approxima-
tion, and under the assumption that at binding sites a minimum
binding energy is required, binding and non-binding words
are linearly separated within the word space. The question we
posed was how to optimally determine this linear separation
from a small set of known binding words. Does the widespread
Profile-Matrix provide the optimal solution? This task is well-
known from machine learning: how to determine the optimal
linear classifier from a small set of positive examples. First,
we analyzed the structure of the data distribution. We showed
that all the patterns (words) are points on a 3L-dimensional
hypersphere within the 4L-dimensional word space. From this
it followed that the set of binding words is given by a segment
”cut” from this 3L-dimensional hypersphere by a hyperplane.

The Profile-Matrix estimates this hyperplane by taking as
its normal vector the vector which points onto the center of
gravity of the given training data points (the usually small
set of experimentally verified binding words). This converges
against the correct solution for an increasing number of
training points, but only suboptimally. Particularly for small
sets of training data one expects the maximum likelihood
estimation to provide superior results. We have shown that the
maximum likelihood estimation of the linear separation can
be obtained from solving a Quadratic-Programming-Problem
which, in some respects, is similar to the one which has to



be solved in the context of the Support-Vector-Machine. This
yields what we call Binding-Matrix (BM).

We tested and compared the BM and PM on data from the
TRANSFAC database. Because of the small size of most data
sets, first a leave-one-out-test was chosen. Then, with data sets
of sufficient size, in addition performance tests with test sets of
1/3 of the known binding words were carried out. After having
determined the Profile- and Binding-Matrix for a transcription
factor from the training set, we calculated the fraction of words
each matrix has to classify as binding words to recognize all
known binding words including the ”unseen” test words. This
test gives a measure for the specificity of each approach at the
same sensitivity level. The larger this fraction to successfully
recognize the test words, the lower the specificity and the
worse one has to rate the overall recognition performance.
This test showed an increase in recognition performance of
the Binding-Matrix of about an order of magnitude compared
to the Profile-Matrix.
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APPENDIX: CANONICAL NORMAL FORM FOR

MATRIX-BASED CLASSIFIERS

With a normal vector v and a threshold score V given as
parameters, a linear classifier is unambiguously specified by
the inequality

v
T
w ≥ V (7)

However, in our case the reverse is not true: Because all
words lie in a 3L-dimensional linear subspace of R

4L, the
plane of separation can be rotated such that its intersection
with the subspace populated by the words remains unchanged.
There exist L rotational degrees of freedom of this kind,
and one additional degree of freedom due to scaling. This
appendix presents a straightforward procedure for mapping
all inequalities (7) that describe the same classifier to one
unique form, which is the canonical normal form, denoted
by (vc, Vc).

The degrees of freedom are reflected by the fact that the
classification implied by a hyperplane remains unchanged
when a constant c is added to V and to all four components in
v belonging to one position l. Formally, one can construct a
matrix u from v by letting ubl = vbl + c for b ∈ {A, C, G, T}
and a fixed l, and a corresponding threshold U = V +c. Then,
the hyperplanes specified by u

T
w ≥ U and by v

T
w ≥ V

implement identical classifiers on W , since u
T
w = v

T
w + c

is valid for each w ∈ W .
It is convenient to translate the origin of the 4L-dimensional

coordinate system to w̄. After translation, words are repre-
sented by w

′ = w − w̄, with
∑

b∈{A,C,G,T}

w′
bl = 0, 1 ≤ l ≤ L (8)

being valid. With V ′ = V −v
T
w̄, Equation 7 can be rewritten

as v
T
w

′ ≥ V ′.
The rotational degrees of freedom are disambiguated by

requiring that the normal vector v
′ must be in the 3L-

dimensional subspace occupied by the words, i.e that the
v′bl must satisfy Equation (8). The parameters meeting this
requirement can be obtained by computing cl = −

∑
b vbl/4.

Then one constructs v
′ by letting v′

bl = vbl + cl and V ′′ =

V ′ +
∑L

l=1
cl.

The scaling degree of freedom is removed by requiring the
canonical normal vector to have unit length, i.e. ||vc|| = 1.
This is achieved by simply multiplying the normal vector and
the threshold with 1/||v′||. Let vc = v

′/||v′|| and Vc =
V ′′/||v′||. The inequality v

T
c w

′ ≥ Vc is the canonical normal
form that represents the classifier described by the original
inequality.

A canonical normal vector can be transformed into a canoni-
cal profile matrix. Let m = −minb,l[vc]bl. Then, the canonical
profile matrix is defined by vp = vc/(4m) + w̄. With the
corresponding threshold Vp = Vc/(4m) + L/4, the canonical
profile matrix provides an alternative to the canonical normal
form, e.g. if an application cannot process the negative values
in the canonical normal vector correctly.


