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Abstract. We introduce the OneClassMaxMinOver (OMMO) algorithm
for the problem of one-class support vector classification. The algorithm
is extremely simple and therefore a convenient choice for practitioners.
We prove that in the hard-margin case the algorithm converges with
O(1/

√
t) to the maximum margin solution of the support vector approach

for one-class classification introduced by Schölkopf et al. Furthermore, we
propose a 2-norm soft margin generalisation of the algorithm and apply
the algorithm to artificial datasets and to the real world problem of face
detection in images. We obtain the same performance as sophisticated
SVM software such as libSVM.

1 Introduction

Over the last years, the support vector machine [1] has become a standard ap-
proach in solving pattern recognition tasks. There are several training techniques
available, e.g. SMO [2]. Although these methods seem to be simple, they are hard
to understand without a background in optimisation theory. Hence, they are dif-
ficult to motivate when explained to practitioners. In many cases, in particular in
industrial contexts, where external libraries or other third party software cannot
be used due to various reasons, these techniques are not applied, even though
they might be beneficial for solving the problem.

In many applications one has to cope with the problem that only samples of
one class are given. The task is to separate this class from the other class that
consists of all outliers. Either only few samples of the outlier class are given or
the outlier class is missing completely. In these cases two-class classifiers often
show bad generalisation performance and it is advantageous to employ one-class
classification.

Approaches to one-class classification can be divided into three groups: den-
sity estimators, reconstruction methods, and boundary methods. The first and
the second group are the most powerful because they derive a model of the data
that is defined everywhere in the input space. An advantage of the boundary
methods is that they consider an easier problem, that is, describing only the
class boundaries, instead of describing the whole distribution of the data.

In the present work, we describe a very simple and incremental boundary
method based on the support vector approach. It provides the same solution



as comparable techniques such as SMO, despite being extremely simple and
therefore applicable for practitioners who are not within the field of machine
learning.

2 Previous Work

In the context of one-class classification several boundary methods have been
developed. We only want to give a brief description of two approaches that have
been introduced almost simultaneously. Tax et al [3] consider the problem of
finding the smallest enclosing ball of given data samples xi ∈ X , i = 1, . . . , L
that is described by the radius R and centre w:

min
w,R

(
R+

1
νl

∑
i

ξi

)
s.t. ∀i : ‖φ(xi)−w‖ ≤ R− ξi ∧ ξi ≥ 0 . (1)

This is the soft version of the problem. It deals with outliers by using slack
variables ξi in order to allow for samples that are not located inside the ball
defined by w and R. For ν → 0 one obtains the hard-margin solution, where
all samples are located inside the ball. Here φ denotes a mapping of the data
samples to some feature space.

Schölkopf et. al [4] show that one-class classification can be taken as two-class
classification, where the other class is represented by the origin. They consider
the problem of finding the hyperplane w that separates the data samples from
the origin with maximum distance ρ:

min
w,ξ,ρ

(
1
2
‖w‖2 +

1
νl

∑
i

ξi − ρ
)

s.t. ∀i : wTφ(xi) ≥ ρ− ξi ∧ ξi ≥ 0 . (2)

Again, the soft-margin problem is shown. It allows for samples that are misclas-
sified by using slack variables ξi. For ν → 0 one obtains the hard-margin solution
that enforces correct classification of all given samples.

In [4] it is shown that (1) and (2) turn out to be equivalent, if the φ(xi) lie
on the surface of a sphere. Then, the radius R of problem (1) and the margin ρ
in (2) can easily be computed by choosing a support vector on the boundary. If
the Gaussian kernel is used

K(x,y) = 〈φ(x), φ(y)〉 = exp
(−‖x− y‖/2σ2

)
(3)

in order to implicitly map the given samples to some feature space, the φ(xi)
have unit norm and this condition is satisfied. To make the problem solvable,
the origin has to be linearly separable from the target class. This precondition is
also given if a Gaussian kernel is used. In the following we require that the data
has been mapped to some feature space where these conditions hold, i.e. linear
separability of the origin and unit norm of all samples.



3 OneClassMaxMinOver

In this section we describe a very simple incremental algorithm for one-class-
classification called OneClassMaxMinOver(OMMO). This algorithm is closely
connected to problem (2). It is inspired by the MaxMinOver algorithm for two-
class classification proposed in [5]. We consider the problem of finding the hy-
perplane w∗ passing the origin and having maximum margin ρ∗ with respect
to the given data samples. Finding this hyperplane is equivalent to solving the
optimisation problem (2), that is finding the hyperplane w∗ that separates the
given data samples with maximum margin ρ∗ from the origin (see Fig. 1).
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Fig. 1. Some data samples
having unit norm are shown
as well as the solutions of the
optimisation problem (4), i.e.
H1 and the solution of (2), i.e.
H2.

Mathematically, we are looking for the solution of the following optimisation
problem

w∗ = arg max
w

(
min
xi

(
wTxi

))
s.t. ‖w‖ = 1 . (4)

The margin ρ∗ is obtained by

ρ∗ = min
xi

(
wT
∗ xi

)
. (5)

In the following wt denotes the approximation of w∗ at time t. During the
learning process the constraint ‖w‖ = 1 is dropped. The algorithm starts with
w0 = 0 and after tmax learning iterations the norm of the final approximation
wtmax is set to one. In each learning iteration, the algorithm selects the sample
that is closest to the current hyperplane defined by wt

xmin(t) = arg min
xi

(
wT
t xi

)
. (6)

For each given training sample xi there is a counter variable αi that is increased
by 2 whenever the sample is selected as xmin(t):

αi = αi + 2 for xmin(t) = xi . (7)

X ′(t) denotes the set of samples xj for which αj > 0 holds at time t. Out of
this set, the algorithm selects the sample being most distant with respect to the
current hyperplane defined by wt:

xmax(t) = arg max
xj∈X ′(t)

(
wT
t xj

)
. (8)



Whenever a sample is selected as xmax(t), its associated counter variable is
decreased by 1:

αi = αi − 1 for xmax(t) = xi . (9)

The approximation of w∗ in learning iteration t+ 1 is given by

wt+1 =
L∑
i=1

αixi . (10)

Note that (7) and (9) can be combined to the learning rule

wt+1 = wt + 2xmin(t)− xmax(t) . (11)

Altogether, we obtain algorithm 1 for incremental one-class classification.

Algorithm 1: OneClassMaxMinOver. With h(xi) =
∑L
j=1 αjx

T
j xi

αi ← 0 ∀i = 1, ..., N
for t = 0 to tmax do

xmin(t)← arg min
xi∈X

h(xi)

xmax(t)← arg max
xi∈X ′(t)

h(xi)

αmin ← αmin + 2
αmax ← αmax − 1

end

α← α/
pP

i αih(xi)
ρ← min

xi∈X
h(xi)

In section 3.1 we are going to prove that for t → ∞ the following propositions
hold:

– wt/‖wt‖ converges at least as O(1/
√
t) to w∗.

– αi > 0 only holds for samples xi having distance ρ∗ with respect to the
hyperplane w∗, i.e. support vectors.

As mentioned before, we require that the data set has been mapped into some
feature space where all samples have unit norm and can be linearly separated
from the origin. However, this has not to be done explicitly. It can also be
achieved by replacing the standard scalar product with a kernel that implements
an implicit mapping to a feature space having the required properties. In case
of the OMMO algorithm this corresponds to replacing the function h(xi) with

h(xi) =
L∑
j=1

αjK(xj ,xi) , (12)

where K(xj ,xi) is an appropriate kernel function. For a discussion of kernel
functions see, for example, [6].



3.1 Proof of Convergence

Our proof of convergence for the OneClassMaxMinOver algorithm is based on
the proof of convergence for MaxMinOver by Martinetz [5], who showed a con-
vergence speed of O(1/

√
t) in the case of two-class classification.

Proposition 1. The length of wt is bounded such that ‖wt‖ ≤ ρ∗ t+ 3
√
t.

Proof. This is done by induction and using the properties that

ρ∗ ≥ ρt =
wT
t xmin(t)
‖wt‖ ⇒ ρ∗ ‖wt‖ ≥ wT

t xmin(t) , (13)

∀ i : ‖xi‖ = 1 , and (14)
∀ t : xmin(t)Txmax(t) = cosβ ‖xmin(t)‖︸ ︷︷ ︸

=1

‖xmax(t)‖︸ ︷︷ ︸
=1

≥ −1 . (15)

The case t = 0 is trivial and for t→ t+ 1 it follows that

‖wt+1‖2 (11)
= wT

t wt + 2wT
t (2xmin(t)− xmax(t)) + (2xmin(t)− xmax(t))2

= wT
t wt + 2wT

t xmin(t) + 2
(
wT
t xmin(t)−wT

t xmax(t)
)︸ ︷︷ ︸

≤0

+

4xmin(t)Txmin(t) + xmax(t)Txmax(t)− 4xmin(t)Txmax(t)
(14),(15)

≤ wT
t wt + 2wT

t xmin(t) + 9
(13)

≤ wT
t wt + 2ρ∗‖wt‖+ 9

≤
(
ρ∗ t+ 3

√
t
)2

+ 2ρ∗
(
ρ∗ t+ 3

√
t
)

+ 9

= ρ2
∗ t

2 + 2ρ2
∗ t+ 6ρ∗ t

√
t+ 6ρ∗

√
t+ 9t+ 9

≤ ρ2
∗ (t2 + 2t) + 6ρ∗ (t+ 1)

√
t+ 9(t+ 1) + ρ2

∗

≤ ρ2
∗ (t+ 1)2 + 6ρ∗ (t+ 1)

√
t+ 1 + 9(t+ 1)

=
(
ρ∗ (t+ 1) + 3

√
t+ 1

)2
.

ut

Theorem 1. For t→∞ the angle γt between the optimal direction w∗ and the
direction wt found by OMMO converges to zero, i.e. limt→∞ γt = 0.

Proof.

cos γt =
wT
∗wt

‖wt‖

=
1
‖wt‖

t−1∑
i=0

wT
∗ (2 xmin(i)− xmax(i)) (16)



=
1
‖wt‖

t−1∑
i=0

wT
∗ xmin(i)︸ ︷︷ ︸
≥ρ∗

≥ 1
‖wt‖ρ∗ t (17)

Prop.1

≥ ρ∗ t

ρ∗ t+ 3
√
t

=
1

1 + 3
√
t

ρ∗ t

≥ 1− 3
ρ∗
√
t

t→∞−→ 1

From (16) to (17) we have used that a sample can only be forgotten, if it was
learnt before, such that ∀xmax(t) ∃xmin(t′) , t′ < t : xmax(t) = xmin(t′). ut
Theorem 2. Beyond some finite number of iterations t̂ the set X ′(t) will always
consist only of support vectors.

Proof. First, we show that after some finite number of iterations t′ the xmin(t)
with t > t′ will always be a support vector. We use an orthogonal decomposition
of wt as shown in Fig. 2. X sv will denote the set of true support vectors.
For an indirect proof we assume that a finite number of iterations t′ where
xmin(t) with t > t′ will always be a support vector does not exist, i.e.
@ t′ <∞ ∀ t , t′ < t : xmin(t) ∈ X sv.

⇒ ρ∗ ≥ ρt =
wT
t xmin(t)
‖wt‖

(20)
=

(cos γt‖wt‖w∗ + ut)
T

xmin(t)
‖wt‖

= cos γtwT
∗ xmin(t) +

uTt xmin(t)
‖wt‖

(21)
= cos γt︸ ︷︷ ︸

t→∞−→ 1

wT
∗ xmin(t)︸ ︷︷ ︸
≥ρ∗

+
uTt xmin(t)
‖ut‖︸ ︷︷ ︸
≤1

sin γt︸ ︷︷ ︸
t→∞−→ 0

(18)

If xmin(t) is not a support vector, w∗xmin(t) > ρ∗ holds. Due to (18), there is
a t′ where xmin(t) being a non-support vector and t > t′ inevitably leads to a
contradiction. Note that for t > t′ only support vectors are added to the set
X ′(t), i.e. there is a finite number of non-support vectors contained in the set
X ′(t). As a consequence after a finite number of iterations t′′ also xmax(t) will
always be a support vector.

Now, we show that all non-support vectors in the set X ′(t) will be removed.
Assumption: There exists a sample x that is not a support vector but it remains
in the set X ′(t), i.e. ∃x : x 6∈ X sv ∧ x ∈ X ′(t) for all t. This means that

wt

‖wt‖x <
wt

‖wt‖xmax(t)︸ ︷︷ ︸
t→∞−→ ρ∗

(19)

always holds. This leads to a contradiction since after a finite number of iterations
xmax(t) will always be a support vector.

ut



ut

w∗
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cos γt‖wt‖
wt = cos γt‖wt‖w∗ + ut (20)

‖ut‖ = ‖wt‖ sin γt (21)

‖w∗‖ = 1

Fig. 2. Orthogonal decomposition of wt and properties that hold within this decom-
position.

3.2 Soft-OneClassMaxMinOver

So far, we only have considered the hard-margin problem. In order to realise a
2-norm soft-margin version of the OMMO algorithm, we consider the quadratic
optimisation problem:

min
w,ξ

(
1
2
‖w‖2 +

C

2

∑
i

ξ2i

)
s.t. ∀i : wTφ(xi) ≥ 1− ξi . (22)

In the hard-margin case (C →∞) this is equivalent to the optimisation problem
(4). Note, that compared to the optimisation problems (1) and (2) the con-
straint on each slack variable (ξi ≥ 0) disappears. By constructing the primal
Lagrangian of (22), setting the partial differentiations to zero and rearranging
[6], we obtain

min
α

∑
i

αi − 1
2

∑
i,j

αiαj

(
K(xi,xj) +

1
C
δij

) s.t. ∀i : αi ≥ 0 , (23)

where δij is the Kronecker delta which is 1 if i = j, and 0 otherwise. As men-
tioned in [6] this can be understood as solving the hard-margin problem in a
modified kernel space. The modified kernel is K(xi,xj) + 1

C δij . Hence, in order
to implement a 2-norm soft-margin version of OMMO, we modify algorithm 1
such that

h(xi) =
L∑
j=1

αj

(
K(xj ,xi) +

1
C
δij

)
. (24)

4 Experiments & Results

We applied the OMMO algorithm to artificial datasets and a real-world problem
using Gaussian kernels. We created a sinusoid and an xor dataset each consisting
of 250 samples (Fig. 3). The hyperparameters were set to extremal values and to
more appropriate ones that can be determined, for instance, by cross-validation.
The results on the artificial datasets are shown in Fig. 3. Similar to the approach
(2) that implements a 1-norm slack term, different solutions ranging from hard
to soft margin can be realised by controlling the parameter C, i.e. the relevance



of outliers can be controlled. Furthermore, we applied the OMMO algorithm
to the problem of face detection where we used the MIT-CBCL face detection
dataset1 that contains 2901 images of faces and 28121 images of non-faces of
size 19x19 pixels. The dataset is divided into a training set containing 2429 faces
and 4548 non-faces and a test set containing 472 faces and 23573 non-faces. We
used the raw data but performed the preprocessing steps described in [7] to re-
duce the within-class variance. Afterwards, we took the training set to perform
a simple grid search over σ,C and chose randomly 1215 faces to train OMMO
and tested the performance on a test set with 1214 faces and 4548 non-faces.
To reduce the variance we performed 25 runs at all combinations of σ,C. The
performance of OMMO for a fixed σ,C was evaluated by the equal-error-rate
of the receiver-operator-characteristics (ROC). Having determined the optimal
parameters σ,C, we trained OMMO with the whole training set of 2429 faces
and computed the ROC curve of the 24045 test samples. The same steps were
performed using the libSVM [8], except that here we used the parameter ν to
control the softness. A comparison between both ROC curves is depicted in Fig.
4. Although these two approaches differ significantly in their implementation
complexity, their performance is almost equal. The execution time of OMMO
and libSVM cannot be compared directly because it depends heavily on imple-
mentation details.

5 Conclusions

Based on an existing two-class classification method, we proposed a very sim-
ple and incremental boundary approach, called OneClassMaxMinOver. OMMO
can be realised by only a few lines of code,which makes it interesting particularly
for practitioners. We proved that after a finite number of learning steps OMMO
yields a maximum margin hyperplane that is described only by support vectors.
Furthermore, we showed that the speed of convergence of OMMO is O(1/

√
t)

where t is number of iterations. Considering the ideas described in [9], even a
O(1/t) convergence of OMMO can be expected.

By simply using a modified kernel function K ′(x,y) = K(x,y) + 1
C δxy

OMMO can also realise a soft maximum margin solution controlled by the soft-
ness parameter C. Thus, OMMO can cope with datasets that also contain out-
liers.

In the future, a closer look at convergence speed and bounds on the target
error will be made. Moreover, the problem of parameter validation will be exam-
ined, since in many one-class problems only target objects are available. Thus,
standard validation techniques cannot be applied. If it is not possible to evaluate
the target error, the complexity or volume of the boundary description have to
be estimated in order to select good hyperparameters. Since, simple sampling
techniques fail to measure the volume in high-dimensional input spaces, more
sophisticated methods need to be derived.

1 http://cbcl.mit.edu/software-datasets/FaceData.html



(a) 0.3, 106 (b) 0.3, 0.5 (c) 0.1, 1.5 (d) 0.07, 106

(e) σ = 0.19, C = 104 (f) σ = 0.2, C = 20

(g) 0.35, 106 (h) 0.35, 0.3 (i) 0.1, 6.5 (j) 0.1, 106

Fig. 3. Our algorithm applied to two exemplary artificial datasets – sinusoid, and
xor. The parameters (σ,C) are shown above each graph. The stars depict support
vectors that lie inside the hypersphere, dark circles depict support vectors outside the
hypersphere. All other samples as well as the boundary are represented in white. In the
first and third row extremal values for σ and C were chosen to achieve hard-margin
((a), (d), (g), (j)) as well as soft margin solutions ((b), (c), (h), (i)). In (b), (c), and
(h) there is no support vector which lies inside the hypersphere and so the boundary is
only influenced by support vectors from outside the hypersphere. The best solutions for
the datasets are shown in the second row, where the values lie in between the extremal
hard and soft margin solutions.



(a) ROC curve using OMMO

C = 2.395 ∗ 105, σ = 1.9879

AUC = 0.868600

EER = 0.209230

|SV| = 0.0327 %
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(b) ROC curve using libSVM

ν = 0.09, σ = 1.9545
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Fig. 4. The receiver-operator-characteristics shows that the two algorithms achieve
the same performance on a test set of 472 faces and 23573 non-faces. Both models
obtained by parameter validation are rather hard- than soft-margin (C large, ν small).
They have a Gaussian width of σ ≈ 1.9 and the fraction of support vectors is almost
equal. The performance measured by the area under curve (AUC) for OMMO is the
same as for libSVM. This holds also for the equal-error-rate (EER).
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