
Learning optimal features for visual pattern recognition

Kai Labuscha, Udo Siewertb, Thomas Martinetza, and Erhardt Bartha

aInstitute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany;
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ABSTRACT

The optimal coding hypothesis proposes that the human visual system has adapted to the statistical properties
of the environment by the use of relatively simple optimality criteria.

We here (i) discuss how the properties of different models of image coding, i.e. sparseness, decorrelation,
and statistical independence are related to each other (ii) propose to evaluate the different models by verifiable
performance measures (iii) analyse the classification performance on images of handwritten digits (MNIST data
base). We first employ the SPARSENET algorithm (Olshausen, 1998) to derive a local filter basis (on 13 × 13
pixels windows). We then filter the images in the database (28 × 28 pixels images of digits) and reduce the
dimensionality of the resulting feature space by selecting the locally maximal filter responses. We then train a
support vector machine on a training set to classify the digits and report results obtained on a separate test
set. Currently, the best state-of-the-art result on the MNIST data base has an error rate of 0,4%. This result,
however, has been obtained by using explicit knowledge that is specific to the data (elastic distortion model
for digits). We here obtain an error rate of 0,55% which is second best but does not use explicit data specific
knowledge. In particular it outperforms by far all methods that do not use data-specific knowledge.

Keywords: natural image statistics, feature extraction, hand-written digit recognition, support vector machine,
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1. INTRODUCTION

For a given visual pattern recognition problem such as digit recognition or face finding, one often divides the
solution in two parts. Firstly, specific features are extracted from the input data. Secondly, based on the extracted
features, a classifier is trained and used to perform the recognition task. Widely-used feature-extraction methods
are, for example, the PCA or wavelets.1

While the theoretical foundations of machine learning and classifier design are reasonably well understood,2

the methods for feature extraction are often selected according to heuristic principles that are based on experience
and problem-specific knowledge.

Ideally, the feature-extraction method should be adapted to the statistics of input data, i.e., it should extract
features that are relevant and useful for the given data set. However, a method that would automatically deliver
the optimal features for a given data set is still missing.

In an attempt to make some progress in this direction, we here investigate a method that has been proposed
as a model of human vision. The so-called optimal-coding hypothesis proposes that the human visual system has
adapted to the statistical properties of natural images.3–6 Different models of image synthesis were proposed,
such as the ICA7, 8 and Sparse Coding.9, 10 These models have been successfully employed to mimic properties
of V1 cells in the visual cortex.11–13 Additionally, methods for learning invariances of image transformations
such as Slow Feature Analysis14 were proposed that also reveal strong connections to the properties of the visual
system.15 Assuming that evolution optimised the visual system to cope with a broad range of visual tasks, one
would expect that a feature extraction system that is based on the same principles can be used for a wide class
of pattern recognition problems as well. We here analyse how well these models perform when used to solve a
technical pattern-recognition problem and compare the results with those obtained by state-of-the-art methods.

Recent results show that for natural images the gain in statistical independence obtained by methods like the
ICA is rather small, compared to more common methods like the PCA.16 Nevertheless, we here show that ICA
and Sparse Coding can considerably improve recognition performance compared to the PCA in a well-investigated
pattern-recognition problem. We choose a benchmark problem of handwritten-digit recognition (Fig 1) for which



Figure 1. Samples from the MNIST data set of handwritten digits.

many different methods have already been evaluated.17 In the same framework, we compare results obtained
with more common feature-extraction methods such as PCA and Wavelets against ICA and Sparse Coding.

2. FEATURE EXTRACTION

We here describe how we obtain the features to be used for classification. We first describe feature extractors that
are basis functions used to encode a local image patch. The feature extractors are either fixed and derived from
a specific theoretical framework (in case of the wavelets) or derived from the training data by machine-learning
techniques. The feature extractors, or basis functions, are then used to compute the features from the data to
be classified.

2.1. Gabor wavelets as feature extractors

The feature extractors of visual area V1 can be modelled as wavelets that do not require any adaptation to
the data at hand. Moreover, wavelet-based coding and feature extraction has been shown to be useful for a
number of technical applications. As an example of a wavelet function, a Gabor wavelet −→w j is determined by
its orientation αj , wavelength λj , bandwidth bj , phase φj and center x̂j :
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Gabor wavelets are a very common method for feature extraction. To assess how a simple set of Gabor filters
compares with the adaptive methods described below, we included them in our experiments.

2.2. Unsupervised learning of feature extractors

In the following we consider different unsupervised learning methods which can be used to compute basis functions
that are representative of the data in the sense that the input data can be reconstructed from the basis functions.
The learning methods differ with respect to the target criterion that defines which basis functions are selected
and they either postulate perfect reconstruction or allow for reconstruction errors (noise) in the model.

Furthermore, the features that we would like to obtain should be local, i.e., encode the local properties of an
image. Therefore we consider image patches I(x, y) of size N × N that are randomly drawn from the full-size



input images IF . We treat the I(x, y) as column vectors that contain the pixel values of the image patch arranged
in an appropriate scheme.

We aim at learning basis functions −→w j of the image patches I(x, y) that allow their reconstruction only from
the −→w j and some coefficients xj . We use PCA, ICA, and Sparse Coding to learn such features. All the above
methods can be described in the same image patch generation framework as follows. An image patch I(x, y) is
obtained from a linear combination −→x of the features −→w j . In addition, we may allow for an additive error term
−→ǫ that corresponds to a certain amount of noise that is present in the image patch generation model.

I(x, y) =

M
∑

j=1

−→w jxj + −→ǫ (4)

= W−→x + −→ǫ (5)

2.2.1. PCA

Equation (5) can be seen as basic image patch generation model of the PCA by assuming that −→ǫ = 0. In
this model, the xj are pairwise uncorrelated. The −→w j form an orthogonal basis of the I(x, y). If a sufficient
amount of observed data I(x, y) is available, the −→w can be obtained as the eigenvectors of the covariance matrix
C = 〈I(x, y)I(x, y)T 〉 of the observed distribution of the I(x, y). PCA can be motivated by other considerations
such as finding an orthogonal basis of the I(x, y) that consists of the directions of maximum variance of the
pattern data or compression with minimal mean square error.

2.2.2. ICA

Equation (5) also can be seen as the image patch generation model of noise-free ICA. Again −→ǫ = 0 is assumed.
Furthermore, the ICA postulates that the xj are pairwise statistically independent and stem from non-Gaussian
distributions. The ICA can be interpreted as a generalisation of the PCA that, in contrast to the PCA, not
only considers second-order statistics but also higher-order statistical properties of the pattern data such as the
kurtosis. The optimisation goal of ICA is not only the decorrelation of the coefficients xj but their statistical
independence. We used an ICA approach18 that maximises the non-Gaussianity of the xj

7 to achieve this goal.
This can result in coefficients xj that are sparse. Other motivations for the ICA exist, for example based on the
information maximisation principle.8

2.2.3. Sparse Coding

Within the Sparse Coding approach, equation (5) postulates an image-patch generation model where the xj

stem from sparse (leptocurtic) distributions. Hence, the primary goal of sparse coding is the maximisation of
the sparsity of the coefficients xj . The reconstruction error (noise) is assumed to be Gaussian. The model now
allows for balancing the reconstruction error −→ǫ against the sparsity of the coefficients xj . The maximisation of
non-gaussianity that can be obtained by standard ICA and the maximisation of the sparsity may lead to similar
results depending on the data. Therefore Sparse Coding can be seen as a more realistic generalisation of the
PCA (compared to the ICA) since it allows for a certain level of noise in the signal. There are different sparse-
coding approaches available.9, 19 We use the well-known Sparsenet algorithm9 that allows for controlling the
reconstruction error −→ǫ by the weight of the explicit sparseness criterion in the target function that is optimised.

2.3. Obtaining features from basis functions

We now use the feature extractors (basis functions) −→w j described above by assuming that the extracted features
represent relevant aspects of the data that are useful for the pattern recognition problem to be solved.

To extract the features, we measure the similarity between each possible N ×N patch I(x, y) of a given input
image and each feature −→w j by

Dj(x, y) =
〈I(x, y),−→w j〉

‖I(x, y)‖‖−→w j‖
. (6)
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Figure 2. The image is divided into a set of regular non-overlapping regions. In each of the image regions Ri we take
the maximum similarity value with respect to each basis function as defined in equation (7).

This is equivalent to a normalised convolution of the pattern images with the basis functions −→w j . Furthermore,
we assume that the relevant features cannot be localised at a certain pixel position, but that they are typically
located in a restricted region of the pattern image, i.e., we allow for some spatial uncertainty. Therefore, we
divide the input image into a set of regular, non-overlapping regions Ri, i = 1, ..., M2 and take as local feature
the maximum similarity of each region with respect to each basis function −→w j (see figure 2):

Dj(Ri) = max
x,y∈Ri

Dj(x, y) (7)

The final feature vector (that is finally fed to the classifier) of each input image consists of the maximum
similarity values of all regions with respect to all basis functions:

fI = (Dj(Ri)) , i = 1, ..., M2, j = 1, ..., N2 . (8)

3. SVM CLASSIFIER

The obtained feature vectors are used to train a 2-norm soft margin SVM with Gaussian kernels with the
SoftDoubleMaxMinOver learning algorithm.20 On the MNIST set, we need to solve a ten-class problem since
we have to differentiate ten digits. To accomplish this task using a SVM we trained 45 two-class classifiers that
each separate two different digits (one against one). The decisions of all the two-class classifiers are then counted
and finally the class with the majority of votes is selected. The hyperparameters of the SVM (kernel width γ

and softness parameter C) were optimised by cross-validation.

4. EXPERIMENTS

All the described methods for unsupervised learning of feature extractors were tested in the same setting in order
to ensure comparability. As mentioned before, the MNIST set of handwritten digits was used as a benchmark
because the data set is quite popular.21–23 The MNIST data set consists of 60000 training and 10000 test images of
size 28×28. Currently, the best results reported on the MNIST data set were obtained with convolutional neural
networks and elastic distortions (0.4% error rate23) and Virtual SVM with deskewing and jittering preprocessing
(0.56% error rate22). The best result obtained so far with methods that do not use additional data-specific
knowledge is 0.95% for a LeNet-5 network.21, 24 The procedure described in the following was applied in the
same way for each feature-extraction method mentioned in section 2.2.

The feature extractors −→w j were trained on image patches I(x, y) of size 13×13 that were extracted at random
positions from a subset of the training set. As mentioned before we set the number of feature extractors equal
to the number of dimensions of the image patches, resulting in 169 features −→w j (figure 3,4, 5).

Note that the preprocessing described in Fig 5 has been applied only in the learning phase to determine the
optimal basis functions, but not for the actual feature extraction for actual classfication.



Figure 3. Basis functions obtained for randomly drawn image patches of size 13 × 13 by using the PCA.

Figure 4. ICA basis functions of randomly drawn image patches of size 13× 13 obtained with the FastICA algorithm by
using its default parameters.



Figure 5. Basis functions of randomly drawn image patches of size 13 × 13 obtained from the Sparsenet algorithm.
In this case we applied a bandpass filter to the input images (before extracting the image patches) as proposed in [9].
Additionally we set the mean pixel variance to 1 in order to achieve convergence of the algorithm. We performed 10000
training iterations using a batch size of 500 samples. The noise variance parameter of the algorithm was set to 0.086 while
the β parameter was set to 1.0.

We obtained feature extractors −→w j that were used as described in section 2.3 to extract a feature vector fI

for each of the 60000 training samples. We did not apply any preprocessing to the images before the feature
extraction step. We used 9 maximum regions Ri of size 9×9. As a consequence, we did not consider the bottom
row and the last column of the convolution result in (6) for feature extraction. Due to the feature extraction
procedure, the dimensionality of the training data of the classifier increased from 28 × 28 = 784 (in case of the
raw data) to 9 ∗ 169 = 1521.

A set of 160 Gabor filters (figure 6) was used with the same feature-extraction procedure to obtain training
data of dimensionality 9 ∗ 160 = 1440.

Figure 6. The Gabor filters that were used are shown for comparison.

The hyperparameters of the SVM were optimised by 7-fold cross validation using only training features. We
used the same hyperparameters for all the different two-class classifiers. Each of the seven realisations of test and
training data used for cross validation consisted of disjoint sets of 10000 samples. We took the hyperparameters
providing the best mean classification error on the cross validation test sets in a grid search over γ and C. Using
the best hyperparameters the final classifier was trained on the entire set of feature vectors of all 60000 training
samples.

Finally, the feature extraction was applied to the input images of the separate test set consisting of 10000
samples. The SVM was then tested on these feature vectors.



method #SVs per digit #SVs error rate
0 1 2 3 4 5 6 7 8 9

raw data 1235 622 2149 1891 1681 2071 1365 1492 2342 2014 16862 0.0142
PCA 684 346 1087 965 884 961 835 759 1249 1147 8917 0.0092
Gabor wavelets 610 315 1014 861 760 843 768 755 1207 888 8021 0.0075
ICA 338 379 556 548 547 524 419 613 737 759 5420 0.0058
Sparsenet 403 392 648 593 529 580 473 682 816 747 5863 0.0055

Table 1. The table shows the number of SVs from each digit class as well as the overall number of SVs together with
the error rate obtained on the test set consisting of 10000 samples.

5. RESULTS

Table 1 shows the number of support vectors for the 10 different classes, the overall number of support vectors
as well as the error rate on the MNIST test set.

All methods significantly outperform the direct classification of the raw data, where no features have been
extracted. Results obtained for Gabor wavelets, ICA, and Sparse Coding are significantly better than those
obtained for the PCA. Note that ICA and Sparse Coding provide similar results on this data set. Overall, the
improvement of the test error is associated with a decrease in the number of support vectors.

The virtual SVM result of 0.56% errors reported in [22] is very close to our best result, but has the disadvantage
of requiring a very high number of support vectors whereas our best result uses a much smaller number of support
vectors. This indicates that the feature extraction we perform successfully implements invariances of the problem
of handwritten digit recognition.

Furthermore, our experiments show that the very good results obtained with Sparsenet and ICA are stable
for small changes of feature extractor size and size of maximum region (results not shown).

6. CONCLUSION

We proposed a feature extraction method based on unsupervised learning algorithms and we showed that it
outperforms all state-of-the-art methods on the MNIST data set except for one. The one which is still the best
uses explicit knowledge about digits, which we do not. In particular, our method provides by far the best result
of all methods that do not use prior knowledge that is specific to the handwritten digit recognition problem (a
comprehensive list of results can be found on the internet∗).

Our method is quite simple and may be applied to a broad range of visual pattern recognition problems. The
free parameters of the method such as the size and location of the regions Ri, or the size and number of the
features −→w j may be optimised with respect to the recognition problem at hand.

In our experiments the features obtained from the Sparsenet algorithm provide the best results. This demon-
strates how knowledge about the organisation of the visual system can be applied succesfully to a technical
problem.

The noise level parameter of the Sparsenet algorithm was chosen such as to guarantee stable convergence.
We believe that by optimisation of the sparseness parameter further improvements could be obtained.
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