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Abstract

Evolutionary algorithms can be used to solve complex
optimization tasks. However, adequate parameterization
is crucial for efficient optimization. Evolutionary adapta-
tion of mutation rates provides a solution to the problem of
finding suitable mutation rate settings. However, evolution
of low mutation rates may lead to premature convergence.

In nature, mutation rate control coevolves with other
functional units in a genome, and it is constrained because
mutation rate control requires energy and resources. This
principle can be captured by an abstract concept of fitness
cost associated mutation rate adaptation, which can be
generically applied in evolutionary algorithms. Applica-
tion of this principle can be useful for addressing problems
of premature convergence.

This contribution explores applications of this concept
within the context of dynamic fitness landscapes. It is
shown that fitness costs for mutation rate adaptation is no
less advantageous in dynamic fitness landscapes than in
static ones, and that interesting synergies can arise in con-
junction with dynamics in multimodal fitness landscapes.

Keywords: evolutionary algorithm, optimization, pre-
mature convergence, mutation rate, adaptation.

1. Introduction

Evolutionary algorithms (EAs), such as Genetic Glgo-
rithms [6, 11] and Evolution Strategies [9], are a versatile
and powerful tool for optimization which is based on copy-
ing mechanisms of evolution in nature.

Generally, an EA operates by maintaining a population
of candidate solutions, referred to as genomes, to a given
optimization problem. Genomes are vectors with compo-
nents which may be real-valued, e.g. in traditional Evolu-
tion Strategies, or discrete, as in Genetic Algorithms and
also in nature. The population evolves for several time

steps, or generations. In each generation, the genomes are
evaluated by a fitness function, which is (or simulates) the
objective function of optimization. In the subsequent se-
lection step, genomes are selected for reproduction, result-
ing in an offspring genome. The probability of a genome
to be selected depends on its fitness value. In asexual re-
production, an offspring genome is produced by copying
a selected genome. In sexual reproduction, two parent
genomes are selected and an offspring genome is produced
from them by using an operator which simulates natural
genetic processes, such as meiosis and zygote formation,
crossover or DNA recombination. Finally, the offspring
genomes are subjected to mutation, i.e. they are subjected
to random changes. The population obtained by applying
these operations is represents the next generation.

These basic components of an EA can be embellished
in many different ways. The fitness function may either
be static during the evolutionary process or it may be dy-
namic, i.e. it may change as evolution proceeds. There ex-
ist many selection operators, such as roulette wheel or tour-
nament selection. Typical mutation operators include ad-
dition of noise with a Gaussian distribution for real-valued
genome components and bit flipping, or replacement with
uniformly distributed random values, for discrete compo-
nents. The operators employed in an evolutionary algo-
rithm need to be parameterized. Finding parameter set-
tings that ensure efficient optimization can be a problem in
itself. One way to address this issue is to replace static con-
trol parameters with additional genome components, such
that the suitable values for the control parameters may arise
by evolutionary optimization. This concept is pursued for
mutation rate settings in this contribution.

Mutations are indespensable as generators of diversity
in EAs. With too little mutation, optimization may be slow
and inefficient, and more importantly, the EA may be prone
to premature convergence, i.e. the population may con-
verge on some insignificant local optimum of the fitness
function. However, with too much mutation, the perfor-
mance of evolutionary algorithms quickly deteriorates be-



cause error thresholds prevent any significant convergence
from occurring. The choice of appropriate mutation rates
is, therefore, a difficult issue, and it is an attractive concept
to let mutation rates coevolve along with genomes.

Adaptation of mutation rates is traditionally used in
Evolution Strategies [9], and thus, it has a long history in
evolutionary algorithms. A variety of schemes and con-
cepts has been developed [1, 2, 4, 5, 8]. Such approaches
always have to address the problem of premature conver-
gence resulting from the evolution of very low mutation
rates. In nature, arbitrarily low mutation rates do not arise
because mutation rate control is associated with a cost in
energy and resources. This observation motivates integra-
tion of a coevolutionary link between mutation rate adapta-
tion and fitness into an evolutionary algorithm framework.

The basic principle of such a mechanism has been for-
malized as energy dependent, or fitness dependent muta-
tion rate adaptation [3]. Using canonical, static fitness
functions, it was demonstrated that this concept can be ap-
plied in quite a generic way. However, fitness functions
are dynamic in nature. Furthermore, in all technical appli-
cations of evolutionary algorithms in which continued, on-
line adaptation and optimization are required, fitness func-
tions are inherently dynamic. Therefore, fitness dependent
mutation rate adaptation is investigated in the context of
dynamic fitness functions in this contribution.

2. Methods

2.1. Fitness Dependent Mutation Rate Adaptation

Fitness cost associated mutation rate adaptation
(henceforth abbreviated FCMA) is implemented as de-
scribed in [3]. Genomes consist of a vector ~x =
(x0, x1, . . . , xd−1), xi ∈ � and a vector of mutation rate
modificators ~µ = (µ0, µ1, . . . , µd−1), µi ∈ � where d ∈�

is the dimension of genome space. ~x is used for pri-
mary fitness evaluation (see below) while the components
~µ control mutation rates: The standard deviation of Gaus-
sian noise added to component xi during mutation is given
by

mi = mglobal · q
µi (1)

The global mutation rate mglobal and the mutation modi-
fication factor q are control parameters that are set by the
user. Setting q = 1 effectively turns off mutation rate adap-
tation. The mutation rate modificators µi are mutated with
a fixed, user-defined standard deviation denoted by M .

The fitness cost is calculated by rescaling the fitness val-
ues in the population to the interval [0, 1] according to

Fr(~x) =
Fraw(~x) − Fmin

Fmax − Fmin

(2)

where Fraw(~x) denotes the fitness of the genome accord-
ing to the target fitness function, Fmax is the maximal raw
fitness in the population and Fmin is the minimal raw fit-
ness. The effective fitness of a genome, used for selection,
is then given by

F eff(~x, ~µ) = Fr(~x) − p ·

d−1
∑

i=0

|µi| (3)

where p denotes the mutation modification penalty, a user
controlled parameter. New generations are constructed
through tournament selection with tournament size 2 and
asexual reproduction on the basis of Feff values. The pop-
ulation size, i.e. the number of individuals in a generation,
is user-defined and constant during a run.

Rescaling fitness values before applying the fitness
penalty allows setting p without consideration of the range
of values returned by the fitness function and thus facili-
tates comparison of results observed with different fitness
functions. Setting p = 0 allows mutation rate adaptation
without any fitness cost.

2.2. Dynamic Fitness Landscapes

Dynamic fitness landscapes were derived from static
landscapes by introducing a vector ~g = (g0, g1, . . . , gd−1)
that can be thought of as a moving center of genome space.
Initially, ~g is set to ~0. In each time step, ~g is modified
by adding Gaussian noise with a standard deviation of D,
where D is a user controlled parameter. The raw fitness
values are calculated by

Fraw = f(~x − ~g) (4)

where f is the target fitness function. This method allows
to control the speed of dynamic change in the fitness func-
tion to be controlled only by D; if D = 0, the fitness land-
scape is static and dynamic change increases with D. This
approach is similar to the one used in [7] in that dynamics
are generated by a random walk of ~g, therefore, the param-
eter D is referred to as the random walk speed.

For the present evaluation, the set of test functions for
evolutionary algorithms already used in [3] are employed
as target functions:

f1 = ||~x|| (5)

f10 = − cos(2π||~x||) + 0.1 · ||~x|| + 1 (6)

f6 =

d−1
∑

j=0

(x2
j − 10 cos(2πxj) + 10) (7)

f1, f10 and f6 are called sphere, Salomon’s and Rastrigin’s
test function, respectively, function indexes are adopted
from [10]. For all these functions, the optimization goal



Dimension of genome
space and fitness function

d = 8

Global mutation rate mglobal = 0.1
Global mutation rate for
mutating mutation modi-
ficators

M = 1.0

Mutation rate modifica-
tion factor

q =

{

2 (FCMA active)
1 (control)

Mutation rate modifica-
tion penalty

p = 0, . . . , 1

Mutation rate for ~g D = 0, . . . , 1

Population size n =

{

500 (run series)
100 (surveys)

Number of generations tmax = 1000

Table 1. Control parameter settings for evo-
lutionary algorithm runs

is minimization, and the global optimum is located at the
coordinate origin. The sphere function has no additional,
local optima. Salomon’s function has sphere-shaped lo-
cal optima arranged in layers around the global optimum.
Rastrigin’s function has multiple local optima which form
a regular, orthogonal grid.

3. Results and Discussion

The effects of making fitness landscapes dynamic were
characterized in two ways. Firstly, series of runs were per-
formed with mutation rate modification penalties ranging
from 10−7 to 1, as in [3], and additionally, series with ran-
dom walk speed settings between 10−7 and 1 have been
carried out. With values greater than 1, the steps of~g would
become larger than the distance between local minima in
functions f10 and f6, therefore, such values were not used.
Secondly, survey plots in which the plane spanned by both
control parameters is scanned were performed. The control
parameters are summarized in Table 1.

Figure 1 shows results obtained with increasing penal-
ties and different random walk speeds. With slow speeds
of up to 10−4, the characteristics are similar to those found
with the static version of the sphere function: Up to a
threshold value of p between 10−3 and 10−2, performance
is much better with mutation rate adaptation than in the
control, the best results are seen with p settings less than
one decimal order of magnitude below this threshold. As
random walk speed increases, differences between the runs
with active FCMA and the control runs disappear. The fact
that higher mutation rates are more favourable when the
optimum moves faster, and therefore the selective advan-
tage of actively lowering mutation rates is less prominent,
is at least partly responsible for this effect.
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Figure 1. Minimal Fraw values after 1000 gen-
erations with the sphere function with D set
to 10−4 (top), 10−2 (middle) and 1 (bottom).
Note that both axes have logarithmic scales.
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Figure 2. Minimal Fraw values after 1000 gen-
erations with Salomon’s function with D set
to 10−4 (left) and 1 (right).

Contrasting to this, Fig. 2 shows that a significant differ-
ence between runs with active FCMA and controls is ob-
served with Salomon’s function even with D = 1. These
differences are most prominent with intermediary penalty
settings. With low as well as with high penalties, perfor-
mance approaches the levels which are also obtained with
no adaptation at all.

For Rastrigin’s function, increases in random walk
speed result in a decay of difference between runs with
active FCMA and the corresponding controls, as shown in
Fig. 3, similarly to the decay seen with the sphere function.

Fig. 4 shows a sweep of the random walk speed with p

fixed to 10−4. The plot shows that with the sphere func-
tion, increasing mobility of ~g results in a proportional in-
crease in minimal Fraw values. This just reflects the dis-
tance by which ~g moves per generation. As the sphere
function has no local optima, the population tracks the
minimum as closely as possible.

With Salomon’s function, the situation is different. As
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Figure 3. Minimal Fraw values after 1000 gen-
erations with Rastrigin’s function with D set
to 10−4 (left) and 1 (right).

Fig. 4 reveals, mobility in ~g actually leads to improvements
rather than to deterioration in performance. Apparently,
shifts in ~g can help the population to cross maxima which
are layered around the global minimum in Salomon’s func-
tion. This effect is even noticeable in the controls, but the
runs with active FCMA benefit more. More importantly,
the range of random walk speed settings in which this
favourable effect arises is much larger with active FCMA.

For Rastrigin’s function, there is just a rather narrow
window of penalty settings in which the runs with active
FCMA perform better than the controls. Fig. 5 shows a
random walk speed sweep for p = 10−2, which is within
this window (see Fig. 3). With D values below a thresh-
old at approximately D = 10−2, most runs with active
FCMA yield better results than those without. However,
this difference is much smaller in relation to the magni-
tude of random fluctuations than the differences seen with
the other two fitness functions, as evidenced by three in-
stances where the run with no FCMA actually turns out to
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Figure 4. Minimal Fraw values after 1000 gen-
erations with the sphere function with p =
10−4 (left) and with Salomon’s function with
p = 10−2 (right).

fare better. These observations appear to indicate an advan-
tage of active FCMA which is significant but much smaller
than in the cases of the sphere and Salomon’s function.

With D values beyond the threshold, mobility in ~g re-
sults in deterioration in runs with active FCMA as well as
in the controls, similar to the situation for the sphere func-
tion. This transition marks a point at which the grid pattern
of local minima in Rastrigin’s function becomes so blurred
by the random walk of ~g that the fitness landscape becomes
indistinguishable from the sphere function for the popula-
tion.

All these observations are summarized by the survey
plots shown in Fig. 6. These analyses were performed with
a population size of 100 instead of 500, after it was verified
smaller populations do not lead to qualitatively different
results.

For all three test functions, a trench marking penalty
settings resulting in optimal minimization of Fraw values
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Figure 5. Minimal Fraw values after 1000 gen-
erations with Rastrigin’s function with p =
10−2.

can be seen at intermediate penalty settings. For penal-
ties above this optimum, performance quickly deteriorates,
most pronouncedly with the sphere function.

Increases in random walk speed have qualitatively dif-
ferent effects for functions without and with local minima.
For the smooth sphere function, the random walk speed
gives rise to a lower limit of the Fraw values that can be
attained. Thus as speed increases, the advantage of FCMA
linearly declines. This leads to a ramp-like appearance of
the plot shown in Fig. 6.

With both rugged fitness functions, a plateau appears
in place of a ramp. This represents a parameter range in
which convergence in suboptimal minima occurs. As the
plateau level is at rather large Fraw values, the border to
the trench at intermediate penalty settings is much more
pronounced than in the sphere case. The trenches in the
Salomon and Rastrigin plots are also shifted towards larger
penalty values compared to the sphere plot. This is related
to the fact that the Fraw values attained with the rugged
fitness functions are some orders of magnitude above those
reached with the sphere function.

With Salomon’s function, mobility of ~g actually im-
proves minimization, which results in formation of a sec-
ond trench, orthogonal to the first one, at rather large ran-
dom walk speeds. In the area where both trenches join, a
widened basin of improved minimization is formed. This
is an example of a favourable effect that synergistically
emerges from the interplay between dynamics in the fit-
ness landscape and FCMA. No such phenomenon is ob-
served with Rastrigin’s function, however.
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Figure 6. Minimal Fraw values observed af-
ter 1000 generations in populations of 100
genomes with the sphere function (top), Sa-
lomon’s function (middle) and Rastrigin’s
function (bottom). Values are plotted as a
function of p, the mutation rate modification
penalty, and D, the mutation rate for ~g. Note
that all three axes have logarithmic scales.

4. Conclusions

Using a simple and straightforward method for enhanc-
ing test fitness functions with temporal dynamics, it was
shown that FCMA can successfully be used with dynamic
fitness landscapes. With the unimodal sphere fitness func-
tion, the effects of introducing a dynamic element are quite
trivial, while more complex phenomena are observed in
conjunction with multimodal fitness functions.

FCMA should be considered as a novel method for con-
trolling search. With respect to the traditional Evolution
Strategy approach, the fitness cost introduces a coevolu-
tionary link between the genome part ~x which represents
the candidate solution to the objective function, and ~µ, the
part of the genome which controls mutation rates. This
link is conveniently parameterized with p. The results pre-
sented here confirm that associating mutation rate adapta-
tion with a fitness cost can prevent premature convergence.

FCMA is similar to the approach described in [5],
where a globally prescribed, fixed formula is used to down-
regulate mutation rates for genomes that are already well
adapted. In comparison to this approach, FCMA is more
flexible, as it permits individual allocation of the raw fit-
ness resource between mutation rate control and competi-
tion with others. Coevolving mutation rates and applying
a fitness cost is also closer to the natural evolution process
than externally assigning differential mutation rates.

Despite being gleaned from nature, evolution with
FCMA is subject to limitations, as all other methods are.
This is illustrated by the results seen with the sphere func-
tion: Of course, the precision limit for minimization in-
duced by the random walk of ~g cannot be overcome.

However, such a strict and monocausal limitation is a
rather special case. This is illustrated by the other fitness
functions, which have structural features that give rise to
limitations which may dominate those induced by dynam-
ics. The combined effects of FCMA and dynamics in the
fitness landscape may be favourable, as seen in the case of
Salomon’s function. The results obtained with Rastrigin’s
function, on the other hand, show that such favourable con-
ditions cannot be generally expected.

5. Future Work

As a next step, it is planned to test FCMA with fitness
landscape variants in which ~g moves directionally instead
of performing a random walk. It would also be interest-
ing to explore other classes of dynamic fitness landscapes,
such as oscillating landscapes [12]. It would be desirable to
develop a theoretical basis for understanding the possible
synergy between FCMA and fitness landscape dynamics.

The study presented here was restricted to asexual re-
production to ensure that mutation is the only source of



new genotypes, and thus of diversity. This allows inves-
tigating the effects of FCMA in isolation, without inter-
ference with other sources of diversity, such as sexual re-
production. However, sexual reproduction is pivotal in
many applications of evolutionary algorithms, and there-
fore, combination of FCMA with operators for sexual re-
production should be investigated in the future.

Finally, it would be desirable to systematically charac-
terize the changes in the evolutionary process caused by in-
troducing the fitness cost for mutation rate adaptation. This
might be helpful to better assess for which optimization
purposes the fitness cost approach is a suitable tool. Addi-
tionally, such an analysis may improve our understanding
of the conditions that shape evolution in nature.
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