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Recognition of protein-DNA binding sites in genomic sequences is a crucial step for
discovering biological functions of genomic sequences. Explosive growth in availability of
sequence information has resulted in a demand for binding site detection methods with
high specificity. The motivation of the work presented here is to address this demand by
a systematic approach based on Maximum Likelihood Estimation.

A general framework is developed in which a large class of binding site detection
methods can be described in a uniform and consistent way. Protein-DNA binding is
determined by binding energy, which is an approximately linear function within the
space of sequence words. All matrix based binding word detectors can be regarded as
different linear classifiers which attempt to estimate the linear separation implied by the
binding energy function. The standard approaches of consensus sequences and profile
matrices are described using this framework.

A maximum likelihood approach for determining this linear separation leads to a
novel matrix type, called the binding matrix. The binding matrix is the most specific
matrix based classifier which is consistent with the input set of known binding words.
It achieves significant improvements in specificity compared to other matrices. This is
demonstrated using 95 sets of experimentally determined binding words provided by the
TRANSFAC database.

Keywords: transcription factor; binding site; weight matrix; maximum likelihood

1. Introduction

All processes which implement biological functions based on genomic sequence infor-
mation require that DNA-binding proteins execute certain functions on the genome
at specific locations, called binding sites. A DNA-binding protein has to bind at its
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binding sites with a sufficient strength. On a genome, there also exist sites where
the protein must not bind, because execution of its function on such positions would
be detrimental.

The DNA-binding domain of the protein makes direct contact to a segment
of DNA. This local sequence at a contact site, which is typically between 10 and
20 base pairs long, is called a sequence word. The sequence word at site ¢ largely
determines whether i is a binding site for the protein or not.

The bioinformatic challenge is to determine which sites on a genomic sequence
are binding sites. As a data base, usually only a small set of experimentally verified
binding sites is available. Negative examples, i.e. non-binding sites, are usually not
available. From the few known binding words, a word model, such as a consensus
sequence or a profile matrix!2 has to be constructed. With this model, unknown
genomic sequences are then scanned, and each site is classified as either a binding
site or a non-binding site.

Specificity of such classifiers becomes increasingly important as the amount of
genomic sequence which is electronically available for bioinformatic analysis con-
tinues to grow rapidly. The binding matrix, which we present in this contribution,
results from a maximum likelihood approach. It provides the highest specificity
which, given a set of known binding words, can be achieved with a matrix based
classifier, and it constitutes a significant improvement with respect to other matrix
based classifiers for binding words.

2. Methods
2.1. Orthogonal Coding of Sequences

Let A = {A,C,G, T} denote the alphabet of base pairs. Orthogonal coding is a
mapping from AL to R**. A sequence of L nucleotide symbols is represented by
a vector w = (WA 1,WC,1, WG, 1, WT,1, WA 2, - - -, WG, L, wr,) € R, where wp; = 1
if b is the I-th symbol in the sequence and wp; = 0 otherwise. Thus, each symbol
is represented by a quartet of components of w. Within each quartet, exactly one
component is 1. By this construction, quartets representing different symbols are
orthogonal, hence the name “orthogonal coding”. As an example, the orthogonal
coding of the sequence GAT is (0,0,1,0,1,0,0,0,0,0,0,1). The set of all words of
length L is denoted by W = {w,ws,..., Wk }. The cardinality of W amounts to
K =4,

2.2. The Structure of Word Space

The points representing orthogonal codings of sequence words are arranged in a
specific structure within R*”. Firstly, all words lie on the surface of a 4 L-dimensional
hypersphere, evidenced by ||w||?> = L. Secondly, all words are located within a 3L-
dimensional linear subspace of R*L, called the continuous sequence space®, since
VI,1<1<L:)cwpy = 1is valid. The intersection of the 4L-dimensional
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Fig. 1. A low-dimensional sketch of the word space structure. Dashed lines show Euclidean basis
vectors of a three-dimensional space. Individual words w are depicted by solid arrows. The center
of the hypersphere outlined by the words, W, is depicted by a dot.

hypersphere and the continuous sequence space is a 3 L-dimensional hypersphere. Its
center is given by W = (1/4,1/4,...,1/4), as shown by observing that ||w —w]|2 =
3L/4 is valid for all w € W. For symmetry reasons, the words are homogeneously
distributed on the surface of this 3L-dimensional hypersphere. Thirdly, W~ (w; —
ws) = 0 holds for all wi,ws € W, which means that the continuous sequence space
is orthogonal to w. A sketch of this structure is displayed in Fig. 1.

2.3. Scoring of Words and Linear Classification

Given a scoring vector m € R, a real-valued score Sm (W) can be assigned to each
word of length L by computing the inner product

L
Sm(w) :=mTw = Z Zmb,lwb’l. (1)

beA =1

The components of a scoring vector can also be arranged in a 4 x L table which is
frequently called a “matrix” in the literature. It should be noted that such scoring
tables are not used as matrices in a mathematical sense. In fact, scoring a word
with a “matrix” is the same as scoring it with (1). Throughout this paper, we use
the term “matrix” solely for consistency with the literature.

In conjunction with a threshold value ©, scoring can be used to define a hyper-
plane in R*". Words which satisfy the inequality

m’w—-0>0 (2)

lie on one side of the hyperplane (equality indicating points exactly in the plane),
while words which do not meet this criterion are located on the other side. Geo-
metrically, m is a normal vector to the hyperplane and the expression m”w — ©
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measures the distance of w from the plane in multiples of ||m||. Thus, a linear classi-
fier in W is parameterized by m and ©. The number of words above the hyperplane
specified by m and O, i.e. those which satisfy (2), is denoted by km,e-

2.4. Biological Function and Binding Site Recognition by a
Transcription Factor

For many DNA binding proteins, it has been shown experimentally that the free
energy of a transcription factor binding to a word w can be approximated by a
sum of independent contributions provided by the individual base pairs in the
word*®67:8:9 Tet e;; denote the amount of binding energy contributed by base
pair b when present at position /. These components can be aggregated into a 4L-
dimensional vector e, which we will refer to as the energy vector or the energy
matrix. Under the assumption of additivity, binding free energy for a word w can
be calculated by

E(w) =elTw. (3)

Transcription factors regulate the rate of transcription initiation, which is a complex
process that involves a large number of proteins. As a result of this, there exists
a binding energy threshold E,. If E(w) < E,, the availability of the transcription
factor at the binding site determines the rate of transcription initiation. Thus, if the
factor activates transcription and E(w) < E,, hardly any transcription takes place;
the gene is “switched off”. If E(w) > E,, availability of the transcription factor at
the site is high, and the rate of transcription initiation is largely determined by
other steps in the complex initiation process. All words meeting this criterion are
called binding words, denoted by V = {v1,va,...,vi, } = {w e W: E(w) > E.}.
The cardinality of the set of binding words is denoted by k.. The inequality

eTw — E, >0 (4)

describes a linear separation of YW. Words above the hyperplane (e, E.) are able to
implement a functional binding site and hence are called binding words, while the
other words are called non-binding words.

2.5. The Machine Learning Task

From a machine learning perspective, the experimentally determined binding words
V = {¥1,¥2,...,Vn} C V represent a set of training data. The problem of binding
site detection is to estimate the energy vector e and the energy threshold E,, and
thus to deduce a binding word model from the training data. The set of training
data is very small, i.e. n < k.. Therefore, complex classification approaches in which
models have a high-dimensional parameter space are difficult to parameterize, as
overfitting can easily occur. Negative examples, i.e. experimentally determined non-
binding words, are not available, necessitating a one-class classification approach.
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The binding matrix, introduced in Section 3 below, is a linear classifier and thus
its complexity is appropriately restricted. Considering the biological function of a
transcription factor within the word space structure generated by orthogonal coding
leads to a one-class maximum likelihood approach which systematically maximizes
specificity.

2.6. Profile Matrixz

The profile matrix»?10:11:12 i5 defined as a 4 x L table with components p; con-

taining the occurrence frequency of base b at position ! within the set of words
experimentally found at binding sites. In orthogonal coding, the presence of b at
position [ in a binding word v is represented by vs; = 1, and vy ; = 0 denotes that
b' # b. Thus, the scoring vector equivalent to the profile matrix is

1 n
pP= n Z Vi. (5)
i=1

P is an element of the continuous sequence space. The profile matrix represents the
arithmetic mean of the experimentally determined binding words. Scoring a word
with p according to Eq. (1) is equal to computing the score with a profile matrix,
which is traditonally described as adding up the values which the individual symbols
in the word “select” from the matrix2.

2.7. Logarithmic Profile Matriz

The logarithmic profile matrix, denoted by g, consists of the logarithmized occur-
rence frequencies. According to an analysis by Berg und von Hippel'?, based on
statistical mechanics, the logarithms of the base frequencies should be proportional
to the binding energy contributions of the bases?.

Differently from the plain profile matrix, it is not practical to use the frequen-
cies from the experimentally determined binding words directly because typically,
several of these frequencies amount to 0 due to a small sample size. Therefore, a
small sample correction is required'®, according to which the components of g are
computed as

. 1
gv, = log <7n Po + ) .

n+4 (6)

2.8. Consensus Sequence

The consensus sequence’>2, historically the earliest binding word model, results from
finding a word with maximal similarity to the known binding words. The score of a
word is the number of positions occupied by matching characters in the consensus,
and binding sites are predicted where this score exceeds some threshold. More than
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one acceptable symbol may be specified per position. The consensus sequence can
be represented by a scoring vector ¢ with components defined by

1 ifpy >t
L= {0 otherwise. @

The components py; are taken from the profile matrix (Eq. 5). By appropriately
setting the ¢; values, all variants of the consensus sequence concept can be obtained.
In this contribution, we use ¢; = maxy pp;, which yields the “strict” consensus
sequence.

3. The Binding Matrix
3.1. Mazimum Likelthood Approach

Following the preceding introduction, a binding site has to bind to the transcription
factor with a binding energy of at least E., and consequently, the major evolutionary
constraint on a binding site is that it must contain a binding word. If we disregard
all additional evolutionary constraints and assume that additivity holds (see Section
2.4), the probability of encountering word w at a binding site is

L if eTw > E,

1
P(wle, E,) = {Ovl k. it 7w < E.. (8)

Based on this distribution, the probability to observe V as the set of empirically de-
termined binding words, given a transcription factor described by (e, E.), amounts

to
n

P(Vle, E.) = [[ P(vile, E.). (9)
i=1
Assuming that V does not contain any non-binding words (e.g. as a result of exper-
imental classification errors), we obtain
N 1
P(Vle,E.) = .. (10)
This enables a maximum likelihood approach in which the parameters (e, E,) are
estimated by those values (q,®) for which (9) becomes maximal. q is called the
binding matriz. An algorithm for computing q is described in the next section.

3.2. Computation of the Binding Matriz
As motivated above, the binding matrix q is defined by

(qa ®BM) = a‘rgma’x(m,@)P(fjlma 6)

1
= argmaX(m’@)kn— (].1)
m,©

km,e decreases monotonically as © grows, therefore, ©® should be maximized in
order to minimize the denominator in (11). However, (10) is valid only if all exper-
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Fig. 2. The maximum likelihood estimation of the spherical binding word distribution looks for the
sphere with the smallest radius which still contains all data points. In our case this is equivalent
to looking for the plane which “cuts off” the smallest segment while keeping all data points on
this segment.

imentally determined binding words score at least ©. Otherwise, P(V|m, ©) = 0 is
valid, as at least one of the factors in the product in Eq. (9) becomes zero. This
implies a set of n constraints. (q, ©®pMm) specifies the hyperplane with maximal O,
i.e. which has the maximal distance from W under the condition that all experimen-
tally determined binding words are on or above the hyperplane. This is illustrated
by Fig. 2. Based on these considerations, the binding matrix can be obtained by
solving the problem of maximizing © under the constraints

lal|* =1 (12)
vwWweV:q'v>0 (13)

The quadratic constraint (12) ensures that q is a normal unit vector of the hy-
perplane, preventing a trivial and undesired maximization of ® by minimization of
[la||- The linear constraints (13) ensure correct classification of the known binding
words.

The optimization approach for the binding matrix can figuratively be described
as “pushing the hyperplane of separation as far away from the sphere center as
possible”. The binding matrix approach is similar to the one-class approaches with
support vector machines!'*. Differently from the support vector machine, the binding
matrix approach does not involve a projection of the data into a high-dimensonal
feature space. The specific choice of the continuous sequence space results from the
objective of estimating the binding energy matrix, as described above.

3.3. Implementation

The binding matrix algorithm has been implemented as a C++ function. This func-
tion invokes the program ampl'® for solving the constrained optimization problem,
using 1loqo'® as the solver. In addition, functions for computing profile matrices,
logarithmic profile matrices and consensus sequence matrices have been developed
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in C++. Programs for conducting the analyses described below are based on this
library. A web-based interface for computing binding matrices from input binding
word set is available at http://www.inb.uni-luebeck.de/bmatrix/.

3.4. The Binding Matrix is the Consistent Matriz with Maximal
Specificity

Wolff et.al.'” have introduced the criterion of consistency, i.e. the property of a
(matrix based) classifier to correctly classify all known binding words. Consistency
can always be achieved by choosing a sufficiently low threshold setting. However,
such a threshold setting may result in a classifier with unacceptably low specificity.

The linear constraints which are applied in computing the binding matrix q
ensure consistency while maximization of © effectively minimizes the number of
words which are classified as binding words. Thus, the binding matrix provides
the matrix based classifier which, under the constraint of being consistent with all
known binding words, results in the minimal number of words classified as binding
words. All other matrices classify a larger set of words as binding words when
employed with the maximal threshold setting compatible with consistency.

The binding matrix is, by construction, the consistent matrix (sensu Wolff et.al.)
with maximal specificity. If we assume that binding energy can be reasonably ap-
proximated by a sum of additive energy contributions of individual base pairs (see
Section 2.4), this means that there exists an approximately spherical area on the
3L-dimensional sphere in which words with high binding energies are concentrated.
On average, this area will be included in the set of binding words predicted by the
binding matrix. All other consistent matrices will recognize additional words which
contain an elevated fraction of false positives with these matrices.

In summary, the binding matrix approximates the maximally specific consis-
tent matrix if the binding energy distribution can be approximated by an additive
model. If additivity does not apply, matrix based binding word classifiers in general,
including (of course) the binding matrix, are not suitable.

4. Comparative Assessment of Specificity

The performance of the binding matrix was tested by comparison with the alter-
native methods described above, the profile matrix, the logarithmic profile matrix,
and the consensus sequence. The TRANSFAC database'®, version 5.2.1 was used
as a database for the performance tests. TRANSFAC provides matrices, associated
with sets of sequence fragments containing the words from which the matrices were
compiled. These fragments were used to assemble sets of known binding words.
TRANSFAC provides the position of the binding word within each fragment. How-
ever, in some instances, a fragment only contains a part of the binding word. We
excluded such partial binding words in all our analyses. There are 95 matrices for
which a set of n > 5 complete binding words is provided. These 95 binding word
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Fig. 3. The hyperplane defined by (e, E«) cuts off a segment containing k« binding words. The
hyperplane defined by a classifier (m,®) can be shifted along m by changing the threshold value
O. The threshold value at which the hyperplane cuts off the smallest segment including all k.
words cut off by (e, E,) is given by ©pi,. This is the highest threshold value which achieves
maximal sensitivity. The lower the number km, @ of words which are recognized as binding words
the better the estimation of the true hyperplane.

sets are used as a basis for the analyses presented in Section 5. For a subset of 13
matrices, n > 30 binding words are available from the database.

The performance of a binding word classifier can be characterized by sensitivity
and specificity. For a classifier based on a scoring vector m, sensitivity and speci-
ficity can be adjusted by varying the threshold ©. There always exists a setting
Omin(m) = min{Sm (W) : w € V} such that sensitivity amounts to 1, however, at
the cost of a specificity less than 1. This is geometrically illustrated in Fig. 3.

Let kmin(m) denote the number of words which satisfy Spm(W) > Omin(m). By

choosing © i, (m) as the threshold, maximal sensitivity is achieved and specificity
Lo
Section 2.4), kmin(m) = k. and specificity consequently amounts to 1, which means
that perfect classification is achieved.

Given only the subset Vv C V), the value of kmin(m) remains unknown, but
Omin(m) = min{Sm(w) : w € V} and Emin(m), the number of words which satisfy
S(w) > (:)min(m), can be determined. Epin (m) evidently underestimates kmin(m).
As a general approach to compensate for this underestimation, the scoring vector m
may be computed based on a subset of the known words, and the remaining words
may be used to adjust the threshold to some value © < Opmin(m), which provides
a more realistic impression of ki, (m) than O, (m). This concept is the basis of
the assays which are described in Sections 4.1 and 4.2.

For two scoring vectors m; and my, observing lAcmin(ml) /K < ]:Imin(mg) /K
implies that spec(m;) > spec(mg). This is strictly true if the words recognized
by m; are a subset of those recognized by m,. Otherwise, exceptions are possible,
especially if Vis a strongly biased subset of ), but on average, IAcmin(ml) /K <
l%min(mz) /K indicates that m; approximates e better than ms. This inequality
is most useful if l}min > k, is satisfied, i.e. if the classifier recognizes many false

amounts to spec(m) =1 — . If m is colinear to the energy vector e (see
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positives. In this case, the approximation spec(m) & 1 — kmin(m)/K becomes valid,
and lowering kmin is likely to indicate an improvement in specificity.

A biologically plausible range for the value of k./K can be derived from se-
quence information content analysis, even though the absolute value of k. is not
known for any transcription factor. Sequence information content!? can, according
t0?%, be calculated by Rseq = — log, (k«/K). Furthermore, Rseq cannot strongly de-
viate from Rpeq = —logy(f), where f denotes the density of binding sites on the
genome!319:20.21,22 "1 B . is too low, the density of sites that are recognized by
the transcription factor reaches a level at which spurious binding interferes with
many genetic processes and becomes detrimental. Based on Schneider et.al.'®, one
may reasonably expect that binding site density should not exceed two, or at most
four per 1000 base pairs, corresponding t0 Rreq > 8. If kmin(m)/K > 1072, this
indicates that kmin(m) > k., and that therefore specificity can be characterized
based on kmin(m)/K, as described above, in good approximation.

Technically, the computation of kme(m) requires enumerating all words of
length L and checking for each whether it satisfies m”w > ©. This is prohibitively
time-consuming for word lengths substantially greater than 10. Therefore, km,e /K
was estimated by randomly sampling 100 000 words.

4.1. Leave-One-Out Assay

The size of the data sets provided by TRANSFAC, i.e. the number of binding words
known for a transcription factor, ranges from 1 to 73. For many matrices, the set of
known binding words is too small to be reasonably split into a training and a test
set. Therefore, we have used leave-one-out tests for comparative specificity analysis.
In these tests, one word of the set of known binding words, denoted by 1, is left out
for testing, the rest is used for training.

For an individual test, the scoring matrices were computed based on the train-
ing set. The test word &1 was then employed to adapt the threshold to © =
min{ O min(m), Sm(i)}. The threshold was thus set to obtain matrices which are
consistent with all known binding words, including the one which has not been
used for computing the matrix. km,o/K was then estimated as described above to
assess the specificity at this sensitivity level. For each set of binding words, multiple
tests were performed such that each word was left out once as the test word.

4.2, Training-And-Test Assay

Additional performance tests based on more than one test word separate from
training data were carried out for large sets of known binding words with n > 30.
For this type of test, the input set was split into a training set, containing 2/3 of
the words selected at random, and a test set consisting of the remaining words,
denoted by {1, l,...,4;}. The matrices were computed based on the training
set, and, analogously to the procedure used for the leave-one-out test, the threshold
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Score

log10 fraction of words log10 fraction of words

Fig. 4. Sorted score plots for the binding matrix (left) and the profile matrix (right), computed
for the 26 binding words known for the human SRF. The rank is displayed logarithmically on the
horizontal axis and the score is shown on the vertical axis. The dotted lines indicate the scores
of the known binding words. With the profile matrix, about 10% of the words have scores higher
than one of the experimentally verified binding words. With the binding matrix, however, less
than 0.1% of the words have scores exceeding émin.

Cons  PM  logPM  BM

Fig. 5. Box plot showing the kmin(m)/K values for the consensus sequence (Cons), the profile ma-
trix (PM), the logarithmic profile matrix (logPM) and the binding matrix (BM), on a logarithmic
scale. The threshold was set to émin(m) for all matrices. Boxes encompass the middle (i.e. the
second and third) quartiles, the horizontal line in the box shows the median. The bars extend to
the minimal and the maximal value, respectively. The floor at 102 is due to the estimation of
km,o/K based on 100000 random samples.

was set to © = min{(:)min(m),Sm(ﬁl),Sm(ﬁQ), ..., Sm(1;)}. Tests were repeated
10000 times with randomly generated training set selections.
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5. Results and Discussion

Generally, the binding matrix computed from a binding word set is similar, but not
identical to the profile matrix and the logarithmic profile matrix. The significance
of the differences between the profile and the binding matrix is revealed by the
sorted score plots shown in Fig. 4. For these plots, 100000 words were randomly
drawn in addition to the n = 26 known binding words. The scores for all words
were calculated with the profile and the binding matrix. The scores were sorted in
descending order, thus determining the rank for each word. The results show that
Emin(p)/K ~ 1071, while kmin(q)/K ~ 1073,

From the information theoretic perspective, I;'min(p) /K =~ 107! implies that
Rseq < 3.2, which is definitely too low to be realistic. The value of I;:min(q), on the
other hand, leads to Rsq < 11.6, which appears reasonably compatible with the
estimations explained in Section 4.

Fig. 5 shows aggregated results obtained for the 95 matrices for which at least
5 complete binding words were available. The minimum value, obtained with sets
containing very similar binding words, is kmin (m) /K = 1075 due to the estimation
procedure based on 100000 random samples.

For the consensus sequence, the profile matrix and the logarithmic profile matrix,
there are sets for which this ratio is close to 1, which means that the most specific,
consistent classifiers based on these matrices classify almost no words as non-binding
words. With the binding matrix, however, the maximal value of Eomin (d4)/K is about
0.25. In other words, for all binding word sets from TRANSFAC, the binding matrix
computes a consistent classifier according to which at least 75% of the words are
classified as non-binding words. The corresponding estimate Rseq > 2 is obviously
far from being biologically plausible.

The sets for which these large l%min(m) /K values are observed contain words
which have little similarity to the others. As a possible explanation, the binding
word sets that give extremely high Eunin (q)/K values could contain words which
have falsely been annotated as binding words. Alternatively, transcription factors
may exist which have more than one binding domain. In such a case, description of
the factor’s binding properties with two independent matrices would be adequate.
However, further investigation regarding these issues is beyond the scope of the
work reported here.

The majority of results exhibits a clear trend, evidenced by the median and
its surrounding quartiles. Compared to Emin(c) /K, the value obtained with the
consensus sequence, the ratio obtained with the profile matrix, IAcmin(p) /K, is lower
by more than one decimal order of magnitude, and the logarithmic profile matrix
achieves a median lAcmin(g) /K about two orders of magnitude below that which is
obtained with the consensus sequence. This is improved by yet another order of
magnitude by kmin(q)/K, the binding matrix.

It should be noted that lAcmin(m) /K may underestimate k. /K. Therefore, Rgeq
values estimated on the basis of I::min(m) /K may be larger than the true Rgeq
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Fig. 6. Results of the leave-one-out assays for sets containing at least 5 experimentally verified
binding words. Plots were generated and labelled as described in the legend of Fig. 5. Compared
to the profile matrix, the binding matrix achieves an increase in recognition performance of about
an order of magnitude, about the same increase the profile matrix could achieve compared to the
simple consensus sequence.

value. The median around 10~* (corresponding to Rseq =~ 13.3), found with the
binding matrix, is therefore not indicative of an inconsistency with the empirically
observed range for Rseq. Rather, it should be attributed to the small size of most
binding word sets. The assays discussed below use test data to compensate for
this underestimation of k./K, and thus complement and extend the performance
analysis of the various matrix based classifiers presented above.

5.1. Leave-one-out assays

The aggregated results for word sets with n > 5 of the leave-one-out assays is
shown in Fig. 6. The median ky, /K values are larger than the corresponding ones
displayed in Fig. 5. This is not surprising because for all matrix types, the matrix
will tend to diverge from a word that is left out, resulting in lower threshold values
and correspondingly larger kpy, o/K ratios.

The binding matrix produces the lowest km /K values, followed by the log-
arithmic profile matrix, the profile matrix and the consensus sequence. Thus, the
threshold value at which the binding word which was left out is correctly classified
is, on average, significantly higher for the binding matrix than for the other matrix
types. It therefore can be expected that binding words which are not known at bind-
ing matrix computation will typically receive relatively high scores while with other
matrix types, the score of unknown binding words will typically be less strongly
elevated. This result indicates that, on average, the binding matrix allows a higher
specificity at the 100% sensitivity level on training data, and it may indicate that
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Cons  PM  logPM  BM

Fig. 7. Results of the training-and-test assays for 13 transcription factors with n > 30 experimen-
tally verified binding words. Plots are generated and labelled as described in the legend of Fig. 5.
The lowest median km,e value is achieved with the binding matrix.

the binding matrix is a better estimator for the binding energy matrix e than the
other matrix types.

5.2. Training-and-test assays

Training-and-test assays were conducted for the 13 binding word sets with n > 30.
Fig. 7 shows the aggregated results. Qualitatively, the trend which emerged from
the previous results is confirmed; on average, the binding matrix attains the lowest
km,o values, indicating the highest potential for specificity. However, this trend is
less pronounced than in the leave-one-out tests. The improvement is about half
an order of magnitude compared to the profile matrix, and somewhat less than a
quarter of an order of magnitude compared to the logarithmic profile matrix.

The main problem, which affects all matrix types, is revealed by the high ab-
solute value of the kpy, e/K ratio, which is not significantly lower than 1072 even
for the binding matrix. This observation indicates that with the word sets provided
by TRANSFAC, one has to expect that all matrix types assign low scores to some
unknown binding words, and as a consequence, these words will be undetectable
in practice. This means that the sets of experimentally verified binding words do
not permit any of the four classifiers tested here to approach the ideal of perfect
specificity and perfect sensitivity at the same time. This is, at least to a substantial
extent, due to the small size of the binding word sets.
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6. Conclusion and Outlook
6.1. Matrix Estimation by Maximum Likelihood

Matrices and thresholds for binding word detection constitute linear classifiers in
the space of orthogonally encoded words. The binding behaviour of the transcription
factor itself can approximately be described by such a classifier. The binding matrix
results from estimating the binding behaviour of the transcription factor using a
maximum likelihood approach.

The binding matrix is based on a uniform binding word probability distribution
on the binding sites. Other distributions result in other maximum likelihood estima-
tors (Gewehr et al., in preparation). However, the uniform distribution is consistent
with maximum entropy, which should be assumed if no other, more specific infor-
mation regarding the distribution is available. While the distribution of binding
energies has been studied in considerable detail”-?>13:23, the probability distribution
for words on binding sites can not yet be reliably estimated from empirical data.
Therefore, the binding matrix is an adequate choice because it is the maximum
likelihood estimate based on the maximum entropy distribution.

It is interesting to note that there are analogies between the maximization ap-
proach employed in the calculation of the binding matrix and probabilistic ap-
proaches to motif finding. For example, Gibbs sampling?* has been used to pa-
rameterize a binding word model and a background sequence model such that the
probability ratio between both models is maximal. Differently from motif finding
algorithms, which also include those based on Expectation Maximization?®, the ob-
jective function which is maximized for computing the binding matrix does not have
multiple, local optima.

6.2. The Binding Matrix as the Maximally Specific Matrix

Using 95 binding word sets provided by the TRANSFAC database, we could show
that potential specificity, as quantified by km e /K, can be improved by about an or-
der of magnitude compared to the logarithmic profile matrix and the profile matrix.
From this perspective, the binding matrix may constitute a step which is compara-
ble to the replacement of consensus sequences with profile matrices, which allowed
for a similar improvement.

According to analyses based on information theory'®2, the km o /K values pro-
vide a good estimate of the density of predicted binding sites on a genome. Prelimi-
nary studies with the genome sequence of Escherichia coli K 12 (GenBank accession
NC_000913) have confirmed that the density of predicted binding words is indeed
very accurately estimated by the random sequence model implied by km,e/K anal-
ysis. Significant deviations between km,o/K are expected with genomes in which
the frequencies of bases (or short words) are skewed. In such cases, the binding
matrix could be extended to account for such effects by using corresponding priors.

The binding word sequence information Rgeq provides an indication for biologi-
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cal plausibility of a binding word classifier. For the binding matrix, the Req values
implied by the km o/K ratios are within the order of magnitude which is predicted
by information theoretic analysis. However, for the other matrices, requiring con-
sistency with all known binding words implies km o /K values which are at least
one order of magnitude lower than expected, indicating that a substantial amount
of words (in the range of 90%) classified as binding words are false positives.

Leave-one-out assays revealed that the chance of unknown binding words to
receive high scores is better with the binding matrix than with the other matrix
types. Further assays, in which more than one word is set aside for evaluating the
classifiers, give the same results, but the differences between the binding matrix,
the logarithmic profile matrix and the profile matrix become less pronounced. This
is to be attributed to the scarcity of data, at least to a substantial extent. One may
hope for the situation to improve as larger binding word sets become available in
the future. Analyses with further data sets are currently underway (Gewehr et.al.,
in preparation). Preliminary simulation based studies which we have conducted
indicate that the advantage of the binding matrix, quantified by the accuracy with
which the energy matrix e is estimated, over the other matrix types indeed increases
with the number of available binding words.

The optimization approach underlying the binding matrix is to maximize the
threshold score under the constraint that all experimentally verified binding words
are correctly classified. Maximization of the threshold results in optimization of
specificity while the constraints ensure consistency with the set of known binding
words in the sense of Wolff et.al.!”. Thus, the binding matrix is the consistent matrix
with the highest possible specificity.

6.3. Further Improvements and Perspectives

For some binding word sets, it is impossible to obtain a matrix based classifier
which correctly recognizes all binding words in the set and at the same time implies
a biologically plausible value for Rseq. Some of these cases may be due to the
presence of non-binding words in a binding word set, e.g. due to annotation errors.
The binding matrix provides a minimal km e value even in such cases. This is
achieved by the response of the binding matrix upon the addition of a new word to
the training set. If the new word is not recognized by the binding matrix computed
from the previously known binding words, the new binding matrix is moved more
strongly towards the new word than the other matrices. This, in turn, allows for a
higher threshold value without misclassification of known binding words.

This responsiveness is, on average, advantageous if new binding words are added
to the training data. However, if a non-binding word is added, the binding matrix
may more easily be moved further away from the energy vector than the other
matrices. Therefore, the binding matrix depends on careful assembly of binding
word sets more critically than the other matrix types, particularly if it is to be used
as an estimator of the energy matrix. Regarding classifier quality, the presence of
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non-binding words in the training set incurs large penalties in specificity when a
threshold which provides a consistent classifier is chosen. It is worthwhile to observe
that even in this case, the binding matrix provides the most specific consistent
matrix.

As a general approach to obtain consistent matrices with high specificity, Wolff
et.al.l” suggest removal of outlying binding words from the training set. Outliers
are detected on the basis of scores. In particular, if only one word attains the score
Omin(m), removal of this word is guaranteed to yield a reduced training set for
which kpmin(m) will be smaller than for the original set. However, with the binding
matrix, many words in the training set receive a score of ©gym. This is due to the
systematic maximization of the threshold upon which computation of the binding
matrix is based. Therefore, outliers can not be detected solely on the basis of scores,
but additional criteria, e.g. dissimilarity to the other words with a score of ©g,
can be applied. As a simple and obvious heuristic, one could also use the profile
matrix as a means for detecting such outliers.

The words thus removed from the training data may have been put into the
data set due to misannotation, and in this case, their removal is desirable. It is,
however, also possible that no annotation errors are involved. To account for such
cases, a new word set could be assembled from the outliers that were removed, and
a binding matrix could then be computed for this set of outliers. This approach
would be suitable for transcription factors that possess multiple binding domains.
In principle, unsupervised clustering of the binding word set might be applied to
detect such conditions, but the data sets which are currently available are too small
for this approach.

In another perspective, the superior specificity achieved by binding matrix may
obviate the need for removal of words from the training data set altogether. In this
view, the binding matrix may provide an alternative to specificity improvement
through training set reduction. Of course, both approaches can also be applied in
combination.

Matrix based classifiers are not suitable for detecting binding motifs that have a
variable length. Obviously, this limitation also applies to the binding matrix; more
advanced classifiers are needed for detecting such sites. However, if parts of constant
length can be identified within a variable-length motif, matrices for detecting these
motif parts are suitable components for constructing such an advanced classifier.
It appears that in the past, such approaches have been hampered by limitations
in matrix specificity. Therefore, the binding matrix may be particularly suitable to
serve as such a building block.

In alonger perspective, it will be particularly interesting to extend this approach
for modelling higher order motifs such as composite regulatory elements. Improving
specificity of recognition for each component may, under favourable conditions,
strongly boost the specificity of recognition of entire composite elements. Thus, the
binding matrix may serve as a component for methods for extracting regulatory
information from genomic sequences.
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