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Abstract. Learning representations invariant to image transformations
is fundamental to improving object recognition. We explore the connec-
tions between i-theory, Toroidal Subspace Analysis and slow subspace
learning. All these methods can only achieve invariance to one transfor-
mation. Motivated by this limitation of these global methods we adapt
the slow subspace approach to a local convolutional setting. Experimen-
tally we show invariance to multiple transformations, and test object
recognition performance.

1 Introduction

Changes of an object’s pose are one of the big challenges in visual object recog-
nition. The pixel representation of an object can change dramatically when the
object’s pose changes. Often this problem is met by presenting many training
examples of the object in different poses. However, to achieve human like capa-
bility to learn from few samples it seems mandatory to separate the invariance
learning from the object recognition problem.

Convolutional neural networks [1, 2] are an early example of an architecture
that helps coping with shift invariance. Theses convolutional networks do not
come with an objective function to learn invariance. Their main goal is classifi-
cation, and invariance is learned as part of classification.

A well suited objective to achieve an invariant representation is slowness [3–
5]. The main assumption of slowness is, that there is some slowly changing signal
contained in a temporal stream of data. By optimizing for a slowly changing
signal in the representation, invariance to the transformations contained in that
temporal stream is achieved.

Pairs of filters coupled by their energy, so called subspaces, have shown to be
a very useful architecture. The subspaces have been introduced in the domain of
self organizing maps [6], and have been transferred to the representation learning
domain in form of the Independent Subspace Analysis (ISA) [7]. Soon slowness
and subspace architectures were combined in [8], minimizing the energy change
of the subspaces over time. Newer approaches [9–11] also include sparsity [12].

An approach derived from group theory is the Toroidal Subspace Analysis
(TSA) [13]. The resulting representation also uses subspaces. In contrast to the
slowness based subspace approaches, the energy of the subspaces is fixed for pairs
of transformed image patches, and the error for encoding one patch in terms of
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the other is minimized. Similar to TSA, gated models [14] minimize the encoding
distance between pairs of transformed images. However, there products of filters
are used to encode the transformations.

An explanation of how invariance could emerge in the ventral stream is offered
in the i-theory [15]. From these theoretical insights on invariance, implications
for the network structure can be derived.

After explaining the connections between i-theory, TSA and slow subspace
learning methods and their drawbacks, we adapt the local subspace learning
method by W. Zou et al. [9, 10] to convolutional learning and test this method
for invariance and unique representation.

2 Transformation Groups and Invariance

Orbits can be used to achieve invariance to a group G of transformations. This
is the core observation of the i-theory [15] as well as integral invariants. The
group elements g are transformations of images x ∈ R

D. We denote the group’s
actions on an image by g(x). The orbit Ox = {gi(x)|gi ∈ G} of some image x is
induced by applying all transformations gi ∈ G to x. This orbit is invariant to
the transformations in G and unique for the object in x. But it is a very high
dimensional representation.

The high dimensionality can be handled by one dimensional projections
〈gi(x),pn〉, where pn, n = 1, . . . D are arbitrary projection vectors. If there are
enough different projection vectors, a unique representation can be achieved.
Besides reducing the dimensionality, this helps to avoid transforming the input
image x by applying the inverse transformation to the projection vectors instead

〈gi(x),pn〉 = 〈x, g−1

i (pn)〉. (1)

So now we have projected orbits of images. In the i-theory probability distri-
butions over these vectors are used to obtain an invariant representation. This
helps analyzing the invariance problem. However, we found it hard to learn good
representations using this probabilistic framework [16]. Therefore, we stay in the
deterministic domain.

If we assume that the transformations gr have only one parameter r (e.g.
degree for rotation) and they are ordered by this parameter, we can assemble a
matrixW . This matrixW = (g−1

r1
(p), g−1

r2
(p), . . . , g−1

rN
(p)) is composed of column

vectors wr = g−1
r (p). The parameters ri for the transformations are uniformly

distributed ri = N/I · (i− 1) with I being the maximum transformation param-
eter. In the following line of thinking, we assume one projection vector p. Here,
we abbreviate gri by gi and wri by wi. The representation y of the image vector
x is obtained by

y =W⊤x. (2)
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For the transformed image gj(x) we obtain y′. If we observe a single entry yi of
y while applying transformation gj

yi =w⊤

i x (3)

=gj(wi)
⊤gj(x) (4)

=w⊤

i+jgj(x) = y′i+j , (5)

we see that the entries of the representation vector shift indices. Only the first
or last elements of y′, depending on the direction of the transformation, may
not be related to y. By restricting the applicable transformations G to the set of
toroidal group transformations, a relation to all entries in y can be established.

These toroidal group transformations are turned into circular shifts in the
representation vector y. So via the Fourier transform of y amplitudes invariant
to toroidal group transformations can be found, while the phases encode the
transformation parameter. Via the n-dimensional Fourier transform an extension
to n parameters is possible.

2.1 Relationship of Invariance Learning Methods

In case the transformation group is not known or the transformation is hard
to model, it is beneficial to learn W . Let x(t) = g(x(t − 1)) at time t be a
transformed version of an image x(t−1) in a sequence. From above we know that
the Fourier amplitudes will not change. Only the phase will change according to
the Fourier shift theorem. Thus, we can reconstruct x(t)

x(t) =W−1F−1R(φ)FWx(t− 1) (6)

if the phase shift φ encoded in a diagonal matrix R(φ) is known. This can be
turned in a learning algorithm, where this autoencoder like energy term

E =
∑

t

||x(t)−W−1F−1R(φ)FWx(t− 1)||, (7)

and R(φ) are optimized in an alternating manner. Since the Fourier transforma-
tion is just an unitary transformation, it can be absorbed into W

E =
∑

t

||x(t)−W⊤R(φ)Wx(t− 1)||. (8)

This is the essence of TSA [13], where usually the complex unit vectors on the
diagonal of R(φ) are not coupled.

Related to TSA are slow subspace approaches. They have two main ingre-
dients. They encourage a representation that allows reconstruction of x(t) from
W⊤x(t), which can be achieved via an orthogonal basis W , an autoencoder
term or sparse coding. In order to find an invariant representation changes in
the subspace energies

ei(t) =
K−1
∑

k=0

(w⊤

iK+kx(t))
2 (9)
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of K-dimensional subspaces indexed by i are penalized. This is done either by
minimizing their distance in consecutive samples or by minimizing their vari-
ance1, which also indirectly minimizes the subspace energy of samples following
each other. In the following we assume K = 2.

The relation of subspace methods to TSA and the i-theory can be seen if all
energy terms are zero for any pair of group transformed images. Then subspace
methods have found a basis Wslow, that can reconstruct all sample pairs x(t)
and x(t−1) from a sequence, while e(t) does not change for consecutive samples.
Only the pairs of activations w⊤

i2x(t) and w⊤

i2+1x(t) can change over time. This
change can be interpreted as an angle change in polar coordinates, which is
the only change TSA allows to reconstruct x(t) from x(t − 1). From that, we
see, any input image can be group transformed using Wslow and some matrix
R(φ) for the angle change. Therefore, Wslow is also an optimal solution for the
TSA model. The other way round, an optimal basis WTSA learned by TSA, will
always have a fixed e(t), and perfect self-reconstruction is guaranteed via not
transformed pairs x(t) and x(t− 1). Thus, WTSA is also an optimal solution for
the subspace model.

2.2 A Slow Subspace Autoencoder Model

The model we chose to build on is a slow subspace autoencoder model [10], that
has been applied successfully in object recognition tasks. It follows the scheme
mentioned above. There is a reconstruction and a slowness term, and in addition
also sparsity is encouraged. The terms

Erec =
∑

t

||x(t)−W⊤Wx(t)||22 (10)

Eslow =
∑

t

||z(t)− z(t− 1)||1 (11)

Esparse =
∑

t

||z(t)||1 (12)

with the amplitudes

zi(t) =
√

ei(t) (13)

are combined via

E =Erec + αEslow + βEsparse s.t. ||wi|| = 1. (14)

Note the unit norm constraint on the weight vectors wi. This is necessary to
avoid wi to become a zero vector if large values of α or β are used. This energy
model can now be optimized via stochastic gradient descent.

1 The principle of minimizing the variance over time is also fundamental to the Slow
Feature Analysis [5]. However, SFA is not operating on subspaces.
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In case the sparsity term is omitted TSA [13] like bases are found using the
same training samples (Figure 1a and b). These bases are global and the ampli-
tudes are perfectly transformation invariant. However, a large amount of spatial
information is lost with the phases. This representation is sensible to background
clutter and factorizing the invariance problem seems impossible (e.g. one mod-
ule doing translation invariance, the next rotation etc.) [17]. But factorizing the
range of possible transformation parameters is possible according to the i-theory
[15]. Factorizing the invariance means we are restricting it to a local window,
which can be achieved via a sparsity term (Figure 1c). Of course this will de-
crease the invariance [18], but due to the local similarity of most transformations
to shifts, a diverse set of transformations can be handled. By adding additional
layers trained like this first module, the range of invariance can be increased.

(a) (b) (c)

Fig. 1. The first 64 elements of global bases learned from rotated and shifted patches
of random intensities are shown in (a) and (b). In (c) the first 64 elements of a basis
learned with a sparsity prior from natural movie sequences is shown.

2.3 Convolutional Model

When the invariance is factorized to local windows by optimizing sparsity, many
very similar shifted local subspaces are created (Figure 1c). We decrease this
redundancy by training an adapted convolutional network with the energy terms

Erec =
∑

t

||x(t)−
∑

j

(

W̃j ∗ us(ds(Wj ∗ x(t))))
)

||22 (15)

Eslow =
∑

t

||ds(z(t))− ds(z(t− 1))||1, (16)

where

zi(t) =

√

√

√

√

1
∑

k=0

(Wi2+k ∗ x(t))2. (17)

Here, the vectors w are replaced by filters Wj and their counter parts with all di-

mensions flipped W̃j . The convolution operation is denoted by ∗. In addition the
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downsampling and upsampling operators ds and us with stride s are introduced,
taking only every s-th value in each direction or reversing the downsampling by
filling in zeros. Due to the network structure no sparsity needs to be enforced to
learn local subspaces and the required computational resources stay moderate.

For training the first layer on sequence images, the images were preprocessed
by ZCA filtering [19]. Using these preprocessed images, filters for the convolu-
tional model were optimized by stochastic gradient descent. After training, the
first layer output maps ds(zi(t)) can be computed via (17). The next layer is
trained on the output of the first layer for unprocessed images. Because these
outputs can be high dimensional, the number I of maps is reduced by filtering.
As filters we use the principle components of 1 × 1 × I patches extracted from
the outputs. This data is then ZCA filtered and used for optimizing the second
layer filters. Higher layers can be computed analog to the second layer. For com-
puting the outputs of higher layers, only the PCA step is needed, and thus, ZCA
filtering is omitted.

3 Experiments

We trained a two layer version of the convolutional model using natural movie
sequences from the van Hateren video database [20]. These are gray scale 128×
128 pixel movies collected from television. For training the first layer with α = 50,
the stride was set to 6, the filter size was set to 15×15 pixels and 36 filters shown
in Figure 2a were trained. Then using the learned filters, the first layer output
was generated using stride 2. To train the second layer the 18 magnitude maps
from the first layer output were reduced via PCA to three maps carrying more
than 90% of the variance. Again for training the stride of the second layer was
set to 6. The filter size was adapted to 15 × 15 × 3 to handle all three maps
and 108 filters were learned with α = 100. We see the results for the top map
in Figure 2b. Note, we did not analyze many of the parameters. One might find
better choises. In particular, the second layer filters are critical and for many
parameters no useful filters will be produced.

Clearly for both layers we obtain Gabor like filters (Figure 2). For the second
layer the filters are repeated in every map, however with different intensities.
These finding suggest invariance to small shifts in the first layer and an in-
creased invariance to these shifts in the second layer. We tested this translation
invariance and also rotation and scale invariance using 100 patches of 64 × 64
pixels from the van Hateren image database [21]. We measure the change in
the output of each layer, as the input undergoes transformations. The MSE be-
tween the original and the transformed patch is taken and normalized against
the largest MSE, assuming the patches are uncorrelated for these transformation
parameters. The output of both layers were downsampled with stride 3.

The plots in Figure 3 validate our believe in invariance to small shifts. We
also see invariance to rotation and scaling, because these transformations can
locally be approximated by shifts. And additionally the invariance increases from
the first to the second layer.
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(a) (b)

Fig. 2. Layer 1 filters are displayed in (a). In (b) only the top part of the second layer
filters is shown. This top part, which is for the first output map, differs from the other
parts only in the intensities of the filters.
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Fig. 3. Invariance experiment for varying degrees of shift (a), rotation (b), and scale
(c). The normalized MSE in layer 1 and layer 2 is plotted along with results for the
unprocessed input patches as reference.

Next we were interested in the effect of the stride. The strides for both layers
were adapted simultaneously. Using the same approach as above we measured
the MSE for different strides on shifted patches. The plots in Figure 4 show,
that the first layer output is not affected. However, the second layer is. This is
due to the change of the represented area. The larger the stride in the bottom
layer the larger the area represented in the second layer.

These findings suggest using large strides. One of the main problems of in-
variant representations, however, is representing the input uniquely. To test how
well information on fine image structures is retained at each layer we do k-NN
classification (k = 3) on the MNIST [2] dataset. The classification error on the
raw images is 3.09%. As we see in Table 1, there is a drop in the k-NN classi-
fication performance from layer 1 to layer 2, which can be reduced to a certain
extend by choosing small stride sizes. This clearly indicates a loss of important
information. Interestingly, the first layer error rates are significantly better than
on the input images2. We think this is due to the small non-affine transforma-
tions in MNIST, which may be handled well by the Gabor features.

2 The state of the art error rate for MNIST is of 0.23% [22].
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Fig. 4. The normalized MSE in layer 1 (a) and layer 2 (b) depending on the amount
of shift is plotted for different strides. As reference also a curve for the input patches
is shown.

Layer 1 Layer 2

Stride 6 1.48 12.88

Stride 3 1.41 6.35

Stride 2 1.43 5.01

Stride 1 1.42 3.28

Table 1. Results for MNIST classification. The error rates are given in percent.

4 Conclusion

I-theory, TSA and slow subspace learning methods are closely related. Invariance
learning based on anyone of these seems equally well suited, leaving aside op-
timization and implementation issues. However, if they learn global invariance,
their application is very limited by their adaption to a single transformation
group. Therefore, we implemented a convolutional method, which learns local
invariance due to its structure. The experiments show indeed invariance to mul-
tiple transformations, with increase in invariance from layer to layer, while in-
formation loss also seems to be increased. This information loss remains an open
problem to be solved before deeper networks using our training approach become
useful. Interestingly, the first layer seems to be capable of handling non-affine
transformations in MNIST, leading to improved classification results.
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