
Global Metric Learning by Gradient Descent

Jens Hocke and Thomas Martinetz

University of Lübeck - Institute for Neuro- and Bioinformatics
Ratzeburger Allee 160, 23538 Lübeck, Germany

hocke@inb.uni-luebeck.de

Abstract. The k-NN classifier can be very competitive if an appropri-
ate distance measure is used. It is often used in applications because the
classification decisions are easy to interpret. Here, we demonstrate how
to find a good Mahalanobis distance for k-NN classification by a simple
gradient descent without any constraints. The cost term uses global dis-
tances and unlike other methods there is a soft transition in the influence
of data points. It is evaluated and compared to other metric learning and
feature weighting methods on datasets from the UCI repository, where
the described gradient method also shows a high robustness. In the com-
parison the advantages of global approaches are demonstrated.

Keywords: Metric Learning, Feature Weighting, k-Nearest-Neighbors,
Neighborhood Component Analysis, Large Margin Nearest Neighbor
Classification, Relief.

1 Introduction

In many pattern recognition problems, we have datasets with statistical regular-
ities that can be used as prior knowledge. For example, there may be measure-
ments from different domains, which makes the relative scaling of the dimensions
in the given dataset arbitrary. Also often the data from different classes lie on
submanifolds. If some class labels are available for the data, this information can
be captured by a distance metric. This prior knowledge can be used to improve
the performance of clustering [13], learning vector quantization [6], or k-Nearest-
Neighbor (k-NN) classification [4]. We will focus here on the broadly used k-NN
classifier [1]. That often allows competitive non-linear classification, even though
it is very simple.

The k-NN classifier labels unknown data points to the most frequently occur-
ring label of the k closest points. Which points are the closest, depends on the
distance measure used. A standard choice is the Euclidean distance. However,
to increase the probability of correct classification, it might be advantageous to
adapt the metric to the data. Very popular for this purpose is the Mahalanobis
distance

d(xi,xj) =
√
(xi − xj)TM(xi − xj), (1)

S. Wermter et al. (Eds.): ICANN 2014, LNCS 8681, pp. 129–135, 2014.
c© Springer International Publishing Switzerland 2014

130 J. Hocke and T. Martinetz

where M is a positive semidefinite matrix to be learned. Instead of adapting a
distance measure, a matrix W can be learned, that projects the data to a more
suitable space. The distance in that space is

d(xi,xj) = ||Wxi −Wxj || = ||xi − xj ||W . (2)

This is equivalent to the Mahalanobis distance with M = WW�. However, W
does not need to be positive semidefinite.

The well known metric learning methods either optimize W or M . Proba-
bilistic Global Distance Metric Learning (PGDM) by Xing et al. [13] maximizes
interclass distances, while keeping intraclass distances below some threshold.
Neighborhood Component Analysis (NCA) [4] as well as Large Margin Nearest
Neighbors (LMNN) [11,12] try to free a neighborhood around every data point
from differently labeled data points.

Related to metric learning is feature weighting. Here only the data dimensions
are rescaled. This is equivalent to optimizing only the diagonal elements of M
or W . All other elements are set to zero. Methods designed specifically for this
task are Relief [8], Simba [3] and MDM [7]. Relief and Simba both use the closest
same and differently labeled data points for optimization, while MDM uses the
globally largest distances for same labeled data and the shortest distances for
differently labeled data.

In the following we describe a gradient method to find W and evaluate it
using UCI datasets [2] in both metric learning and feature weighting tasks.

2 Global Metric Learning

Our goal is to find a matrix W = (w1, . . . ,wn) ∈ R
n×m that projects data

points xi ∈ R
n with a given label yi to a m dimensional space, where the k-

NN classification performance is improved. This becomes more likely when for
every data point the same labeled points (intraclass) are close together and the
differently labeled data points (interclass) are far away. To achieve this we will
use a cost function consisting of two parts weighted by a parameter α. The
first part of the cost function punishes small distances of pairs from the set of
interclass tuples D = {(xi,xj) : yi �= yj}. If the distance one is reached, the cost
will become zero due to a cutoff. We chose a squared cost term to penalize close
interclass pairs significantly more than far apart pairs and to make a smooth
transition at the cutoff. In Figure 1 the squared error term is compared to
a linear term, where the gradient is constant and also not continuous at the
cutoff. The second part punishes large distances of intraclass tuples from the
set S = {(xi,xj) : yi = yj}. We use the distance measure ||xi − xj ||W =√
(xi − xj)�WW�(xi − xj) in the cost function

E(W) = α
∑

(i,j)∈D
(1−min (||xi − xj ||W , 1))

2
+ (1− α)

∑
(i,j)∈S

||xi − xj ||2W . (3)

Global Metric Learning by Gradient Descent 131

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

d = ||xi − xj ||W

E
(d
)

El(d) = 1−min(d, 1)

Es(d) = (1−min(d, 1))2

Fig. 1. Interclass cost function comparison. The linear function El(d) has a constant
gradient. Therefore, all interclass pairs influence the projection matrix W equally. For
the non-linear function Es(d), close by pairs have a larger influence due to their steeper
gradient compared to the far apart pairs. In addition, the non-linear function is con-
tinuously differentiable at the cutoff at d = 1.

The gradient for any weight vector wk is given by

∂E(W)

∂wk
= −2α

∑
(i,j)∈D

(1−min (||xi − xj ||W , 1))

||xi − xj ||W
(
w�

k (xi − xj)
)
(xi − xj)

+ 2(1− α)
∑

(i,j)∈S

(
w�

k (xi − xj)
)
(xi − xj). (4)

Due to this purely cost function driven design without any hard constraints,
there is always a trade off between minimizing and maximizing distances influ-
enced by many tuples. There is a soft transition between tuples close to their
desired distance with little influence and tuples far from their desired distance
with large influence. All intraclass tuples are taken into account, making this a
global approach with a Gaussian prior on the intraclass distances. Due to this
property we coin this approach Global Metric Learning (GML).

There are of course many optimizers available, that will find good solutions.
We use stochastic gradient descent (SGD), because it works fast in case of redun-
dant data. To avoid the need to select a learning rate, we applied variance-based
SGD [10,9].

132 J. Hocke and T. Martinetz

3 Relations to Other Methods

GML is like PGDM [13] a global approach with the same idea of pulling together
all intraclass tuples and setting a desired distance for interclass tuples. PGDM,
however, enforces the interclass distances as constraints. This makes PGDM
dependent on few interclass tuples with small distances and, therefore, may
make it more sensitive to noise and outliers. The same idea was also pursued by
MDM [7] for feature weighting, where for both intraclass and interclass distances
a hard rule was used.

NCA [4] and LMNN [11,12] are in contrast both local methods that try to
free the neighborhood of every data point from differently ones. Similar are NCA
and GML in that they both use soft transitions, and they optimize a projection
matrix instead of the Mahalanobis distance directly.

In the context of visualizing high-dimensional data, Hadsell et al. [5] use
almost the same cost term to find a non-linear mapping. Instead of a linear
transform, they optimize a siamese architecture of convolutional networks, which
may be interesting for finding non-linear metrics.

4 Experiments

For evaluation we used datasets from the UCI repository described in Table 1.
The datasets were split into 50% training data and 50% test data. 10 different
splits were generated for each dataset. To compare our method to LMNN, NCA
and PGDM, we determined the k-NN classification error rates with k = 3. The
metrics were learned on the training sets and used by k-NN while testing. As a
reference the Euclidean metric was also tested.

Table 1. Description of the UCI datasets

Name Samples Dimensions Classes

Iris 150 4 3
Wine 178 13 3
Breast Cancer 683 10 2
Pima Diabetes 768 8 2
Balance Scale 625 4 3
Parkinsons 195 22 2
Seeds 210 7 3

Our method has only the weighting parameter, which we set to α = 0.9 to em-
phasize the interclass distances. The optimal α depends on the data distributions,
and it may be beneficial to tune it for every dataset, e.g. by cross-validation. How-
ever, this is out of the scope of this work. The weighting parameter of LMNN was
set according to the authors advise to α = 0.5. NCA and PGDM are parameter
free.

Global Metric Learning by Gradient Descent 133

In Table 2 the 3-NN classification error rates after metric learning without
preprocessing the data are shown, followed by the standard deviation in paren-
theses. We can see that GML performs well on all datasets. In three cases it is
slightly outperformed by PGDM, and only on the Balance Scale data set it is
significantly outperformed by NCA. In the three cases where GML is the best,
it is by far the best. NCA is the worst on all other data sets and improves the
classification performance only marginally or even deteriorates it compared to
the standard Euclidean distance.

Table 2. Classification results after metric learning. There was no preprocessing ap-
plied to the data sets. The error rates are given in percent followed by the STD in
parentheses. The best results are marked in bold face and the worst in italic.

LMNN NCA PGDM GML Euclidean

Iris 3.07(1.89) 4.13(1.93) 2.27(1.99) 2.53(1.72) 3.33(1.81)
Wine 5.22(2.03) 29.78(5.87) 5.89(3.67) 2.89(1.75) 31.00(4.52)
Breast Cancer 3.80(0.57) 39.71(2.24) 3.60(0.44) 3.68(0.68) 39.68(2.21)
Pima Diabetes 29.14(2.33) 31.12(1.94) 27.19(1.34) 27.89(1.74) 30.78(1.99)
Balance Scale 15.50(1.95) 7.60(2.87) 10.00(1.14) 9.33(1.31) 21.73(1.36)
Parkinsons 14.18(2.90) 17.24(2.47) 16.63(3.57) 10.10(4.04) 16.73(2.46)
Seeds 6.95(2.88) 7.71(1.76) 6.86(2.14) 4.10(1.19) 11.33(2.64)

When preprocessing is done by scaling each dimension such that the data
distribution has variance one, the results for some methods change dramatically.
This is shown in Table 3. While all other methods benefit clearly from the
preprocessing, there are only small changes in the results of GML and PGDM.
In fact, due to the global cost function, there should be no change at all. However,
the stochastic gradient descent may not find the exact optimum in case of GML,
and also the small changes in PGDM seem to be due to convergence issues. GML
still achieves the best results in three cases, and in the other four cases is never
much worse the best one. Note, that for all methods except for GML, there is
always one dataset where it performs significantly worse than all the others (the
worst results are marked in italic).

Table 3. Classification results after metric learning on preprocessed data. The dimen-
sions of the datasets were normalized to variance one.

LMNN NCA PGDM GML Euclidean

Iris 2.80(1.93) 3.20(2.10) 2.27(1.99) 2.27(1.89) 3.60(1.55)
Wine 3.00(2.10) 5.67(1.85) 5.89(3.67) 2.67(1.67) 5.67(1.52)
Breast Cancer 3.65(0.57) 4.71(0.71) 3.60(0.44) 3.83(0.76) 3.74(0.76)
Pima Diabetes 27.97(1.33) 29.69(1.77) 27.19(1.34) 27.92(1.76) 27.84(1.93)
Balance Scale 14.41(1.90) 6.71(1.72) 10.03(1.25) 9.74(1.08) 18.95(0.85)
Parkinsons 9.49(2.26) 10.71(2.86) 15.10(3.36) 10.71(3.13) 10.00(3.22)
Seeds 6.67(2.06) 7.43(1.33) 6.86(2.14) 4.29(1.63) 8.29(2.50)

134 J. Hocke and T. Martinetz

We also tested the feature weighting performance of GML. In Table 4 the
results for preprocessed datasets are listed. The experimental set up and the
preprocessing is the same as for metric learning, however, GML was only used
to optimize the diagonal elements of W , leaving the off diagonal elements to zero.
For comparison the feature weighting methods MDM, Relief, and Simba were
used. Also in this feature weighting scenario GML performs well compared to
the other methods and is again the best in three out seven cases. Of course, for
feature weighting there is the same effect as observed for metric learning: Global
methods are robust to the initial scaling, while local methods are effected heavily.
Because the best results for the local methods were obtained in the preprocessed
setting, we only show those.

Table 4. Results for feature weighting. In a preprocessing step the dimensions of the
datasets were normalized to variance one.

MDM Relief Simba GML Euclidean

Iris 2.93(1.97) 3.20(2.10) 2.93(1.51) 3.33(2.01) 3.60(1.55)
Wine 4.00(2.23) 4.22(2.39) 4.00(2.11) 2.67(2.11) 5.67(1.52)
Breast Cancer 3.54(0.67) 4.06(1.02) 4.12(0.71) 4.06(0.79) 3.74(0.76)
Pima Diabetes 28.49(1.87) 27.16(1.43) 27.86(2.04) 28.26(1.64) 27.84(1.93)
Balance Scale 18.95(0.85) 19.17(1.31) 19.23(1.24) 21.31(2.00) 19.23(0.95)
Parkinsons 10.00(4.13) 9.18(2.50) 10.82(3.73) 8.78(3.01) 10.00(3.22)
Seeds 8.29(3.56) 9.62(3.06) 10.19(3.39) 7.33(2.50) 8.29(2.50)

Interestingly, when the metric learning and the feature weighting results are
compared (Tables 3 and 4), most error rates are quite close, showing that often a
proper scaling of the dimensions is most important for good classification. Only
for the Balance Scale and the Seeds datasets there are significant improvements
when using the more powerful metric learning. Scaling only the original dimen-
sions has the advantage that the dimensions are not mixed, which makes it easier
to interpret the results, e.g. relevant dimensions.

5 Conclusion

We showed that an optimized similarity metric can easily be obtained by gradient
descent. Two weighted cost terms represent the inter- and intraclass distances.
Optimizing their sum yields a trade off between both. All intraclass pairs are
taken into account, making this a global approach which is independent of the
initial scaling. By optimizing a projection matrix instead of the Mahalanobis
distance, we avoid to introduce a constraint to enforce the optimized matrix
to be positive semidefinite. While GML is not always the best method on the
datasets we used, it was the best method most often (together with PGDM),
and it never performed much worse than the others. In this sense it was the most
robust method, at least on the datasets we used for comparison.

Global Metric Learning by Gradient Descent 135

References

1. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

2. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

3. Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin based feature selection - theory
and algorithms. In: Proceedings of the Twenty-first International Conference on
Machine Learning, ICML 2004, pp. 43–50. ACM, New York (2004)

4. Goldberger, J., Roweis, S.T., Hinton, G.E., Salakhutdinov, R.: Neighbourhood
components analysis. In: NIPS (2004)

5. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2, pp. 1735–1742. IEEE (2006)

6. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization.
Neural Networks 15(8), 1059–1068 (2002)

7. Hocke, J., Martinetz, T.: Feature Weighting by Maximum Distance Minimization.
In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B.,
Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 420–425. Springer, Heidel-
berg (2013)

8. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings
of the Ninth International Workshop on Machine Learning, pp. 249–256 (1992)

9. Schaul, T., LeCun, Y.: Adaptive learning rates and parallelization for stochastic,
sparse, non-smooth gradients. CoRR abs/1301.3764 (2013)

10. Schaul, T., Zhang, S., LeCun, Y.: No More Pesky Learning Rates. In: ICML,
vol. (3), pp. 343–351 (2013)

11. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin near-
est neighbor classification. In: Advances in Neural Information Processing Systems,
vol. 19. MIT Press, Cambridge (2006)

12. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

13. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with
application to clustering with side-information. Advances in Neural Information
Processing Systems 15, 505–512 (2002)

http://archive.ics.uci.edu/ml

	Global Metric Learning by Gradient Descent
	1 Introduction
	2 Global Metric Learning
	3 Relations to Other Methods
	4 Experiments
	5 Conclusion
	References

