
Feature Weighting by Maximum Distance

Minimization

Jens Hocke and Thomas Martinetz

University of Lübeck - Institute for Neuro- and Bioinformatics
Ratzeburger Allee 160 23538 Lübeck - Germany

hocke@inb.uni-luebeck.de

Abstract. The k-NN algorithm is still very popular due to its simplic-
ity and the easy interpretability of the results. However, the often used
Euclidean distance is an arbitrary choice for many datasets. It is arbi-
trary because often the data is described by measurements from different
domains. Therefore, the Euclidean distance often leads to a bad classifi-
cation rate of k-NN. By feature weighting the scaling of dimensions can
be adapted and the classification performance can be significantly im-
proved. We here present a simple linear programming based method for
feature weighting, which in contrast to other feature weighting methods
is robust to the initial scaling of the data dimensions. An evaluation is
performed on real-world datasets from the UCI repository with compar-
ison to other feature weighting algorithms and to Large Margin Nearest
Neighbor Classification (LMNN) as a metric learning algorithm.

Keywords: feature selection, feature weighting, metric learning, k-
Nearest-Neighbor, Relief, Large Margin Nearest Neighbor Classification.

1 Introduction

In pattern recognition tasks data is often described by measurements from dif-
ferent domains. Thus the feature dimensions of the datasets have an arbitrary
scaling relative to each other. In many applications the k-Nearest-Neighbor clas-
sifier (k-NN) [1] is applied, because it is the simplest non-linear classifier and,
which is even more important, the classification decisions are easily interpretable.
The interpretability is due to the k nearest neighbors used for the classification
decision. By inspecting these nearest neighbors one can discern the causes for the
decision. However, the standard metric used for k-NN is the Euclidean metric,
which does not measure the distance according to the relevance of each data di-
mension but according to their arbitrary scaling. To archive a performance close
to state of the art classifiers, the dimensions need to be rescaled according to
their relevance. A similar problem is solved by relevance learning in the context
of LVQ classifiers [4].

An optimal rescaling has to minimize the classification error E(X) of the k-
NN algorithm. Often this problem is called the feature weighting problem. We
want to find a weight vector w ∈ �D, wµ ≥ 0, μ = 1, ..., D for some given dataset

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 420–425, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Feature Weighting by Maximum Distance Minimization 421

X = {xi ∈ �D, i = 1, ..., N} that helps the classifier to minimize E(X). In case
the Euclidean distance is used, the weighted distance between two data points
x,x′ becomes

d(x,x′) = ||x− x′||w =

√
√
√
√

D∑

µ=1

wµ(xµ − x′
µ)

2, (1)

also called the weighted Euclidean distance. In case there are data dimensions ir-
relevant for the classification, the weights for these dimensions will be decreased
to zero and, through this process, the dimensionality of the data set is reduced.
Such a dimensionality reduction is desirable to increase generalization perfor-
mance and noise robustness.

Several methods for feature weighting have been proposed. Very well known
is the Relief algorithm by Kira and Rendell [5]. It iteratively updates a weight
vector based on the distance of a data point to the nearest neighbors of the same
and different label. This concept has been extended in the Simba algorithm
[3] by incorporating the weight vector into the distance measure for finding
the nearest neighbors. While both methods were developed for selecting the
most important dimensions, they use a weight vector to do so. Further feature
weighting methods are I-Relief [7], which also extends Relief, and the loss-margin
based algorithm (Lmba) [6], which was derived from the Large Margin Nearest
Neighbor Classification described in the next paragraph.

Feature weighting can be seen as a subclass of the metric learning problem.
In metric learning often a Mahalanobis distance

d(x,x′) = ||x− x′||W =
√

(x− x′)TW (x− x′) (2)

is optimized to improve the k-NN classification. Note that here an entire pos-
itive semidefinite matrix W is optimized. The problem becomes equivalent to
feature weighting, if W is restricted to a diagonal matrix. A well-known method
for metric learning is Large Margin Nearest Neighbor Classification (LMNN)
[8–11]. We will have a closer look at LMNN in the next section.

Here we present a simple linear programming approach for feature weighting.
It archives a robust rescaling of the feature dimensions by a minimization of
the maximum distance between data points of the same class under a minimal
distance constraint for differently labeled points. We therefore name it Maximum
Distance Minimization (MDM).

2 Methods

Before we introduce our approach, we first want to have a closer look at LMNN.
Even though it is a metric learning method, whereas we present feature weight-
ing, both methods are related by the goals they pursue to improve the k-NN
classification performance.

422 J. Hocke and T. Martinetz

2.1 LMNN

The LMNN algorithm is designed to optimize k-NN classification performance.
To increase the classification performance, it pursues two goals directly derived
from the k-NN. Since data points are classified by k-NN according to their k
nearest neighbors, it would be best if for every class the data points from the
same class are close together and points from different classes are far away.
More precisely, the k closest points to every data point should have the same
label. We name the k points xj closest to point xi and of the same class target
neighbors. Any differently labeled point xl which is closer than the most distant
target neighbor (plus some margin) we name impostor. Now every triple of (i)
data point, (ii) target neighbor and (iii) impostor is optimized. Additionally, the
distance between all datapoints from the same class is minimized. The entire
optimization can be done by the following positive-semidefinite program:

min (1− μ)
∑

i,j�i

||xi − xj ||2W + μ
∑

i,j�i,l

(1− yil)ξi,j,l s.t. (3)

||xi − xl||2W − ||xi − xj ||2W ≥ 1− ξi,j,l (4)

ξi,j,l ≥ 0 (5)

W � 0. (6)

The notation j � i means xj is a target neighbor of xi. To indicate that xi and
xl have the same label, yi,l is used, which equals one if that is the case and zero
otherwise. μ is a parameter for weighting the two terms, and ξi,j,l are the slack
variables. By restricting the matrix W to a diagonal matrix, the optimization
problem can be cast into a linear program.

There are a couple of problems with the above formulation. First, the target
neighbors need to be chosen prior to the optimization. This is usually done
based on the initial Euclidean distance. By this selection the final result of the
optimization depends on the initial scaling of the dimensions. Second, there are
many parameters to optimize due to the large number of slack variables. And
third, there is a large number of constraints to keep track of.

2.2 MDM

Our Maximum Distance Minimization (MDM) is a feature weighting method.
The objectives are not as closely linked to the concept of the k-NN as it is
the case for LMNN, but it avoids the target neighbor selection problem and has
much fewer parameters to optimize. With its very general objective it might also
be well suited as a preprocessing step for other classifiers. Like LMNN we try
to minimize the distance of data points of the same class. However, in our case
we do not look at local neighbors but try to minimize the maximum distance
between all pairs of data points of the same class, while keeping the pairwise
distance between data points of different classes large. This means that we aim
to get all data points of the same class as closely together as possible. This is

Feature Weighting by Maximum Distance Minimization 423

a very global optimization. Formally, we are solving the following constrained
optimization problem

||xi − xl||2w ≥ 1 ∀i, l : yi �= yl (7)

||xi − xj ||2w ≤ r ∀i, j : yi = yj (8)

min
w

r wµ ≥ 0 ∀μ, (9)

where yi, yl, and yj are the class labels of xi, xl, and xj .
The above problem can be formulated as a linear program1. For this formu-

lation the number of constraints grows quadratically with the number of data
points, but in contrast to LMNN we only have few parameters to optimize,
namely only the weights wµ. In contrast to LMNN, our optimization problem is
always solvable, even without slack variables. While LMNN uses triples of points
for optimization, here we only look at pairs. By summing the squared distances
of target neighbors, LMNN uses a soft penalty for large distances. MDM has a
hard penalty, which punishes only the most distant pairs. This may make MDM
more sensible to outliers and noisy data. However, in our experiments we did not
notice this problem. Of course softness can be added to MDM as well as target
neighborhoods, but thereby some of the advantages of MDM would be lost.

3 Experiments

We evaluated MDM on datasets from the UCI repository [2]. MDM was com-
pared with results based on standard Euclidean distance as well as obtained
with the feature weighting algorithms Relief, Simba and the diagonally restricted
LMNN (D-LMNN). As a reference, we also determined the result obtained with
the unrestricted LMNN as a metric learning method. The parameter μ was cho-
sen to be 0.5 for LMNN, because this was described by the authors to be a
good choice. For D-LMNN μ was set to one, because for lower values it tended
to reduce the dimensions too much. The datasets were split into 50% training
points and 50% test points. After optimizing the weight vectors on the training
data, the k-NN error rate was determined on the reweighted test data. Every
algorithm was trained and tested on 10 different splits of every dataset. Table
1 shows the results obtained without any preprocessing of the data. In Table 2
the dataset dimensions were rescaled in a preprocessing step so that for every
dimension the data points had a normalized distribution.

Without preprocessing (Table 1) MDM achieves the best error rates. It signif-
icantly improves the error rates of standard k-NN, while Relief and Simba often
even deteriorate the classification performance. For the normalized datasets the
results change drastically as it can be seen in Table 2. MDM is the only method
for which there is almost no change compared to Table 1. LMNN and D-LMNN
have a change in their results due to a different initial selection of target neigh-
bors. Obviously, this selection depends on the intial scaling and can be improved

1 A implementation is available at www.inb.uni-luebeck.de/tools-demos/mdm/mdm.m

424 J. Hocke and T. Martinetz

Table 1. Results for unpreprocessed data. The top entry is the average test error
followed by the variance in parentheses. Below the error rates the average rank, again
followed by the variance, is given. In case of the feature weighting methods, the rank
is equal to the non zero weights. The best results obtained with feature weighting are
indicated by bold face.

Euclidean MDM Relief Simba D-LMNN LMNN

Iris 3.33(1.81) 2.93(1.97) 3.60(2.18) 4.40(1.89) 3.33(1.44) 3.07(1.89)
4.00(0.00) 4.00(0.00) 4.00(0.00) 3.90(0.01) 4.00(0.00) 4.00(0.00)

Wine 31.00(4.52) 4.00(2.23) 34.67(3.05) 34.44(3.05) 4.33(1.99) 5.22(2.03)
13.00(0.00) 11.50(0.52) 13.00(0.00) 12.90(0.01) 13.00(0.00) 12.30(0.21)

Breast 39.68(2.21) 3.60(0.69) 36.05(11.54) 39.77(2.21) 4.44(0.99) 3.80(0.57)
Cancer 10.00(0.00) 9.50(0.25) 9.90(0.01) 9.90(0.01) 10.00(0.00) 9.00(0.00)

Pima 30.78(1.99) 28.49(1.87) 30.08(2.19) 30.86(1.68) 29.14(2.62) 29.14(2.33)
Diabetes 8.00(0.00) 8.00(0.00) 7.50(0.08) 7.50(0.52) 8.00(0.00) 8.00(0.00)

Table 2. Results for the preprocessed datasets. The data dimensions of each dataset
were normalized so that the data points have zero mean and a variance of one. The
notation and structure of this table is the same as in Table 1.

Euclidean MDM Relief Simba D-LMNN LMNN

Iris 3.60(1.41) 2.93(1.97) 2.53(1.33) 3.73(1.64) 4.27(1.38) 2.67(1.99)
4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00) 4.00(0.00)

Wine 5.56(1.48) 4.00(2.23) 4.78(2.10) 4.56(2.06) 4.89(1.50) 2.67(1.90)
13.00(0.00) 12.70(0.05) 13.00(0.00) 13.00(0.00) 13.00(0.00) 13.00(0.00)

Breast 3.92(0.63) 3.54(0.67) 3.65(0.57) 4.80(1.29) 3.30(0.63) 3.57(0.49)
Cancer 10.00(0.00) 10.00(0.00) 10.00(0.00) 9.70(0.05) 10.00(0.00) 9.70(0.05)

Pima 27.76(1.44) 28.49(1.87) 28.20(1.91) 29.35(2.97) 28.49(2.08) 27.92(1.71)
Diabetes 8.00(0.00) 8.00(0.00) 7.60(0.07) 6.60(3.32) 8.00(0.00) 8.00(0.00)

by an appropriate preprocessing. Especially LMNN relies on it. Relief and Simba
work now as they are supposed to and become competitive. Even the standard
Euclidean distance is becoming a quite good choice. Nevertheless, for all datasets
except for the Pima Diabetes dataset the feature weighting and the metric learn-
ing methods perform best. MDM is still very competitive, but not clearly better
than the others anymore. So the main advantage is that MDM is independent of
the initial data scaling. Interestingly, LMNN performed significantly better than
the feature weighting methods only on the Wine dataset. This shows that often
the extra flexibility of learning the entire Mahalanobis distance is not needed.

4 Conclusion

We have presented a simple linear programming based method for feature weight-
ing. By reweighting the dimensions of the dataset, the scaling is changed so that
the classification performance of k-NN is improved significantly compared to us-
ing the standard Euclidean distance. However, if the dimensions of the datasets

Feature Weighting by Maximum Distance Minimization 425

are normalized according to their variance prior to testing, the performance
improvement drops since the other methods profit from this normalization. The
experiments on the UCI datasets show that feature weighting is for most datasets
competitive to the metric learning algorithm LMNN. This shows that the flexi-
bility of learning the entire Mahalanobis distance is often not needed. Therefore,
for very high dimensional datasets with few training points it is advisable to use
the simpler feature weighting methods.

The algorithm we presented uses hard boundaries. It does not apply softness
by using slack variables. This keeps the number of parameters to optimize low.
The missing softness had no negative effect on the datasets we tested, but very
noisy datasets with outliers might need some softness to yield robust results.
Also, it would be interesting to see the effect of using target neighborhoods in
MDM, which would adapt MDM more closely to the k-NN algorithm.

References

1. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

2. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

3. Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin based feature selection - theory
and algorithms. In: Proceedings of the Twenty-First International Conference on
Machine Learning, ICML 2004, pp. 43–50. ACM, New York (2004)

4. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization.
Neural Netw. 15(8-9), 1059–1068 (2002)

5. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proc. 9th
International Workshop on Machine Learning, pp. 249–256 (1992)

6. Li, Y., Lu, B.L.: Feature selection based on loss-margin of nearest neighbor classi-
fication. Pattern Recogn. 42(9), 1914–1921 (2009)

7. Sun, Y., Li, J.: Iterative relief for feature weighting. In: Proceedings of the 23rd
International Conference on Machine Learning, ICML 2006, pp. 913–920. ACM,
New York (2006)

8. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin near-
est neighbor classification. In: Advances in Neural Information Processing Systems
19. MIT Press, Cambridge (2006)

9. Weinberger, K.Q., Saul, L.K.: Fast solvers and efficient implementations for dis-
tance metric learning. In: Proceedings of the 25th International Conference on
Machine Learning, ICML 2008, pp. 1160–1167. ACM, New York (2008)

10. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

11. Weinberger, K., Sha, F., Saul, L.: Convex optimizations for distance metric learning
and pattern classification. Signal Processing Magazine 27, 146–158 (2010)

http://archive.ics.uci.edu/ml

	Feature Weighting by Maximum Distance Minimization
	1 Introduction
	2 Methods
	2.1 LMNN
	2.2 MDM

	3 Experiments
	4 Conclusion
	References

