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Abstract Sparse coding has become a widely used

framework in signal processing and pattern recognition.

After a motivation of the principle of sparse coding we

show the relation to Vector Quantization and Neural

Gas and describe how this relation can be used to gen-

eralize Neural Gas to successfully learn sparse coding

dictionaries. We explore applications of sparse coding

to image-feature extraction, image reconstruction and

deconvolution, and blind source separation.

Keywords Sparse Coding · Neural Gas · K-SVD ·
image deconvolution · image reconstruction · digit

recognition · blind source separation

1 Introduction

1.1 Sparse coding as efficient coding

Early work on sparse coding was based on the efficient-

coding hypothesis, which assumes that the goal of visual

coding is to faithfully represent the visual input with

minimal neural activity. The idea goes back to Barlow

[2]. It is based on earlier work of Ernst Mach and Don-

ald MacKay, and has been later extended in several

ways [14,35,29]. In a statistical information-theoretic
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framework of efficient coding, one assumes that the ef-

ficient code is obtained by reducing the redundancies

in the original signal.

Natural images occupy only a small fraction of the

entire signal space, i.e. they lie on an extremely compact

submanifold within the high-dimensional signal space.

Knowledge about this submanifold may be helpful in

many ways as it can be used, for example, to find op-

timal features for classification, and to compress and

reconstruct images. Image reconstruction can be con-

sidered as a projection of the observed distorted image

onto the submanifold of natural images (see Figure 1).

With a sparse representation of the original sig-

nal, some of its properties are preserved while others

may be lost. Typical criteria for good representations

are coding-efficiency, robustness, invariance, but also

more goal-oriented criteria like the resulting classifica-

tion performance. In [35] and related work, a comple-

mentary, geometric view on efficient coding has been

put forward. These sparsity properties cannot only be

observed in images, but also in other natural signals,

e.g., acoustic signals [26].

1.2 Learning a sparse code

An important further development was that sparse rep-

resentations of natural images can be learned and that

the resulting representations resemble receptive fields

of neurons in the primary visual cortex [29]. Assuming

that a signal x ∈ RN can be represented as x = Wa+ ε

in a basis W ∈ RN×M (also called dictionary) with co-

efficients a ∈ RM and additive Gaussian white noise

ε ∈ RM [29], the signal is sparsely encoded within the

dictionary W if most of the elements of a are zero (or

at least small). The sparse coding coefficients can be
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found by solving

a = arg min
â

(
||W â− x||2 + S(â)

)
, (1)

where the term S(â) enforces sparseness, i.e., coeffi-

cient vectors with many small coefficients. For example

S(â) = ||â||1/σ or S(â) =
∑

i log(1+ â2i )/σ, with âi be-

ing the elements of â, can be used. The sparse coding

dictionary can then be found by solving

W = arg min
Ŵ

(∑
x

min
a

(
||Ŵa− x||2 + S(a)

))
. (2)

Another way of enforcing sparseness on the coefficient

vector a is to explicitly limit the permitted number of

non-zero coefficients. This will be considered in the re-

mainder of the paper.

Because a maximization of the sparseness is similar

to the maximization of the kurtosis (peaky distributions

in both cases), sparse coding and Independent Compo-

nent Analysis (ICA) [7] are related [3] and sometimes

deliver similar results that are beyond the capabilities

of Principle Component Analysis (PCA).

Another way to find a representation adapted to

the data is non-Negative Matrix Factorization (NMF)

[30], which decomposes a matrix of signals into a dic-

tionary and a coefficient matrix, both containing only

non-negative entries. This approach has been extended

with a sparseness constraint and is therefore a special

case of sparse coding [17].

In the natural language processing and information

retrieval communities latent semantic analysis (LSA)

[9], also called latent semantic indexing (LSI), is a well

established method. Like PCA it extracts decorrelated,

orthogonal components. A probabilistic formulation of
LSI termed probabilistic latent semantic indexing (PLSI)

has been introduced in [16]. To this PLSI approach,

which is equivalent to NMF [10], a sparse prior has

been added in [33].

1.3 Sparse coding as vector quantization

Vector quantization methods can be employed in order

to learn a compact representation of the submanifold of

given sample data in terms of a set of reference vectors

w1, . . . ,wN , wi ∈ RN . Each point on the submanifold

is represented by its closest reference vector wi ∈ RN

(see Figure 1). In this case, a reconstruction of a dis-

torted image is obtained by selecting the reference vec-

tor wi that is closest to the distorted image.

Sparse coding represents a submanifold by a set of

linear subspaces. Each linear subspace of dimension K

is defined by a basis Wi ∈ RN×K . If we use such a repre-

sentation of the submanifold, image reconstruction can

distorted
image

distorted
image distorted

image

Wi

wi

submanifold of
natural
images

Fig. 1 Left: Schematical view of the submanifold of natu-
ral images. Reconstruction of an observed distorted image by
projection onto this submanifold. Center: Representation of
the submanifold in terms of a set of codebook vectors as in
vector quantization. Right: Representation of the submani-
fold in terms of a set of subspaces as in sparse coding.
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1
2

)

w2

w3

w1

Fig. 2 Compact representation of subspaces by use of a M
choose K structure with K = 2 and M = 3.

be performed by projecting the distorted image onto

the closest point on the closest subspace (see Figure 1).

Within this framework, vector quantization can be un-

derstood as representation in terms of linear subspaces

of dimensionality zero.

If we described L linear subspaces of dimension K

with individual bases Wi, we would need L × N × K
parameters. This might be highly redundant and many

parameters would have to be adapted. Sparse coding

realizes a much more compact approach by employing

a M choose K structure. It always selects those K el-

ements from its dictionary of size M , which form the

most appropriate linear subspace for a given data point.

This enables the representation of
(
M
K

)
linear subspaces

that have dimensionality K by means of M ×N dictio-

nary parameters (see Figure 2 for an example).

2 Sparse coding as a two-fold optimization

problem

Let us consider given sample data xi ∈ RN that stem

from an unknown sub-manifold within RN . The task of
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learning a M choose K description of a set of subspaces

that covers that unknown submanifold with minimum

quadratic error can be formalized by finding the W ∈
RN×M which minimizes∑
i

(
min
a
‖xi −Wa‖22 subject to ‖a‖0 ≤ K

)
. (3)

W is the so-called dictionary that contains the basis

vectors of the linear subspaces which have a dimen-

sionality of at most K. The hidden variables a are the

dictionary coefficients (‖a‖0 is the number of non-zero

entries of a). An approximative solution for this difficult

optimization task can be found with a nested optimiza-

tion approach which is described in the following.

Initially, the dictionary is selected randomly from

the given samples of the submanifold. Then the adap-

tation of the dictionary W is obtained by repetitively

solving an inner and an outer optimization problem.

The inner optimization requires to determine the clos-

est subspace for each data point, i.e., to determine the

dictionary coefficients a by solving

min
a
‖x−Wa‖22 subject to ‖a‖0 ≤ K. (4)

Since this is a NP-hard combinatorial optimization prob-

lem [8], one has to use approximation methods such as

Orthogonal Matching Pursuit (OMP) [31], Optimized

Orthogonal Matching Pursuit (OOMP) [32], or Basis

Pursuit (BP) [6], which provide a close-to-optimal so-

lution. If the optimal solution is sparse enough and the

dictionary W fulfills some conditions, these algorithms

are able to provide the exact optimum of (4) [4].

After having determined the coefficients, these are

considered fixed and an optimization step with respect

to the dictionary is performed. A number of different

approaches for the update of the dictionary have been

proposed, e.g., online gradient descent in the Sparsenet

algorithm [29], batch gradient descent as used in the

Method of Optimal Directions (MOD) [13], its column

normalized variant [25], or the K-SVD method [1] which

is based on a singular value decomposition of the repre-

sentation error matrix that is obtained with the current

configuration of the coefficients.

A major limitation of all these approaches is that

they consider only a single fixed configuration of the co-

efficients within the update of the dictionary. In many

cases not a single configuration of coefficients but a set

of close to optimal solutions exists. Hence, it is not clear

which configuration should be used in the dictionary

optimization. Obviously, it should be advantageous to

use all the close to optimal solutions in order to op-

timize the dictionary. Furthermore, it has been shown

recently that by using a plurality of sparse solutions one

can obtain better results in some approximation tasks

[12].

2.1 Soft-competitive sparse coding

Since sparse coding can be seen as a generalization of

vector quantization, the Neural Gas algorithm [28,27]

as a very efficient and robust method for finding quan-

tization codebooks should also be suitable for finding

dictionaries. The Neural Gas uses not only the optimal

but also close to optimal codebooks for learning, which

should be advantageous also for learning sparse coding

dictionaries. We proposed Sparse Coding Neural Gas

(SCNG) [21] and Neural Gas for Dictionary Learning

(NGDL) [22] as two possibilities of extending Neural

Gas to dictionary learning. Both perform a dictionary

update that is based on a plurality of sparse solutions.

While the SCNG algorithm is closely connected to the

OOMP method and does not allow for selecting an ar-

bitrary method for the determination of the dictionary

coefficients, NGDL does not have this limitation. In [34]

it is shown how the SCNG algorithm can be extended

by a Sobolev-metric for handling also functional data.

In order to perform an NGDL update, one has to

determine a set of close to optimal configurations ajp
of the coefficients. These can be obtained, for instance,

using the Bag of Pursuits (BOP) algorithm [22]. It has

also been proposed to simply consider a set of sparse

configurations of the coefficients that have been ob-

tained from a randomized OMP [12]. The set of con-

figurations is sorted according to the respective repre-

sentation error

‖x−Waj0‖ ≤ · · · ≤ ‖x−Wajp‖ ≤ · · · ≤ ‖x−WajL‖
(5)

and a soft-competitive update is applied to the dictio-
nary that is a weighted sum of the update obtained

from each single solution:

∆W = αt

L∑
p=0

e−
p
λt (x−Wajp)aTjp . (6)

The learning rate αt and the neighbourhood-size λt are

decreasing exponentially over time.

We have shown that for t→∞ this update rule cor-

responds to a stochastic gradient descent on the target

function (3) and that it leads to superior dictionaries

compared to a number of methods for dictionary learn-

ing that consider only a single configuration of the co-

efficients in the update of the dictionary [23,22]. Using

synthetic data where the actual underlying dictionary is

known, we could show that the gain is most significant

in the difficult but relevant case of a submanifold that

consists of highly overlapping linear subspaces. Further-

more, we could show that the soft-competitive stochas-

tic gradient method enables us to learn the underlying
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ground truth even if there are only few samples from the

sub-manifold available for learning, in contrast to other

methods that do not converge towards the underlying

ground truth [22].

3 Applications

3.1 Digit recognition

A crucial step in object recognition is the selection of

proper features. In an early approach for feature learn-

ing based on sparse coding [18], developed prior to the

invention of the soft-competitive methods for dictio-

nary learning, the task-specific dictionary is learned by

means of the Sparsenet algorithm. However, the ap-

proach does not depend on a particular method for dic-

tionary learning and could also be realized with SCNG

or NGDL.

First, patches P (x, y) of size N × N are extracted

from random positions (x, y) of many different images

of the training data, in this case the MNIST data set

[24]. The patches are then used to learn a sparse-coding

dictionary. Figure 3 shows typical samples from the

MNIST data set and the corresponding dictionary. Given

a new digit that has to be classified, the dictionary is

used in order to extract features by sparsely encoding

its patches at each position (x, y), providing coefficient

vectors a(x, y). This is done by solving (1) with gra-

dient descent using an appropriate regularization term

S(a).

The dictionary elements wj can be interpreted as

features whereas the coefficients aj(x, y) indicate how

well these features match at location (x, y). In order to

reduce the number of features and to make them shift

invariant, all the coefficients aj(x, y) are encoded in a

large matrix Aj , which is subdivided into a set of regu-

lar, non-overlapping regions Ri, i = 1, ...,M2. As local

features, the maximum and minimum of each region

with respect to each coefficient matrix are selected:

amax
j (Ri) = max

x,y∈Ri
aj(x, y) , (7)

amin
j (Ri) = min

x,y∈Ri
aj(x, y) . (8)

The final feature vector f of each input image consists

of the maximum and minimum values of all regions with

respect to all coefficient matrices:

f = (amax
1 (R1), . . . , amax

1 (RM2), . . . , (9)

amax
K (R1), . . . , amax

K (RM2),

amin
1 (R1), . . . , amin

1 (RM2), . . . ,

amin
K (R1), . . . , amin

K (RM2)) .

(a) (b)

Fig. 3 In (a) example digits from the MNIST set are de-
picted. In (b) the learned features are shown. It can be seen
that the features capture significant properties of the digits.

This vector is given as input to a classifier, in this case

a set of two-class support vector machines [18]. The

algorithm, although being simple, yielded state-of-the-

art results.

3.2 Image Reconstruction and Image Deconvolution

Here we consider a digital image xdegr that suffers from

degradations, such as missing pixels or blurring due to

wrong focus. The degradation can be approximately de-

scribed as

xdegr = Ax + ε, A ∈ Rm×n . (10)

A is a transform matrix that either removes pixels or

blurres the image. x is the original image. Filling in the

missing pixels or reducing the blurring by deconvolu-

tion corresponds to the inversion of the transformation

A. Solving for x is an underdetermined problem, since

m < n. A common hypothesis is that the image can be

sparsely represented in a dictionary, i.e, x = Wa, and

the most plausible inversion of (10) is x ≈W â where

â = arg min
a
‖xdegr−AWa‖2 subject to ‖a‖0 ≤ k. (11)

In a similar way, compressed sensing [5,11] is using

sparseness to find a solution to underdetermined sys-

tems of equations.

We performed image reconstruction and deconvolu-

tion experiments using dictionaries that were learned

with NGDL [23,22]. Some results are depicted in Fig-

ure 4. We have shown that soft-competitive dictionary

learning yields superior dictionaries for image recon-

struction tasks. Furthermore, we have shown that the

resulting dictionaries adapt to specific classes of images,

e.g. images of buildings and flowers.

3.3 Blind source separation

The cocktail party problem is a classical example of

blind source separation and many methods have been
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(a) (b) (c)

(d) (e) (f)

Fig. 4 By using a sparseness prior images are recovered
from their degraded versions. In the left column the original
images are shown ((a) and (d)). The top middle image (b) was
degraded by randomly removing 70 % of the pixels, and the
bottom middle image (e) was degraded by blur. The recovered
images (c) and (f) are shown on the right.

proposed in order to solve it (see [15] for a review).

Labusch et al. [19,20] use SCNG in order to tackle an

overcomplete time-invariant and time-dependent vari-

ant of the cocktail party problem.

Let us denote the observed audio streams by x(t) ∈
Rm, where m is the number of observations, e.g., two for

a human listener. The hypothesis is that these streams
stem from a mixture W ∈ Rm×n of the source audio

streams a(t) ∈ Rn, where n is the number of sources.

In the presence of noise ε(t) we have

x(t) = Wa(t) + ε(t), (12)

which is the signal model that has been introduced in

Section 1.2. The dictionary in (12) corresponds to the

unknown mixing matrix, and the unknown sources cor-

respond to the dictionary coefficients. In order to sepa-

rate the streams, W and a(t) have to be found.

If we assume that at every time step t there are only

a few sources active, we again have a sparsity prior.

Treating the recordings from every time step as sepa-

rate samples, we can use the SCNG algorithm to learn

W and a(t). To model moving audio sources, the mixing

matrix W needs to be time dependent. If W (t) changes

slowly, one can assume that it is almost constant over

some short interval [t−T, t]. Now one can start to learn

W (t) at some interval and track the changes by shifting

the interval. Because W (t) changes only slowly, it does

not need to be relearned completely.

4 Conclusion

In this paper we have provided a brief overview on

sparse coding with a focus on soft-competitive learn-

ing and a few selected applications.

We started by providing a biologically motivated

introduction to the principle of sparse coding and then

showed that sparse coding can be seen as a generaliza-

tion of vector quantization. Based on this perspective

we showed that a soft-competitive approach like the

well-known Neural Gas algorithm can successfully be

generalized to solve the sparse coding learning prob-

lem. The results are competitive and, in many cases,

even superior to computationally more intensive state-

of-the-art methods such as MOD or K-SVD, both in

terms of how well the representation error is minimized

and how well the dictionary is reconstructed [22].

We described how sparse coding can extract features

for digit recognition. A sparse basis is learned with the

Sparsenet algorithm and then used to extract local coef-

ficients. In a second step, a local maximum operation is

applied to obtain shift invariance. Both operations, the

sparse-coding strategy and the local maximum opera-

tion, are inspired by vision research. Finally, a Support-

Vector-Machine is trained on the resulting feature vec-

tors which yields state-of-the-art classification perfor-

mance on the MNIST benchmark [18].

Furthermore, we gave examples of how sparse cod-

ing can be applied to image restoration (completion and

deblurring). An important result was that when the ba-

sis functions are learned for a particular set of images,

e.g. buildings or flowers, the restoration results are bet-

ter than with a standard wavelet basis and also better

than with a dictionary learned from unspecific natural

images [23,22].

Finally, we showed that the Sparse Coding Neu-

ral Gas algorithm can be applied to a more realistic

model of the cocktail-party problem. The model allows

for more sources than observations, additive noise, and

a time-dependent mixing matrix, which corresponds to

a person that changes its position during the conver-

sation. The proposed algorithm works online and the

estimation of the underlying sources is provided imme-

diately. The method requires that the sources are sparse

and that the mixing matrix does not change too quickly

[19,20].

We conclude that sparse coding is a useful generic

framework anchored in the traditional disciplines of sig-

nal processing, machine learning, and neuroinformatics,

allowing for significant synergies between the three.
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