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ABSTRACT

Sparse coding learns its basis non-linearly, but the basis elements are still linearly combined to form an image.
Is this linear combination of basis elements a good model for natural images? We here use a non-linear synthesis
rule, such that at each location in the image the point-wise maximum over all basis elements is used to synthesize
the image. We present algorithms for image approximation and basis learning using this synthesis rule. With
these algorithms we explore the the pixel-wise maximum over the basis elements as an alternative image model
and thus contribute to the problem of finding a proper representation of natural images.
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1. INTRODUCTION

Novel developments in electronic imaging, for example computational photography, require better models of
natural images that can help us to move from just taking an image with conventional hardware to synthesizing
images based on more sophisticated devices like for example a light field camera. One classical approach is to
represent images in a better basis and it has been successful for applications like image compression and denoising
where images are represented in a wavelet basis.

An important extension is due to the work of Olshausen et al.1, 2 where optimal representations are learned
by using the sparse coding principle. Sparse coding can help to solve under-determined problems based on the
additional sparseness constraint.3–8 However, while the learning of a basis is a non-linear procedure, the basis
elements φk are still linearly combined to form an image:

x =
∑

k

akφk, (1)

where ak is a scaling factor. Such a linear synthesis rule is not adequate for non-linear image features like for
example occlusions that occur quite often in natural images. So one might ask if there are better models for
image formation.

We here propose to use a non-linear synthesis rule which is defined such that at each location i in the image
x the point-wise maximum over all basis elements φk is used to generate the image:

x(i) = max
k

akφk(i). (2)

Such a maximum rule has been proposed before by Lücke et.al.,9–11 who coined it Maximal Causes Analysis
(MCA).

For standard linear sparse coding there are several methods to determine the scaling factors ak in (1) e.g.
orthogonal matching pursuit (OMP)12 or basis pursuit (BP).13 Also for learning a basis there are several options
like Sparsenet,2 the method of optimal directions (MOD),14 K-SVD15 and sparse coding neural gas (SCNG).16

We present two approaches for determining the ak and a learning algorithm for φk in the context of MCA. Then
we compare the results with linear sparse coding for both synthetic and natural images .

Further author information: (Send correspondence to Jens Hocke)
Jens Hocke: E-mail: hocke@inb.uni-luebeck.de



2. DETERMINING THE SCALING FACTORS

To approximate an image using the MCA synthesis paradigm defined by Eq. (2), we need to find the optimal
scaling factors a = (ak) for some given basis [φ1φ2 . . . φn] = Φ ∈ R

m×n.

We propose two approximation schemes. For both schemes we assume positive image values x(i) ≥ 0 over
the entire image. The first scheme is a greedy gradient descent based method. It starts with an empty list I of
solution indices, indicating which basis elements are used in the solution. In every iteration a new index is added
to the list. To select the new index, for every basis element φk, k /∈ I an optimal scaling factor ak is found with
a golden section search using the following error measure:

E(x,Φ, a,L) =
∑

i

(

x(i)−max(aL1
φL1

(i), aL2
φL2

(i), . . . , aL|L|
φL|L|

(i))
)2

, (3)

where L = I ∪ k is the list of solution indices with the index k appended. Then the index k⋆, which minimizes
the error, is added to I. After the selection step the scaling factors ak, k ∈ I for all the elements selected so far
are updated with a line search along the gradient

∂E(x,Φ, a, I)

∂ak
= −2

∑

i

(

x(i)−max(aI1
φI1

(i), aI2
φI2

(i), . . . , aI|I|
φI|I|

(i))
)

· φk(i). (4)

For the line search also a golden section search was used. This update of the selected scaling factors can be
repeated until it converges (we found a fixed value of five iterations to work fine). The selection and the update
of all scaling factors are repeated until the desired sparsity s, i.e. a has s non-zero components, has been
reached. Since this approach selects solution elements in a greedy manner and optimizes the scaling factors
using a gradient descent we call the method greedy gradient maximal causes approximation (GGMCA).

We developed a second method to determine the scaling factors based on correlation. It is easy to see that
for a basis containing only one basis element φ ∈ R

m×1 with unit length the optimal scaling factor a is given by
its correlation, i.e. by the scalar product

a = 〈x, φ〉. (5)

For more than one basis element, we start with an empty list of basis-element indices I. Due to the non-linear
combination of the basis elements, it is not possible to add basis elements based on their correlation to the
residual, like it is done in orthogonal matching pursuit (OMP). We introduce the pattern vector p, defined as
follows:

p(i) =

{

1, if x(i)− x̂(i) > 0

0, else,
(6)

where x̂ is the current approximation. Initially p is set to one everywhere. In each iteration one scaling factor
is added to the list I. The scaling factor are obtained as :

ak =

〈

diag(p)x,
diag(p)φk

||diag(p)φk||2

〉

. (7)

where only basis elements φk, k /∈ I are considered. To minimize the error in the region p the index with the
highest correlation k⋆ = argmaxk ak is added to I. Note that this selection step is locally optimal for the region
p due to the projection, but may not be optimal globally for the whole image.

After a new index and, therefore, a new basis element has been added to the solution, the scaling coefficients
ak need to be updated. We introduce the variable mik to keep track of the basis element that contributes to the
maximum at a particular pixel:

mik =

{

1, if k = argmaxk′ ak′φk′ (i)

0, else.
(8)

In the beginning all mik = 0. When a new element with the index k⋆ is added to the solution, the mik⋆ are
set to p(i). Using the mik, we can project the basis elements only at those pixels where they contribute to the
solution:

ak =

〈

diag(mik)x,
diag(mik)φk

||diag(mik)φk||2

〉

. (9)



By using only the brightest pixels, that have maximum intensity values, in the current synthesis step, the scaling
factor is optimized for these pixels only. The other pixels do not have an effect on the solution. Note that the
above update rule depends on the mik and therefore the way the scaling factors ak are obtained will of course
change depending on which pixels are the brightest. Therefore, this step has to be repeated a few times until a
good solution is found. The update of the ak is followed by an update of the mik, ∃i : k = argmaxk′ ak′φk′ (i).
Only a subset of the mik are updated, because if after every update of ak all mik were updated, then those basis
elements, which do not contribute to the solution in the current step will never have the chance to contribute
again. This is because all corresponding mik will be set to zero. Therefore, only those mik are updated for which
the corresponding φk has contributed to the solution at some pixel.

The optimization of the coefficients ak can be repeated till it converges but we used only five iterations in
all examples. Then p is updated and we go back to the selection of the next basis element until the desired
number of basis elements has been reached. The second approach is much faster than the first one due to the
use of projections. In the following we will refer to the second approach as the iterative correlation maximal
components approximation (ICMCA).

3. LEARNING ALGORITHM

Next we have to learn an optimal basis for the above image models. Suppose we have some non-optimal basis
and found the scaling factors ak by one of the approximation methods described above. Then the representation
error for the signal x is:

E(x,Φ) =
∑

i=1

(

x(i)−
∑

k=1

mikakφk(i)

)2

. (10)

This error function shall now be minimized based on its gradient for every basis element φk⋆(i⋆) at every pixel
i⋆

∂E(x,Φ)

∂φk⋆(i⋆)
=

∂

∂φk⋆(i⋆)

(

x(i⋆)−
∑

k=1

mi⋆kakφk(i
⋆)

)2

= 2

(

x(i⋆)−
∑

k=1

mi⋆kakφk(i
⋆)

)

(−mi⋆k⋆ak⋆) . (11)

Then the gradient descent update rule, using some ǫ1 as learning rate, is

φk(i)
(t+1) = φk(i)

(t) − ǫ1
∂E(x,Φ(t))

∂φ
(t)
k

= φk(i)
(t) + ǫ1mikak

(

x(i)−
∑

k′=1

mik′ak′φk′ (i)

)

; ∀i, ∀k. (12)

Note that the factor 2 has been absorbed into the learning rate. We can see that only those basis elements are
updated, which are the maximum elements at a particular pixel i, because for every other basis element the mik

are equal to zero. We call this hard MCA learning because only one φk is updated at a particular pixel. This
hard learning rule leads to the problem that two basis elements containing only parts of one true underlying
basis element will most likely not converge to the single underlying basis element. Both elements will then be
activated together and, since they represent the data correctly, there will be no further learning. Learning is
therefore possible only in situations where, due to the sparseness constraint, one of the two basis elements is not
selected.

To overcome this limitation we introduce a softer learning rule such that all elements are updated (not only
the above winners). However, the elements that are not maximal at pixel i (and were not updated before) are
updated at a different learning rate ǫ2 and this leads to the following update rule

φk(i)
(t+1) = φk(i)

(t) + ǫ1mikak

(

x(i)−
∑

k′=1

mik′ak′φk′ (i)

)

(13)

+ǫ2 (1−mik) ak

(

x(i) −
∑

k′=1

mik′ak′φk′ (i)

)

(14)

= φk(i)
(t) + (ǫ1mik + ǫ2 (1−mik)) ak

(

x(i)−
∑

k′=1

mik′ak′φk′ (i)

)

; ∀i, ∀k. (15)



Note that since mik = 1 for the winners and zero else, the winners are updated with a learning rate of ǫ1 and all
other elements with ǫ2.

We chose dynamic learning rates that decrease over time according to

ǫ
(t)
1 = ǫ

(0)
1

(

ǫ
(final)
1

ǫ
(0)
1

)
t

tmax

, ǫ
(t)
2 = ǫ

(0)
2

(

ǫ
(final)
2

ǫ
(0)
2

)
t

tmax

. (16)

The final learning rate ǫ
(final)
2 is choosen to be much lower than ǫ

(final)
1 , so that at the end the learning is hard

(good values are ǫ
(0)
1 = 0.9, ǫ

(final)
1 = 10−3, ǫ

(0)
2 = 0.9, ǫ

(final)
2 = 10−6). We call this learning approach soft MCA

learning.

4. EXPERIMENTS ON SYNTHETIC DATA

We started by testing the algorithms for determining the scaling factors on synthetic data. This has the advantage
that we know the underlying basis. Some samples can be seen in Figure 1. These samples where generated from
a basis consisting of 8 horizontal and 8 vertical bars on 5× 5 pixel patches. Every basis element is chosen with
probability 0.125, so there should be on average 2 active basis elements per image sample. The basis elements
are then combined according to the non-linear maximum synthesis rule (2), with ak = 1 for the active and
ak = 0 for the inactive basis elements. We compared GGMCA, ICMCA and, as a reference, linear sparse coding

Samples of synthetic data generated with the basis below

Bars Basis

Figure 1. Example data and the basis underlying the data for the standard bars test.

OMP in terms of how well the ak can be determined. To measure the approximation quality, the mean squared
error (MSE) between the reconstructions and the original samples was used. For GGMCA, ICMCA and OMP,
the MSE was averaged over 100 random samples. For all algorithms we used the parameters suggested in their
description. Both methods we presented here perform significantly better (GGMCA: MSE=0.00019; ICMCA:
MSE=0.00023) than OMP (MSE=0.0013). This result was predictable since GGMCA and ICMCA are based
on the underlying model of the data, whereas OMP assumes linear combinations of the basis elements.

Next we compared hard MCA and soft MCA learning. Both need an algorithm to determine the scaling
factors ak. The hard MCA learning was tested with GGMCA. The soft MCA learning we tested with both,
GGMCA and ICMCA. For comparison we also tested a linear model based algorithm. We chose Sparse Coding
Neural Gas (SCNG) as a state of the art standard for sparse coding basis learning.

Learning a basis from the data as described above is known as the bars test and was introduced by Földiák.17

We used s = 2 as sparsity level, since that is the expected sparsity of the samples. All our learning methods and
also the SCNG were able to recover the basis from 10.000 samples generated from the bars basis. To make the
problem more challenging, we changed the bars in the basis to have random instead of equal values. Also the
basis elements where scaled with random scaling factors ak when generating the samples (see Figure 2).

In Figure 3 we see the resulting basis elements obtained by using our algorithms and SCNG. Again the bases
were learned from 10.000 samples. Clearly our soft learning algorithms learn the basis well, while the hard MCA



Samples of synthetic data generated with the basis below

Modified Bars Basis

Figure 2. Example data and the basis underlying the data for the modified bars test.

learning and SCNG fail to learn all basis elements (there are more than one bars in a single basis element and
in case of hard MCA learning there is one basis element without a bar). This does not always happen but often
these methods end up in some local minima, whereas the soft learning methods find the solution reliably. Note,
however, that SCNG has learned inverted versions of some basis elements which are as good for representing
data as non-inverted ones. However, to make visual comparison easier we show the absolute values in Figure 3.

Using the synthetic data we were able to show that both algorithms for determining the scaling factors and
the soft learning algorithm work in the non-linear model they were designed for. Also they are superior to the
sparse coding algorithm designed for the linear model.

5. EXPERIMENTS ON NATURAL IMAGES

We have seen that our algorithms work better on the non-linear data than a standard linear sparse coding
algorithm. So if the maximal components model is a better model for natural images than the standard linear
model, then it should be possible to represent images with a higher quality at the same sparsity level of the
coefficient vectors. Therefore, the next step was to test our approach on natural images.

First, we learned bases from 200.000 natural image patches. We used 8 × 8 patches from the van Haterem
natural image database.18 As sparsity level we set s = 16. The learned overcomplete bases with 128 basis

Hard MCA Learning

Soft MCA Learning using GGMCA

Soft MCA Learning using ICMCA

SCNG

Figure 3. The results of basis learning for the modified bars test.



Soft MCA Learning using GGMCA

Soft MCA Learning using ICMCA

SCNG

Figure 4. Bases learned from natural image patches with three different algorithms.



elements are shown in Figure 4. If the basis is learned using SCNG one can see the known oriented structures.
Also both variants of the soft MCA learning yield oriented structures, but they differ significantly. In the basis
obtained using soft MCA learning with GGMCA, there are some noisy elements, so probably the 200.000 image
patches were not sufficient for convergence.

Original GGMCA ICMCA SCNG

Figure 5. A section of the cameraman image and reconstructions of it.

To test how well the natural image bases that were learned above can represent images, we tested them on the
cameraman image. The 256× 256 pixel cameraman image was split up into 8× 8 pixel tiles. So there are 32× 32
tiles in total (the tiles are non-overlaping). These tiles where coded using the learned bases and algorithms for
determining the scaling factors ak. For both learning and synthesis the same algorithms were used to determine
the scaling factors but for the basis learned with SCNG where we used OMP to determine the scaling factors.
Thereafter the image was reconstructed from the coded patches according to the underlying model of the basis
used for coding. The results of the reconstruction are shown in Figure 5. The quality was measured using the
peak signal to noise ratio (PSNR). The best results are obtained with the SCNG representation (PSNR=32.18).
Our MCA models yield visibly worse results (soft MCA learning using GGMCA with PSNR = 23.20, Soft MCA
Learning using ICMCA with PSNR=26.22).

6. DISCUSSION

We presented algorithms for dealing with a non-linear image model called MCA. The algorithms we presented
work well on synthetic data that fits the MCA model, but on natural images the results are still worse than with
standard linear sparse coding. So either the MCA model is not as good as the linear model for natural images,
or our approximation algorithms do not find the best solutions. This needs to be clarified in future work.

Even though we think that the model which underlies natural images is non-linear, the MCA model might
not capture the right non-linearities. For example, the MCA model assumes that the brightest components in a
scene are always in front of darker ones, which is not true in general. However, the MCA model might be better
suited for coding gradients of images.

In conclusion, we have shown on synthetic data that optimal basis elements can be learned even in case of
non-linear image models but it remains an open question how well this particular model describes natural images.
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