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Abstract

We introduce an algorithm for space-variant filtering of video based
on a spatio-temporal Laplacian pyramid and use this algorithm to
render videos in order to visualize prerecorded eye movements.
Spatio-temporal contrast and colour saturation are reduced as a
function of distance to the nearest gaze point of regard, i.e. non-
fixated, distracting regions are filtered out, whereas fixated image
regions remain unchanged. Results of an experiment in which the
eye movements of an expert on instructional videos are visualized
with this algorithm, so that the gaze of novices is guided to relevant
image locations, show that this visualization technique facilitates
the novices’ perceptual learning.
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puters and Education]: Computer Uses in Education—Computer-
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1 Introduction

Humans move their eyes around several times per second to suc-
cessively sample visual scenes with the high-resolution centre of
the retina. The direction of gaze is tightly linked to attention, and
what people perceive ultimately depends on where they look [Stone
et al. 2003]. Naturally, the ability to record eye movement data led
to the need for meaningful visualizations. One-dimensional plots
of the horizontal and vertical components of eye position over time
have been in use since the very first gaze recording experiments
(Delabarre [1898] affixed a small cap on the cornea to transduce
eye movements onto a rotating drum, using plaster of Paris as glue).
Such plots are useful for detailed quantitative analyses, but not very
intuitively interpreted. Other tools supporting interpretation of the
data include the visualization of gaze density by means of clustered
gaze samples [Heminghous and Duchowski 2006] or the visualiza-
tion of other features such as fixation duration [Ramloll et al. 2004].
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Figure 1: Stillshot from an instructional video on classifying fish
locomotion patterns. The eye movements of the expert giving voice-
over explanations are visualized by space-variant filtering on a
spatio-temporal Laplacian pyramid: spatio-temporal contrast and
colour saturation are reduced in unattended areas. This visual-
ization technique aids novices in acquiring the expert’s perceptual
skills.

Better suited for visual inspection are approaches that use the stim-
ulus and enrich it with eye movement data; in the classical paper of
Yarbus [1967], gaze traces overlaid on the original images imme-
diately show the regions that were preferentially looked at by the
subjects. Because of the noisy nature of both eye movements and
their measurements, there is also an indirect indication of fixation
duration (traces are denser in areas of longer fixation). However,
such abstract information can also be extracted from the raw data
and presented in condensed form: for example, bars of different size
are placed in a three-dimensional view of the original stimulus to
denote fixation duration in [Lankford 2000]; in a more application-
specific manner, Špakov and Räihä [2008] annotate text with ab-
stract information on gaze behaviour for the analysis of translation
processes.

Another common method is the use of so-called fixation maps
[Velichkovsky et al. 1996; Wooding 2002]. Here, a probability
density map is computed by the superposition of Gaussians, each
centred at a single fixation (or raw gaze sample), with a subse-
quent normalization step. Areas that were fixated more often are
thus assigned higher probabilities; by varying the width of the un-
derlying Gaussians, it is possible to vary the distance up to which
two fixations are considered similar. Based on this probability
map, the stimulus images are processed so that for example lumi-
nance is gradually reduced in areas that received little attention; so-
called heat maps mark regions of interest with transparently over-
laid colours. In [Špakov and Miniotas 2007], the authors add “fog”
to render visible only the attended parts of the stimulus.



For dynamic stimuli, such as movies, all the above techniques can
be applied as well; one straightforward extension from images to
image sequences would be to apply the fixation map technique to
every video frame individually. Care has to be taken, however, to
appropriately filter the gaze input in order to ensure a smooth tran-
sition between video frames.

In this paper, we present an algorithm to visualize dynamic gaze
density maps by locally modifying spatio-temporal contrast on
a spatio-temporal Laplacian pyramid. In regions of low inter-
est, spectral energy is reduced, i.e. edge and motion intensity are
dampened, whereas regions of high interest remain as in the orig-
inal stimulus. Conceptually, this algorithm is related to gaze-
contingent displays simulating visual fields based on Gaussian
pyramids [Geisler and Perry 2002; Nikolov et al. 2004]; in these
approaches, however, only fine spatial details were blurred selec-
tively. In earlier work, we have already extended these algorithms
to the temporal domain [Böhme et al. 2006], and we here com-
bine both spatial and temporal filtering. Furthermore, the work
presented here goes beyond blurring, i.e. the specification of a sin-
gle cutoff frequency per output pixel, and allows to assign indi-
vidual weights to each frequency band. This means that, for ex-
ample, spatio-temporal contrast can be modified while leaving de-
tails intact. However, although our implementation of this algo-
rithm achieves more than 50 frames per second rendering perfor-
mance on a commodity PC, it cannot be used for real-time gaze-
contingent applications, because there all levels of the underlying
pyramid need to be upsampled to full temporal resolution for ev-
ery video frame. Its purpose is the off-line visualization of prere-
corded gaze patterns. A computationally much more challenging
version of a spatio-temporal Laplacian pyramid that is suitable also
for gaze-contingent displays is the topic of a forthcoming paper.

Pyramid-based rendering as a function of gaze has been shown to
have a guiding effect on eye movements [Dorr et al. 2008; Barth
et al. 2006]. To further demonstrate the usefulness of our algorithm,
we will present some results from a validation experiment in which
students received instructional videos either with or without a vi-
sualization of the eye movements of an expert watching the same
stimulus. Results show that the visualization technique presented
here indeed facilitates perceptual learning and improves students’
later visual search performance on novel stimuli.

2 Laplacian Pyramid in Space and Space-
Time

The so-called Laplacian pyramid serves as an efficient bandpass
representation of an image [Burt and Adelson 1983]. In the fol-
lowing section, we will briefly review its application to images and
then extend the algorithm to the spatio-temporal domain. We will
here use an isotropic pyramid, i.e. all spatial and temporal dimen-
sions are treated equally; this results in a bandpass representation in
which e.g. low spatial and low temporal and high spatial and high
temporal frequencies are represented together, respectively. For
a finer-grained decomposition of the image sequence into spatio-
temporal frequency bands, an anisotropic Laplacian pyramid could
be used instead. Using such a decomposition, one could also ob-
tain frequency bands of high spatial but low temporal frequencies
etc. For a straightforward implementation, one might first create a
spatial pyramid for each frame of the input sequence, then decom-
pose each level of that spatial pyramid in time (as in Section 2.2.2,
but omitting the spatial up- and downsampling). However, the finer
spectral resolution comes at the cost of a significantly increased
number of pixels that need to be stored and processed; this increase
is on the order of 1.16 · T times as many pixels for an anisotropic
pyramid with T temporal levels.
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G2 L2

Figure 2: Analysis phase of a Laplacian pyramid in space. Based
on the Gaussian pyramid on the left side, which stores successively
smaller image versions (with higher-frequency content successively
removed), differences of Gaussian pyramid levels are formed to ob-
tain individual frequency bands (right side). To be able to form
these differences, lower levels have to be upsampled before sub-
traction (middle). The gray bars indicate – relative to the original
spectrum – what frequency band is stored in each image. The ex-
tension into the temporal domain results in lower frame rates for
the smaller video versions (not shown).
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Figure 3: Synthesis phase of a Laplacian pyramid in space. The
Laplacian levels are iteratively upsampled to obtain a series of re-
constructed images RN , RN−1, . . . , R0 with increasing cutoff fre-
quencies. If the Ln remain unchanged, R0 is an exact reproduction
of the original input image G0.

2.1 Spatial Domain

The Laplacian pyramid is based on a Gaussian multiresolution
pyramid, which stores successively smaller versions of an image;
usually, resolution is reduced by a factor of two in each downsam-
pling step (for two-dimensional images, the number of pixels is thus
reduced by a factor of four). Prior to each downsampling step, the
image is appropriately lowpass filtered so that high-frequency con-
tent is removed; the lower-resolution downsampling result then ful-
fills the conditions of the Nyquist theorem and can represent the
(filtered) image without aliasing. For a schematic overview, we re-
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Figure 4: Spatio-temporal Gaussian pyramid with three levels and c = 2. Lower levels have reduced resolution both in space and in time.
Note that history and lookahead video frames are required because of the temporal filter with symmetric kernel, e.g. computation of G2(1)
depends on G1(4), which in turn depends on G0(6).

fer to Figures 2 and 3.

2.2 Spatio-Temporal Domain

The Gaussian pyramid algorithm was first applied to the temporal
domain by Uz et al. [1991]. In analogy to dropping every other
pixel during the downsampling step, every other frame of an image
sequence is discarded to obtain lower pyramid levels (cf. Figure 4).
In the temporal domain, however, the problem arises that the num-
ber of frames to process is not necessarily known in advance and
is potentially infinite; it is therefore not feasible to store the whole
image sequence in memory. Nevertheless, video frames from the
past and the future need to be accessed during the lowpass filtering
step prior to the downsampling operation; thus, care has to be taken
which frames to buffer. In the following, we will refer to these
frames as history and lookahead frames, respectively.

Both for the subtraction of adjacent Gaussian pyramid levels (to
create Laplacian levels) and for the reconstruction step (in which
the Laplacian levels are recombined), lower levels first have to be
upsampled to match the resolution of the higher level. Following
these upsampling steps, the results have to be filtered to interpo-
late at the inserted pixels and frames; again, history and lookahead
video frames are required. We will now describe these operations in
more detail and analyse the number of video frames to be buffered.

2.2.1 Notation

The sequence of input images is denoted by I(t); input images have
a size of W by H pixels and an arbitrary number of colour chan-
nels (individual channels are treated separately). A single pixel at
location (x, y) and time t is referred to as I(t)(x, y); in the follow-
ing, operations on whole images, such as addition, are to be applied
pixelwise to all pixels.

The individual levels of a Gaussian multiresolution pyramid with
N + 1 levels are referred to as Gk(t), 0 ≤ k ≤ N . The highest
level G0 is the same as the input sequence; because of the spatio-
temporal downsampling, lower levels have fewer pixels and a lower
frame rate, so thatGk(n) has a spatial resolution ofW/2k byH/2k

pixels and corresponds to the same point in time as G0(2kn). Spa-
tial up- and downsampling operations on an image I are denoted
as ↑ [I] and ↓ [I], respectively. For time steps t that are not a
multiple of 2N , not all pyramid levels have a corresponding image
Gk(t/2k). Therefore, Ct denotes the highest index of levels with
valid images at time t, i.e. Ct is the largest integer with Ct ≤ N
and t mod 2Ct = 0. Similar to the Gaussian levels Gk, we re-
fer to the levels of the Laplacian pyramid as Lk(t), 0 ≤ k ≤ N

(again, resolution is reduced by a factor of two in all dimensions
with increasing k); the intermediate steps during the iterative re-
construction of the original signal are denoted as Rk(t).

The temporal filtering which is required for temporal down- and
upsampling introduces a latency (see next sections). The number
of lookahead items required on level k is denoted by λk for the
analysis phase and by Λk for the synthesis phase.

2.2.2 Analysis Phase

To compute the Laplacian levels, the Gaussian pyramid has to be
created first (see Figure 2). The relationship of different Gaussian
levels is shown in Figure 4; lower levels are obtained by lowpass
filtering and spatially downsampling higher levels:

Gk+1(n) =

cX
i=−c

wi · ↓ [Gk(2n− i)]

,
cX

i=−c

wi .

We here use a binomial filter kernel (1, 4, 6, 4, 1) with c = 2.

The Laplacian levels are then computed as differences of adjacent
Gaussian levels (the lowest levelLN is the same as the lowest Gaus-
sian level GN ); before performing the subtraction, the lower level
has to be brought back to a matching resolution again by inserting
zeros (blank frames) to upsample and subsequent lowpass filtering.
In practice, the inserted frames can be ignored and their correspond-
ing filter coefficients are set to zero:

Lk(n) = Gk(n)−

x?????
24 X
i∈P (n)

wi ·Gk+1

„
n− i

2

«, X
i∈P (n)

wi

35 ,
with P (n) = {j = −c, . . . , c | (n− j) mod 2 = 0} giving the set
of valid images on the lower level.

Based on these equations, we can now derive the number of looka-
head items required for the generation of the Laplacian. For the
upsampling of lower Gaussian levels, we need a lookahead of
β = b c+1

2
c images on each level, with bc denoting floating-point

truncation. Starting on the lowest levelGN , this implies that 2β+c
images must be available on level GN−1 during the downsam-
pling phase; we can repeatedly follow this argument and obtain
λk = 2N−k · (β + c) − c as the number of required lookahead
images for level k.

2.2.3 Synthesis Phase

Turning now to the synthesis phase of the Laplacian pyramid, we
note from Figure 3 that the Laplacian levels are sucessively upsam-
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Figure 5: Synthesis step of spatio-temporal Laplacian pyramid. Here shown are both the Laplacian levelsLi and the (partially) reconstructed
images Ri, which are based on lower levels with indices ≥ i; in practice, the same buffers can be used for both R and L. For example, to
compute the reconstruction R0(t) of the original image, we have to add L0(t) to a spatio-temporally upsampled version of R1. The second
level L1 is combined with the upsampling result of L2 in R1( t+c

2
) = R1( t

2
+ β1) (see pseudocode). In this schematic overview, new frames

are added on the right side and shifted leftwards with time.

pled and added up to reconstruct the original image; this simply
is the inverse of the “upsample–and–subtract” operation during the
analysis phase. On the lowest level, RN (n) = LN (n); for higher
levels, the intermediate reconstructed images are computed as

Rk(n) = Lk(n) +
X

i∈P (n)

wi

x?????
»
Rk+1

„
n− i

2

«, X
i∈P (n)

wi

35.
(1)

Clearly, a further latency is incurred between the point in time for
which bandpass information and the reconstructed or filtered image
are available. Similar to the study of the analysis phase in the pre-
vious section, we can compute the number Λk of required looka-
head items on each level by induction. On the lowest level LN ,
again β = b c+1

2
c images are required for the upsampling opera-

tion, which corresponds to 2β images on level N − 1. As can be
seen in Figure 5, the result of the upsampling operation is added
to the β-th lookahead item on level N − 1, so that ΛN−1 = 3β.
Repeating this computation, we obtain Λk = (2N+1−k−1) ·β; for
L0, however, no further upsampling is required, so it is possible to
reduce the lookahead on the highest level to Λ0 = (2N+1 − 2) · β.

In practice, we do not need to differentiate explicitly betweenL and
R; the same buffers can be used for both L and R images. Care has
to be taken then not to perform a desired modification of a given
Laplacian level on a buffer that already contains information from
lower levels as well (i.e. an R image).

2.3 Pseudocode and Implementation

We are now ready to bring together the above observations and
put them into pseudocode, see Algorithms 1 and 2. Based on
P (n) above, the index function that determines which images
are available on lower levels in the following is Pk(t) = {j =
−c, . . . , c |

`
t

2k + βk − j
´

mod 2 = 0}. In the synthesis phase,
the image offset βk at which the recombinationL andR takes place
can be set to zero on the highest level; we therefore use βk = β for
k > 0, β0 = 0.

From the pseudocode, a buffering scheme for the implementation
directly follows. First, images from the Gaussian pyramid have to
be stored; each level k needs at least λk lookahead images, one
current image, and βk history. Trading memory requirements for
computational costs, it is also possible to keep all images of the

Gaussian pyramid in memory twice, once in the “correct” size and
once in the downsampled version; for each frame of the input video,
only one downsampling operation has to be executed then. In anal-
ogy to the Gaussian levels, both the Laplacian and the (partially)
reconstructed levels L and R can be held together in one buffer per
level k with Λk lookahead, one current image, and the βk history.

In practice, the output of the pyramid can be accessed only with
a certain latency because of the symmetric temporal filters that re-
quire video frames from the future. Input images are fed into looka-
head position λ0 of buffer G0, and images are shifted towards the
“current” position by one position for every new video frame. This
means that only λ0 many time steps after video frame I(t0) has
been added, the Gaussian images G0 to GN that represent I(t0)
at various spatio-temporal resolutions are available in the “current”
positions of the Gaussian buffers. The resulting differences L0 to
LN then are stored at the lookahead positions Λ0 to ΛN of the
Laplacian buffers, respectively; here, different frequency bands can
be accessed both for analysis and modification. Only Λ0 time steps
later does the input image I reappear after pyramid synthesis; over-
all, this leads to a pyramid latency between input and output of
λ0 + Λ0 time steps.

The necessary buffering and the handling of lookahead frames
could be reduced and simplified if causal filters were used; a fur-
ther possibility to efficiently filter in time without lookahead is to
use temporally recursive filters. However, any non-symmetry in
the filters will introduce phase shifts. Particularly in the case of
space-variant filtering (see below), this would produce image arte-
facts (such as a pedestrian with disconnected – fast – legs and –
relatively slow – upper body).

3 Gaze Visualization

In the previous section, we described the analysis and synthesis
phase of a spatio-temporal Laplacian pyramid. However, the re-
sult of the synthesis phase is a mere reconstruction of the original
image sequence; we want to filter the image sequence based on a
list of gaze positions instead.



Algorithm 1 Pseudocode for one time step of the pyramid analysis
phase.
Input: t Time step to update the pyramid for

G0, . . . , GN Levels of the Gaussian pyramid
L0, . . . , LN Levels of the Laplacian pyramid

Ct = max({γ ∈ N | 0 ≤ γ ≤ N , t mod 2γ = 0})
. Gaussian pyramid creation

G0(t+ λ0) = I(t+ λ0)
for k = 1, . . . , Ct do
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t

2k
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«
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cX
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«– , cX
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end for
. Laplacian pyramid creation

for k = 0, . . . , Ct do
if k = N then

LN

„
t

2N
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«
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„
t
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«
else

Lk
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„
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+
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2

«35, X
i∈Pk(t)

wi

end if
end for

3.1 Space-Variant Pyramid Synthesis

We now introduce the concept of a coefficient map that indicates
how spectral energy should be modified in each frequency band at
each pixel of the output image sequence. We denote the coefficient
map for level k at time t with Wk(t); the Wk have the same spatial
resolution as the corresponding Lk, i.e. W/2k by H/2k pixels.

To bandpass-filter the image sequence, the Laplacian levels Lk are
simply multiplied pixel-wise with the Wk prior to the recombina-
tion into Rk.

Based on the pseudocode (Algorithm 3), we can see that coefficient
maps for different points in time are applied to the different levels
in each synthesis step of the pyramid; this follows from the itera-
tive recombination of L into the reconstructed levels. In practice,
a more straightforward solution is to apply coefficient maps corre-
sponding to one time t to the farthest lookahead item Λk of each
level Lk (i.e. right after subtraction of adjacent Gaussian levels).

As noted before, in the following validation experiment we will use
the same coefficient map for all levels (for computational efficiency,
however, coefficient maps for lower levels can be stored with fewer
pixels). In principle, this means that a similar effect could be
achieved by computing the mean pixel intensity of the whole image
sequence and then, depending on gaze position, smoothly blend-
ing between this mean value and each video pixel. However, for
practical reasons, the lowest level of the pyramid does not repre-
sent the “true” DC (the mean of the image sequence), but merely a

Algorithm 2 Pseudocode for one time step of the pyramid synthesis
phase.
Input: t Time step to update the pyramid for

G0, . . . , GN Levels of the Gaussian pyramid
L0, . . . , LN Levels of the Laplacian pyramid

Ct = max({γ ∈ N | 0 ≤ γ ≤ N , t mod 2γ = 0})
for k = Ct, . . . , 0 do

if k = N then

RN

„
t

2N
+ βN

«
= LN
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t
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«
else
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end if

end for

very strongly lowpass-filtered video version; this means that some
coarse spatio-temporal structure remains even in regions where all
contrast in higher levels is removed by setting the coefficient map
to zero. The temporal multiresolution character of the pyramid also
adds smoothness to changes in the coefficient maps over time; be-
cause temporal levels are updated at varying rates, such changes are
introduced gradually. Finally, by using different coefficient maps
for each level, it is trivially possible to highlight certain frequency
bands, which is impossible based on a computation of the mean
alone.

4 Attentional Guidance

Pyramid-based rendering of video as a function of gaze has been
shown to have a guiding effect on eye movements. For example, the
introduction of peripheral temporal blur on a gaze-contingent dis-
play reduces the number of large-amplitude saccades [Barth et al.
2006], even though the visibility of such blur is low [Dorr et al.
2005]. Using a real-time gaze-contingent version of a spatial Lapla-
cian pyramid, locally reducing (spatial) spectral energy at likely fix-
ation points also changes eye movement characteristics [Dorr et al.
2008].

In the following, we will therefore briefly summarize how our gaze
visualization algorithm can be applied in a learning task to guide
the student’s gaze. For further details of this experiment, we refer
to [Jarodzka et al. 2010b].

4.1 Perceptual Learning

In many problem domains, experts develop efficient eye movement
strategies because the underlying problem requires substantial vi-
sual search. Examples include the analysis of radiograms [Lesgold
et al. 1988], driving [Underwood et al. 2003], and the classifica-
tion of fish locomotion [Jarodzka et al. 2010a]. In order to aid
novices in acquiring the efficient eye movement strategies of an ex-
pert, it is possible to use cueing to guide their attention towards rel-
evant stimulus locations; however, it often remains unclear where
and how to cue the user. Van Gog et al. [2009] guided attention
during problem-solving tasks by directly displaying the eye move-



Algorithm 3 Pseudocode for one time step of the space-variant syn-
thesis phase.
Input: t Time step to update the pyramid for

G0, . . . , GN Levels of the Gaussian pyramid
L0, . . . , LN Levels of the Laplacian pyramid
W0, . . . ,WN Coefficient maps

Ct = max({γ ∈ N | 0 ≤ γ ≤ N , t mod 2γ = 0})
for k = Ct, . . . , 0 do

if k = N then
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end if

end for

ments of an expert made during performing the same task on mod-
eling examples, but found that the attentional guidance actually de-
creased novices’ subsequent test performance instead of facilitating
the learning process. One possible explanation of this effect could
be that the chosen method of guidance (a red dot at the experts’
gaze position that grew in size with fixation duration) was not opti-
mal because the gaze marker covered exactly those visual features it
was supposed to highlight, and its dynamical nature might have dis-
tracted the observers. To avoid this problem, we here use the space-
variant filtering algorithm presented in the previous sections to ren-
der instructional videos such that the viewer’s attention is guided
to those areas that were attended by the expert. However, instead
of altering these attended areas, we decrease spatio-temporal con-
trast (i.e. edge and motion intensity) elsewhere, in order to increase
the relative visual saliency of the problem-relevant areas without
covering them or introducing artefacts.

4.2 Stimulus Material and Experimental Setup

Eight videos of different fish species with a duration of 4 s each
were recorded, depicting different locomotion patterns. They had
a spatial resolution of 720 by 576 pixels and a frame rate of 25
frames per second. Four of these videos were shown in a contin-
uous loop to an expert on fish locomotion (a professor of marine
zoology) and his eye movements were collected using a Tobii 1750
remote eye tracker running at 50 Hz. Simultaneously, a spoken di-
dactical explanation of the locomotion pattern (i.e. how different
body parts moved) was recorded. These four videos were shown to
72 subjects (university students without prior task experience) in a
training phase either as-is, with the expert’s eye movements marked
by a simple yellow disk at gaze position, or with attentional guid-
ance by the pyramid-based contrast reduction. In the subsequent
test or recall phase, the remaining four videos were shown to the
subjects without any modification. After presentation, subjects had
to apply the knowledge acquired during the training phase and had
to name and describe the locomotion pattern displayed in each test
video; the number of correct answers yielded a performance score.
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Figure 6: Eccentricity-dependent resolution map: at centre of fix-
ation, spectral energy remains the same; energy is increasingly re-
duced with increasing distance from gaze position.

4.3 Gaze Filtering

Functionally, a sequence of eye movements consists of a series of
fixations, where eye position remains constant, and saccades, dur-
ing which eye position changes rapidly (smooth pursuit movements
here can be understood as fixations where gaze position remains
constant on a moving object). In practice, however, the eye posi-
tion as measured by the eye tracker hardly ever stays constant from
one sample to the next; the fixational instability of the oculomotor
system, minor head movements, and noise in the camera system of
the eye tracker all contribute to the effect that the measured eye po-
sition exhibits a substantial jitter. If this jitter were to be replayed to
the novice, such constant erratic motion might distract the observer
from the very scene that gaze guidance is supposed to highlight. In
order to reduce the jitter, raw gaze data was filtered with a tempo-
ral Gaussian lowpass filter with a support of 200 ms and a standard
deviation of 42 ms.

4.4 Space-Variant Filtering and Colour Removal

A Laplacian pyramid with five levels was used; coefficient maps
were created in such a way that the original image sequence was
reconstructed faithfully in the fixated area (the weight of all lev-
els during pyramid synthesis was set to 1.0) and spatio-temporal
changes were diminished (all level weights set to 0.0) in those ar-
eas that the expert had only seen peripherally. On the highest level,
the first zone was defined by a radius of 32 pixels around gaze po-
sition and weights were set to 0.0 outside a radius of 256 pixels;
these radii approximately corresponded to 1.15 and 9.2 degrees of
visual angle, respectively. In parafoveal vision, weights were grad-
ually decreased from 1.0 to 0.0 for a smooth transition, following
a Gaussian falloff with a standard deviation of 40 pixels (see Fig-
ure 6). Furthermore, these maps were produced not only by plac-
ing a mask at the current gaze position in each video frame; in-
stead, masks for all gaze positions of the preceding and following
300 ms were superimposed and the coefficient map was then nor-
malized to a maximum of 1.0. During periods of fixation, this su-
perposition had little or no effect; during saccades, however, this
procedure elongated the radially symmetric coefficient map along
the direction of the saccade. Thus, the observer was able to fol-
low the expert’s saccades and unpredictable large displacements of
the unmodified area were prevented. Finally, colour saturation was
also removed from non-attended areas similar to the reduction of
spectral energy; here, complete removal of colour started outside



a radius of 384 pixels around gaze, and the Gaussian falloff in the
transition area had a standard deviation of 67 pixels. Note that these
parameters were determined rather informally to find a reasonable
trade-off between a focus that would be too restricted (if the fo-
cus were only a few pixels wide, discrimination of relevant features
would be impossible) and a wide focus that would be without effect
(if the unmodified area encompassed the whole stimulus). As such,
these parameters are likely to be specific to the stimulus material
used here. For a thorough investigation of the visibility of peripher-
ally removed colour saturation using a gaze-contingent display, we
refer to Duchowski et al. [2009].

For an example frame, see Figure 1; a demo video is available on-
line at http://www.gazecom.eu/demo-material.

4.5 Results

Previous research has already shown that providing a gaze marker
in the highly perceptual task of classifying fish locomotion facili-
tates perceptual learning: subjects look at relevant movie regions
for a longer time and take less time to find relevant locations after
stimulus onset, which in turn results in higher performance scores
in subsequent tests on novel stimuli [Jarodzka et al. 2009]. The gaze
visualization technique presented here does not cover these relevant
locations; subjects’ visual search performance is improved even be-
yond that obtained with the simple gaze marker. Time needed to
find relevant locations after stimulus onset decreases by 21.26%
compared to the gaze marker condition and by 27.53% compared
to the condition without any guidance. Moreover, dwell time on the
relevant locations increases by 7.25% compared to the gaze marker
condition and by 48.82% compared to the condition without any
guidance. For a more in-depth analysis see [Jarodzka et al. 2010b].

5 Conclusion

We have presented a novel algorithm to perform space-variant fil-
tering of a movie based on a spatio-temporal Laplacian pyramid.
One application is the visualization of eye movements on videos;
spatio-temporal contrast is modified as a function of gaze density,
i.e. spectral energy is reduced in regions of low interest. In a val-
idation experiment, subjects watched instructional videos on fish
locomotion either with or without visualization of the eye move-
ments of an expert. We were able to show that on novel test stimuli,
subjects who had received such information performed better than
subjects who had not benefited from the expert’s eye movements
during training, and that the gaze visualization technique presented
here facilitated learning better than a simple gaze display (yellow
gaze marker). In principle, any visualization technique that reduces
the relative visibility of those regions not attended by the expert
might have a similar effect; our choice for this particular technique
was motivated by our work on eye movement prediction [Dorr et al.
2008; Vig et al. 2009], which shows that spectral energy is a good
predictor for eye movements. Ultimately, we intend to use similar
techniques in a gaze-contingent fashion in order to guide the gaze
of an observer [Barth et al. 2006].
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