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ABSTRACT

We present a novel method, Manifold Sensing, for the adaptive sampling of the visual world based on manifolds
of increasing but low dimensionality that have been learned with representative data. Because the data set is
adapted during sampling, every new measurement (sample) depends on the previously acquired measurements.
This leads to an efficient sampling strategy that requires a low total number of measurements. We apply Manifold
Sensing to object recognition on UMIST, Robotics Laboratory, and ALOI benchmarks. For face recognition,
with only 30 measurements - this corresponds to a compression ratio greater than 2000 - an unknown face can
be localized such that its nearest neighbor in the low-dimensional manifold is almost always the actual nearest
image. Moreover, the recognition rate obtained by assigning the class of the nearest neighbor is 100%. For a
different benchmark with everyday objects, with only 38 measurements - in this case a compression ratio greater
than 700 - we obtain similar localization results and, again, a 100% recognition rate.
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1. INTRODUCTION

This work takes some inspiration from Compressed Sensing (CS)! and derives an efficient sensing scheme in the
context of Active Vision. The objective is to develop appropriate learning schemes for adaptive sensing and to
increase the efficiency of visual sensing. From a different perspective, we are dealing with the problem of how
to efficiently sample the world under the constraint of a limited bandwidth. In human vision the bandwidth is
limited, for example, by the capacity of the optic nerve, and in technical systems by the performance and cost
of hardware. The method Manifold Sensing (MS) proposed here is inspired by the sampling model of biological
systems, which efficiently sense the information required for a particular task.

CS is a coding principle which is based on the existence of an image representation that provides a sparse code.?
The method does not adapt to particular datasets. It was shown that CS can be applied successfully on natural
images, which can be encoded sparsely. The idea is that sensing with a random sensing matrix can significantly
reduce the bandwidth required for an exact representation and reconstruction of the image.®> Our MS method is
related to CS, in the sense that every measurement (note that we use the expressions measurement and sample
as synonyms to denote the sensing values, not to be confused with a data sample) is a weighted sum of the
original unknown signal (the world to be sensed). MS, however, involves a two-fold adaptation process: (i) the
algorithm adapts to particular datasets, and (ii) every new measurement depends on the previously acquired
measurements.

MS is based on the assumption that, due to redundancies, natural images lie on non-linear low-dimensional
manifolds.*"® Images trace out non-linear curves embedded in the image space. In case there are changes in
scale, illumination and other sources of continuous variability, then the images lie on low-dimensional manifolds
rather than on the simple one-dimensional curves.? MS is based on manifolds of low dimensions and step by
step we increase the dimension in which we learn a new low-dimensional manifold. This means that considering
the information that we already have, we move into a higher dimension and we take a number of samples and
so on. The number of samples we need for solving a particular recognition task should be as small as possible.
An alternative hierarchical sensing scheme is presented by Schiitze et al.®
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2. THE APPROACH

This section presents the main steps of the MS method which is currently based on the iterative Locally Linear
Embedding (LLE) algorithm but could be used with alternative manifold learning algorithms.

2.1 The main steps of MS

We consider a given data set D with P points of dimension D. For the given data set we learn a manifold of
dimension Nj, typically 2 or 3, by using the LLE"® algorithm. This corresponds to the learning step shown in
Figure 1. LLE has only one free parameter, the number of nearest neighbors (for each data point of D) given
here by r. Any new data point, i.e., a test point outside D, is first projected on the learned manifold. This is
represented in Figure 1 by the projection step. The adaptive data set Dy (k denotes the current iteration) is a
subset of the original data set embedded in the same dimension N; and it is illustrated in Figure 1 as part of
the adaptation step. Dy is given by:

Dy:D—D —=D"— ... (1)

The process of embedding the adaptive data set Dy in a manifold of dimension N; is repeated n; times with
different sizes of Dy, as it can be seen in the second row of Figure 1. Thus, n; denotes how often we iterate the
embedding in a particular dimension IV;, before moving to a manifold with higher dimension Ny, N, > N;, and
until we reach a predefined maximal dimension Ny,x.

Starting with the LLE algorithm and considering the steps presented before, we implement an iterative LLE
algorithm, which is fundamental for the MS method.
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Figure 1: The main steps of MS.



2.2 Iterative LLE algorithm

This section explains how the MS method works based on the implementation of an iterative LLE algorithm. We
focus on the steps presented in Figure 1 and in Algorithm 1. We introduce the following notations for Algorithm
1: Y represents the low dimensional embedding coordinates of the data points in Dy; y’ denotes the j-th element
of Y, i.e., the coordinates of a particular point in Dy; At is the pseudo-inverse matrix; Yies;: projected test data
on the low dimensional manifold; y!.: the I-th element of Y., i.e., the coordinates of a particular point in
Xiest; A(Ylost, y?): the Euclidean distance between vl and 7.

Algorithm 1 MS - Iterative LLE

Input: Dy, - adaptive data set (Equation 1 where D is the data set represented in a Haar basis )
r - number of nearest neighbors for each data point
N; - dimension of the manifold
XNiest - test data
n; - number of iterations computed for dimension N;
Learning manifold
1: Y « LLE(Dg,r, N;)”
Learning pseudo-inverse matrix
2. At Y. D!
Projecting test data
3: Yiest < AT Xtest
Adapting data set
4: compute all d(yl., )
select neighborhood Dy, size(Dy) = q (Equation 2)
6: repeat m; times

o

We consider the adaptation step where Dy, has a decreasing number ¢ of data points. This is graphically shown
in Figure 1 by: D — D’ — D”. In order to learn the embeddings of the data for all Dy, one would require an
hierarchal partitioning of the data set. Currently, we do not use such a partitioning but define the subsets by
the size ¢ of the neighborhood and use the following heuristics for ¢:

g=Mn—-k+2)-r (2)

Thus, the number of data points in Dy depends on: (i) the number r of neighbors that we select for the LLE
algorithm, (ii) the current iteration k and the total number of iterations n that we use. Note that, at each
iteration k, k > 1, the number of points for Dy is reduced.

Finally, the parameters of MS are: (i) the number r of the nearest neighbors, (ii) the (decreasing) size g of
the adaptive data set Dy, and (iii) the dimensions N; of the manifolds.

Currently, learning the manifolds with LLE and sensing with the pseudo-inverse are performed with the data
represented in an Haar basis in order to have a sparser representation of the data.

3. EXPERIMENTS

We worked under the assumption that the goal of sensing is to acquire information for a particular task and not
for representing the world. We therefore applied the MS method for both face recognition and object recognition.
We evaluated the performance of MS on three benchmarks, two for face-recognition and one for the recognition
of everyday objects. We measured the performance of MS by computing: (i) the Signal to Noise Ratio (SNR)
between the test images and the corresponding nearest images in D and (ii) the recognition rate.

Regarding the SNR, note that the selection of the nearest image is based on the distances in the low di-
mensional embedding but the actual SNR is computed in the original image space as a measure for how much
information is retained in the low-dimensional embedding. The recognition rate is based on a classifier that
assigns each low-dimensional y!,., to the class of the nearest 3/ in the low-dimensional data set.



We compared MS with: (i) Principal Component Analysis (Non-iterative PCA) presented in Algorithm 2: new
data points are projected on the M principal components of D, and (ii) Iterative PCA presented in Algorithm
3: the Algorithm follows the same steps as MS (see Algorithm 1) but any new data point is simply projected on
the N; - n; principal components of Dy, which correspond to the N; - n; largest eigenvalues of Dy. The notations
used in Algorithm 2 and Algorithm 3 are the following: princomp(D) performs principal component analysis
on D and returns the principal component coefficients stored in the matrix U of size (D x D); Y are the given
data from the adaptive data set Dy projected on the N; - n; principal components of Dy that correspond to
the N; - n; largest eigenvalues of Dy; 37 is the j-th element of Y; Y. are the test data projected on the M
(respective N; - n;) principal components of D (respective Dy) that correspond to the M (respective N; - n;)
largest eigenvalues of D (respective Dy); yl.y is the I-th element of Yiest; DY is the transpose of Dy; d(yleg, v7)
denotes the Euclidean distance between 3!, and 7.

Algorithm 2 Non-iterative PCA

Input: D - data set of size (P x D)
M =>"n; - N; - total number of measurements required for MS (Algorithm 1)
Xiest - test data
Learning Karhunen-Loeve matrix
1: U < princomp(D)
Projecting test data
2: Yiest < U(l : M7 :) - Xiest

Algorithm 3 Iterative PCA

Input: Dy, - adaptive data set (Equation 1)
N; - dimensions of the manifolds used in MS (Algorithm 1)
XNiest - test data
n; - number of iterations computed for dimension N; (same as in Algorithm 1)
Learning Karhunen-Loeve matrix
1: U <« princomp(Dy,)
2: Y+ U(l:N,,:)-Df
Projecting test data
3: Yiest < U(]- : Ni, :) - Xtest
Adapting data set
4: compute all d(yl., )
: select neighborhood Dy, size(Dy) = ¢ (Equation 2)
6: repeat n; times
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Any new data point is projected on the learned manifold by using the pseudo-inverse matrix that minimizes
the mean projection error on D and after that we define a neighborhood (considering the location of the new
data point) and by that, a subset of the original data set, which can be embedded in the same dimension as the
manifold, that is N;. The pseudo-inverse is needed for the projection of the test points because the test images
are unknown, and thus we cannot use LLE to find the low-dimensional coordinates of the test points.

The goal of doing iterations in the same dimension is to obtain a better local linear approximation of the
manifold and thus a better projection. The process of iterating in one particular dimension and then moving to
the next higher dimension is illustrated in Figure 2.

Currently, we do not have any formal criterion for how to proceed from lower- to higher-dimensional manifolds,
and for how to choose r and ¢. In order to evaluate the MS method, we consider a vector of N; components which
corresponds to the number of dimensions of the learned manifolds. Each component of the vector tells us how
many n; iterations we have to compute for each dimension ;. For simplicity, we call this vector representation
a combination. Figure 2 shows a particular case of a combination with five components. For each iteration we
compute a different number of iterations, n;, s =1 : 5.
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Figure 2: Graphical representation of the different combinations used to evaluate MS: we iterate ny times in the
dimension D = 1, then ny times in the dimension D = 2, and so on up to D = 5.

In our simulations all the combinations have five components (dimensions) and for each dimension we compute
maximum five iterations, Npax = 5. We define n as the total number of iterations, Y n;, with n; the number
of iterations in dimension N;, N; = 1 : Npax. The total number of measurements is M = > N; -n;. As an
example, we consider the combination 00135 presented in Table 1.

Table 1: Example for the combination 00135

N; (dimensions) 5
Nmax (maximum iterations) 5
n; (number of iterations in dimension N;) | ny =0, neo=0,n3=1,n4 =3, n5 =5
n (total number of iterations) +04+1+34+5=9
M (number of measurements) 1-042-043-14+4-3+5-5=40

For the combination illustrated in Table 1 we compute the following steps: first we compute one iteration in
the 34 dimension, we consider the result obtained after the first step and we go on to the 4*" dimension and
we compute one iteration. We proceed in the same way with the result obtained after the second step and we
compute another iteration in the same dimension, the 4" dimension. We go on and compute another iteration
in the same dimension, the 4" dimension. With the result obtained before we move to the 5" dimension and
step by step we compute n; = 5 iterations.

To explore the potential of MS we applied the iterative LLE algorithm on different combinations using
different values for r starting from 30 to 80 neighbors with steps of 10. The decreasing size of the transferred
neighborhoods, g, is an internal parameter of the iterative LLE algorithm. It is defined by Equation (2) in such
a way that the size of the adaptive data set will always be larger than the number of neighbors used in LLE.

4. RESULTS

The first benchmark we considered for evaluating our MS method was the UMIST? database with faces (twenty
different persons in different poses and a total of 1000 images of size 256 x 256 pixel). We evaluated MS by
computing (i) the Signal to Noise Ratio (SNR) between the test image and the image that was the nearest
neighbor on the learned manifold, and (ii) the person recognition rate (test images assigned to the class of the
nearest neighbor). With only 30 measurements, i.e. a compression ratio greater than 2000, we obtained an
average SNR over 20 test images (one per class) of 22.70 dB (the best possible average SNR for the database,
when the correct nearest neighbor was identified in all cases, was 22.73 dB). On the same data, PCA with 30
components yielded an average SNR of 22.60 dB. The recognition rate for MS and PCA with 30 measurements
was 100%, and for Iterative PCA 85 %. We obtained this result for the combination 02123 with 40 neighbors.
Figure 4 shows how the pseudo-inverse matrix evolved after each iteration computed with the MS method for
the image test from Figure 3.

B

Figure 3: Image test - UMIST? database.
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Figure 4: Learned pseudo-inverse matrices for the combination 02123 with 40 neighbors using the MS method.
Each row shows the components (in descending order of the singular values) of the pseudo-inverse matrix for
each iteration. These images represent the basis in which MS is actually sensing. Note the evolution from rather
random to more specific templates (projection axes).



For the combination 00100, i.e. with only 3 measurements, the recognition rate was 75%. We obtained similar
results on a different database from Robotics Laboratory,'? which contains face images of twenty different persons
in different poses (a total of 1300 images of size 640 x 480 pixel).

We also evaluated MS for object recognition on the ALOI (Amsterdam Library of Object Images)!! database.
We considered, from this database, a subset of images of the first twenty objects. These are everyday objects
images with different rotation angles resulting in a total of 1400 images of size 192 x 144 pixel. With only 38
measurements, i.e. a compression ratio greater than 700, we obtained an average SNR of 15.39 dB (in this case
the best possible SNR was 15.49 dB, PCA with 38 components yielded 15.15 dB) and a 100% recognition rate.
The results we obtained by applying MS on the two different benchmarks for object and face recognition are
summarized in Table 2. For each benchmark we mentioned the combination for which we got the best result and
we also compared the average SNR obtained for MS with the values obtained for PCA and with the best possible
SNR for the respective benchmark. A detailed comparison between MS, Iterative PCA, and Non-iterative PCA
for both face and object recognition is shown in Figure 5. Note that the MS method yielded better results than
both, PCA and Iterative PCA.

Table 2: Best results obtained by applying MS for UMIST? and ALOI'" benchmarks.

Benchmark | Combination | r Average SNR Recognition | M Compression
(dB) rate ratio
UMIST 02123 40 MS: 22.70 dB 100 % 30 > 2000
(256 x 256) PCA: 22.60 dB
Best possible: 22.73 dB
ALOI 00315 80 MS: 15.39 dB 100 % 38 > 700
(192 x 144) PCA: 15.15 dB
Best possible: 15.49 dB
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Figure 5: Iterative LLE (MS) vs. PCA for (a) UMISTY and (b) ALOI'! database.

5. CONCLUSIONS AND DISCUSSION

We presented a novel method, Manifold Sensing, for sampling natural images based on learning manifolds of
increasing dimensions. MS is a hierarchical method that iteratively localizes data points in low-dimensional
manifolds of increasing dimensions. The sampling strategy is learned for a particular data set, a procedure
that reduces the number of required samples. By data adaptation, every new sample depends on all previously



acquired samples. We evaluated the performance of MS on three benchmarks, two for face-recognition and one
for the recognition of everyday objects. Thus, the information gathered during sensing was quantified by the
recognition performance that it enabled. In other words, the acquired samples were mainly assessed by how much
they contributed to a particular task and not by how accurate they represented the world. However, we also
evaluated the distance to the nearest neighbor in the data set, a measure that corresponds to a reconstruction
error.

6. FUTURE WORK

Future development of the MS method for sampling natural images includes various improvements, e.g. different
algorithms for learning a manifold, a better method for projecting a new data point on the learned manifold,
extension to dynamic scenes, etc. Besides providing an effective sensing strategy for known environments, e.g., in
robotics, we expect these results provide new insights to visual processes such as retinal and cortical projections,'?
peripheral vision, gist, and eye movements. The traditional view of visual processing is that first the information
is processed locally and after that the local features are integrated to a global percept. “Gist” is a more recent
and alternative approach, describing a strategy which first performs a global and fast recognition of the scene and
then proceeds to more refined sampling and recognition.'® One could argue that human vision employs similar
strategies since we are often capable of providing a “gist” of the scene before processing the details. In this
context, it seems particularly striking that acceptable face recognition is possible with only three measurements,
i.e., with only three samples of the visual world.
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