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Genome Data

Single Nucleotide Polymorphism (SNP)

@ Different bases at one locus
in the genome

@ Occur in at least 1% of the
population

@ Three possible genotypes
(-1, 0, 1)

@ Used as genetic markers
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Introduction
Appro

o}

Genome-wide Association (GWA) studies

unaffected affected

o Large numbers of SNPs @ Reveal genetic mechanisms

o ldentify genetic loci @ Risk prediction
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Introduction

What makes it difficult?
o
o
o
o
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High-dimensional data (hundred thousand SNPs)
Few data points (a few thousand)

Discrete data (1,-1,0)

Noisy data



Hypothesis

What do we expect?

@ Disease effect through interaction

@ No uniform pattern among all cases

o Disease pattern consisting of SNPs without individual effects
°

Disease-unspecific patterns
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Intr n
Approaches

Standard Approaches

@ Single association test (p-values) !
@ Support Vector Machine (SVM) 2
@ Principal Component Analysis (PCA) 3

1Sekar Kathiresan, N Engl J Med,1240-1249, 2008
2Zhi Wei, PLoS Genetics,5(10):e1000678+-,2009
3Peristera Pashou, PLoS genetics, 3(9) 1672-1686,2007

Branne Sparse Coding for feature selection



Introduction
Appr

Standard Approaches

Association test

o Chi-squared distribution

o Feature selection by the p-values
SVM

@ Linear hard-margin SVM

o Feature selection by the influence on the margin
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Introduction
Approach

Principal Component Analysis

Aim: cover as much of the variability of the data as possible

@ Separate analysis for cases and controls

@ M principal components
class __ (,,class class
Vs = (vi®, . vi™) (1)

o Feature selection by:

1 = | max |(v});] — max (v ) )
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Approaches

Sparse Coding

Aim: represent data X = (x1,...,Xn), Xi € RP, as a sparse linear
combination of a dictionary C and coefficient vectors aj, [|allo < k.

X = Ca,-
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Sparse Coding

Goal: Minimize the reconstruction error: %Zf‘:l Ix; — Ca;||3

@ Problem 1: find optimal C
—> Solution: Bag of Pursuits and Neural Gas ?

@ Problem 2: for given C find optimal a;
—> Solution: Bag of Pursuits 2

xP' = Ca; with a; = argmin, ||x; — Cal| ,||a]jo < k

1K. Labusch, E. Barth, T. Martinetz, Proc. COMPSTAT, 327-336,2010
2K. Labusch, T. Martinetz, Proc. ESANN, 241-246, 2010
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Introduction
Approaches

Sparse Coding

@ separate analysis for cases and controls

class __ (class class
C = (1 )

s Cpp

o feature selection by:

rj = [ max |(c7);| — max |(c; )
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Conclusion

Simulated Data

2 types of Data sets

o 1 disease pattern 1 unspecific pattern
o 1 disease pattern 5 unspecific patterns

Pattern size: SNPs: 10, 20, ..., 50, individuals: 100
SNPs: 15000, 20000, ..., 30000

Individuals: 500 cases and 500 controls
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Results

Comparing feature selection approaches

Chi square p-values
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Results

Sparse Coding versus PCA

percentage of pattern specific SNPs found
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Results

Sparse Coding versus PCA

percentage of pattern specific SNPs found
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Conclusion

Conclusion

p-values or SVM are not suitable for feature selection
PCA and Sparse Coding suitable for the task
Sparse Coding more robust to noise pattern

Sparse Coding promising for real data
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Conclusion

Thank you for your attention
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