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Abstract. Genome-wide association (GWA) studies, which typically
aim to identify single nucleotide polymorphisms (SNPs) associated with
a disease, yield large amounts of high-dimensional data. GWA studies
have been successful in identifying single SNPs associated with complex
diseases. However, so far, most of the identified associations do only have
a limited impact on risk prediction. Recent studies applying SVMs have
been successful in improving the risk prediction for Type I and II dia-
betes, however, a drawback is the poor interpretability of the classifier.
Training the SVM only on a subset of SNPs would imply a preselection,
typically by the p-values. Especially for complex diseases, this might not
be the optimal selection strategy. In this work, we propose an extension
of Adaboost for GWA data, the so-called SNPboost. In order to improve
classification, SNPboost successively selects a subset of SNPs. On real
GWA data (German MI family study II), SNPboost outperformed linear
SVM and further improved the performance of a non-linear SVM when
used as a preselector. Finally, we motivate that the selected SNPs can
be put into a biological context.

Keywords: Genome-wide association, risk prediction, SNP-SNP inter-
action

1 Introduction

Genome-wide association (GWA) studies, which typically aim to identify single
nucleotide polymorphisms (SNPs) associated with a disease, yield large amounts
of high-dimensional data. During the last decade there has become a growing
body of studies- mainly focusing on single-SNP statistics (p-values) - that have
identified genetic loci (SNPs) associated to common complex diseases such as
diabetes [14], myocardial infarction [11, 2], and Crohn’s disease [10]. However,
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so far these findings have only limited impact on risk assessment and clinical
treatment [8, 7].

Complex diseases are caused by a variety of genetic factors. These factors,
e.g. SNPs, may interact positively or negatively to increase or reduce the effect
of the individual factors; indeed, an appreciable disease effect may only come
about through such an interaction. Studies that focus on single locus effects alone
are thus not likely to reveal the more complex genetic mechanisms underlying
multifactorial traits [14, 15, 9]. Since, so far, most of the identified genetic variants
have only a limited effect on disease risk, it suggests itself to analyze several SNPs
simultaneously.

A prominent algorithm for classification accounting multiple factors is the
so-called Support Vector Machine (SVM) [5, 6]. Recent studies using SVMs have
been successful in improving the risk prediction for Type I and II diabetes [14,
16, 1]. However, the resulting classifier is using all SNPs, making it hard to
interpret the resulting classifier in a biological context, especially for hundreds
of thousands of SNPs. In order to allow a better interpretation of the results a
feature selection approach is required. An intuitive way is to choose SNPs that
are individually associated with the disease. But, clearly, SNPs might be missed
that only show an effect in interaction with others.

Boosting algorithms like Adaboost might be an good alternative [4, 3]. The
main idea of Boosting is to combine several weak classifiers to one strong clas-
sifier. Weak classifiers, i.e. SNPs, are added one after another in order to gain a
set of classifiers that together boost the classification. With this selection strat-
egy, one can control the number of SNPs without having to preselect a subset of
SNPs and possible SNP-SNP interactions might be found between the selected
SNPs.

In this work, we propose a variation of the Adaboost algorithm for an appli-
cation to GWA data. The algorithm is evaluated on the german MI family study
II GWA data set [2].

2 Methods and Data

2.1 Support Vector Machine (SVM)

Support vector machines (SVM) aim to determine the hyperplane that separates
two given classes with maximum margin [13]. It has been applied to a broad
range of classification problems and is one of the standard benchmark methods.
In this work, we train the SVM on an increasing number of SNPs, where the
SNP subset is selected based on the single SNP p-values. In order to measure
the classification performance for each subset, we train a SVM on the genotype
data of the selected SNPs of the training set. For the linear and gaussian SVM
the softness of the margin and the kernel width for the gaussian SVM is adjusted
by a 10-fold cross-validation on the training set.
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2.2 Adaboost

As SNPboost is derived from one of the most popular boosting algorithms, Ad-
aboost [4, 3], we will provide in the following a brief sketch of the algorithm.

In Adaboost, the classifiers are combined such that classification errors of the
first single classifiers are compensated as good as possible by the second classifier
etc.. Thus, the selection of the next classifier is biased in favor of the previously
misclassified datapoints. This is done by applying weights to the datapoints,
where the weights are updated after each step. More specific, the weights of
the misclassified datapoints are increased and correspondingly decreased for the
correctly classified datapoints. Consequently, step by step, the classifier gets
stronger by subsequently adding weak classifiers that optimize the performance
of the combined Adaboost classifier.

Let X = (x1, . . . ,xN ), xi ∈ RD be a set of given data samples and Y =
(y1, . . . , yN ), yi ∈ {1,−1} the corresponding class information. Furthermore, we
define a set of weights w = (w1, . . . ,wN ) with the two constraints w ≥ 0 and∑N

i=1 wi = 1, and T be the number of weak classifiers combined to the strong
classifier. Finally, let H = (h1, . . . , hM ) describe the set of weak classifiers to
choose from and Lhj = (lhj

1 , ..., l
hj

N ) be the classification of X by each classifier
hj . Then, Adaboost combines a desired number of T classifiers hj to a strong
new classifier according to Algorithm 1.

Algorithm 1: Basic Adaboost Algorithm
Input: Training data X, labels Y , and a set of naive classifier H
Output: List of T chosen classifier η = (η1, . . . , ηT ) and their significance

α = (α1, . . . , αT ),
foreach epoch t = 1, . . . , T do

1. Find the classifier ηt that minimizes the training error ε

ηt = arg min
hj∈H

εj (1)

with

εj =

NX
i=1

|lhj

i − yi| wi(t) (2)

2. Choose αt with

αt = 1/2 ln(
1− εt
εt

) (3)

3. Update the weights in w with a normalization constant Zt to

wi(t+ 1) =
wi(t)

Zt
·

e−αt if lηt

i = yi
otherwise.

(4)

end

Calculate final classification with Lada(x) = sign(
PT
t=1 αt · l

ηt
x )
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2.3 SNPboost: Adaboost for GWA Data

To use Adaboost with GWA data, we have to define the set of weak classifiers H.
In this work, we obtain H by deriving a set of 6 classifiers out of each SNP: Each
of the given SNPs consists of three discrete states (AA, AB, BB), which denote
the possible homozygot and heterozygot genotypes an individuum can express for
this location. We use these three states to derive six naive classifiers that indicate
a subject expressing one of the three states or its negation (a variant might just
as well be protective in its effect). Hence, let p be the predicted genotype for all
D SNPs with p = p1, . . . , pM and M = D · 6. Given the genotype gc(i) of the
individual i we get the training error εc by:

εc =
N∑

i=1

[1− [pc(i) 6= gc(i)]] wt(i). (5)

2.4 Data

We applied the SNPboost algorithm to the German MI family study II [2] in
order to evaluate the performance of the algorithm. SNPs with a missing rate of
≤ 0.01, minor allele frequency of ≤ 0.01, and p-value ≤ 10−4 for deviation from
Hardy-Weinberg equilibrium were excluded. After quality filtering we pruned the
data for Linkage Disequilibrium (LD).The total number of SNPs left for analysis
is D = 127370 SNPs for a total of 2032 individuals with 1222 controls and 810
cases. We filled up the remaining missings with imputed values.

For training and testing, the data was randomly divided in a training and
test set with equal sample size for the cases and the controls with 405 individuals
each.

3 Results and Discussion

We evaluated the performance of the SNPboost algorithm and the SVM by
means of the receiver operator characteristic (ROC) obtained on the test set. We
tested SNPboost against linear SVMs with p-values as a preselection method,
then we evaluated the gain of using SNPboost as a feature selection method
for a non-linear SVM, and finally we examined the selected SNPs for biological
relevance.

3.1 Linear Classification

As shown in Figure (1), both algorithms yield a peak performance for small
number of SNPs. Subsequently, the performance decrease with additional SNPs.
This decrease is likely caused by overfitting of the algorithms: The more features
used, the more likely the trained classifiers are adapted to the training set and
hence no longer describe the test set appropriately. The maximum AUC (area
under the (ROC) curve) for the SNPboost algorithm is 0.76 with a total of 5
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Fig. 1. Classification performance of linear and non-linear SVM with SNPboost se-
lected SNPs vs p-value selected SNPs. A logarithmic (base 10) scale is used for the
X-axis.

SNPs. For the LSVM the performance yield 0.73 for a total number of 11 SNPs.
Whereas the performance of the LSVM remain weak for further increasing num-
bers of SNPs, the performance of the SNPboost algorithm recover. Hence, the
SNP selection is no longer specific for the training set. The overall performance
of the SNPboost algorithm clearly outranges the LSVM. Whereas the mean per-
formance of the LSVM is 0.62 the mean performance of the SNPboost algorithm
yield 0.67.

With SNPboost being a linear classifier we first evaluated the performance
of the SNPboost algorithm and the linear kernel SVM (LSVM). The selection
done by the SNPboost algorithm seems to be the better choice compared to the
selection by the p-values. This might be due to the fact that the SNPboost algo-
rithm selects SNPs one at a time in order to bit by bit increases the classification
and might thus better fit together.

3.2 Non-linear Classification

The previous results indicated that the SNPs selected by the SNPboost algorithm
might be more appropriate for combined classification than the SNPs selected
due to the single significance values. Hence, combining the SNP selection strategy
of the SNPboost algorithm with a more powerful classifier might improve the
classification performance.

In order to test whether the classification performance can be further in-
creased by applying a non-linear classifier, we trained a gaussian kernel SVM
(GSVM) on the SNPs selected by the SNPboost algorithm and compared the
results with the performance on the p-value selected SNPs.

The dash-dotted line in Figure 1 shows the performance of the gaussian
classifiers with SNPboost as a preselector, while the dashed line depicts the
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Fig. 2. Single p-values for all SNPs and the 20 first selected SNPs by the SNPboost
algorithm. The SNPboost selected SNPs are shown as black dots.

performance of the gaussian kernal SVM with p-values as a feature selector.
Regardless of the selection strategies, the performance primarily increases by
applying GSVM. For the p-value selection strategy, the GSVM yiel better per-
formance than the LSVM for small number of SNPs but the performances align
for larger numbers of SNPs. Analogous to the p-values selection, for small num-
ber of SNPs, the GSVM on SNPboost selected SNPs improve the performance
compared to the SNPboost algorithm. As for the performance of the SNPboost
algorithm, also the performance of the GSVM decreases with a larger number
of SNPs. However, in contrast to the SNPboost algorithm, for large number of
SNPs, the performance does not recover but even drops below the performance
of the LSVM and GSVM on p-value selected SNPs. This is probably due to the
fact that the SNPboost algorithm selects a set of SNPs that fit well together.
The GSVM further optimizes the classification with these matching SNPs and
thus the classifier is too specific to the training data set.

The maximum performance of the GSVM is 0.80 for both the selection strate-
gies. The peak performance is gained with 4 and 10 SNPs for the SNPboost
selection and p-values selection respectively.

3.3 Interaction Analysis

The main advantage of SNPboost is the selection strategy: If a weak classifier
positively interacts with a previous selected one, this weak classifier might be
chosen since an interaction might improve the classification. Thus, possible in-
teractions might be found within the selected SNPs. Hence, it might be of value
to further analyze these SNPs.

Figure ( 2) shows the p-values of the 20 first selected SNPs by the SNPboost
algorithm. Of the top ten p-value SNPs, three are selected by the SNPboost
algorithm. While the first one corresponds to the strongest single classifier, which
in this case is the SNP with the highest p-value, all upcoming SNPs are selected
due to their interaction with the first classifiers, independent of their p-values.

First we assigned the p-value selected SNPs to their corresponding genes.
14 SNPs were found within genes. Two of the 14 genes can be linked through
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Fig. 3. Gene interaction, of the 20 first selected SNPs two genes can be linked through
an additional gene for both selection strategies

an additional gene. As shown in Figure (3a) RFC3 interacts with PARP1 via
PCNA [12]. Next we assigned the 20 SNPs, selected by the SNPboost algorithm,
to their corresponding genes. 9 out of 20 lie within genes and two of these genes
can be linked through an additional gene. As shown in Figure (3b) CADPS2
interacts with NTRK2 via BDNF [12]. Hence, through SNPboost a new possible
interaction might have been identified. Whether this interaction increase the risk
of a disease must however be further evaluated.

4 Conclusion

In this work, we propose a boosting algorithm for classification as well as for the
identification of potential SNP-SNP interactions on GWA data. The SNPboost
algorithm is a modified version of the well-known adaboost algorithm. Using
each possible SNP genotype as a weak classifier, we build a strong combined
classifier. We evaluated SNPboost on the German MI family study II data.

Initially, the classification performance of the SNPboost algorithm clearly
outperforms the linear SVM (LSVM) hence leading to the assumption that the
selection strategy of the SNPboost might be more appropriate in a multivariate
context than the standard selection by p-values. Training a gaussian kernel SVM
(GSVM) on these SNPs further improves the classification performance, however
only for small number of SNPs. Since SNPboost selects the SNPs that combined
improve classification, interacting SNPs are likely to be chosen by the algorithm.
In this work, we extracted the first 20 selected SNPs and mapped these to the
genes. Of the 20 SNPs, 9 were found within genes. Two of these SNPs can be
linked through a third gene. However, before one can state any interaction or
biological plausibility, these results need to be further evaluated.

SNPboost is a very fast and memory efficient algorithm and can thus be
applied even on the largest datasets without any preselection step. We would
thus propose this algorithm as an promising tool for feature selection, interaction
analysis and classification on GWA data.
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