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a b s t r a c t

We describe a technique for improving the accuracy of range maps measured by a time-of-flight (TOF)
camera, a novel type of sensor that provides a range map registered perfectly with an intensity image.

Our technique is based on the observation that the range map and intensity image measured by a TOF
camera are not independent but are linked by the shading constraint: If the reflectance properties of the
surface are known, a certain range map implies a corresponding intensity image. In practice, a general
reflectance model (such as Lambertian reflectance) provides a sufficient approximation for a wide range
of surfaces.

We impose the shading constraint using a probabilistic model of image formation and find a maximum
a posteriori estimate for the true range map. We present results on both synthetic and real TOF camera
images that demonstrate the robust shape estimates achieved by the algorithm. We also show how the
reflectivity (or albedo) of the surface can be estimated, both globally for an entire object and locally for
objects where albedo varies across the surface.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The time-of-flight (TOF) camera provides a range map that is
perfectly registered with an intensity image (often called an ampli-
tude image in TOF nomenclature), making it an attractive sensor for
a wide range of applications.

In this paper, we present a technique for improving the accu-
racy of the TOF camera’s range measurements, based on the insight
that the range and intensity measurements are not independent,
but are linked by the shading constraint: Assuming that the reflec-
tance properties of the object surface are known, we can deduce
the intensity image that should be observed. In practice, a general
reflectance model (such as Lambertian reflectance) will provide an
acceptable approximation to the properties of a wide range of
objects.

In theory, the shading constraint can be used to reconstruct the
range map from an intensity image alone; this idea has been
exploited in a wide range of shape from shading (SfS) algorithms
(see [18,4] for surveys). A principal limitation of these algorithms,
however, is that they cannot determine whether intensity changes
are caused by the object’s shape or by changes in the object’s reflec-
tivity (or albedo). Because of this, the object is usually assumed to
have constant albedo; this limits the applicability of SfS methods.

The range map measured by the TOF camera places a strong
additional constraint on the shape of the object, allowing ambigu-
ities that may exist in the pure SfS setting [5] to be resolved and

enabling the albedo of the surface to be estimated, both globally
for an entire object as well as locally for objects where albedo var-
ies across the surface.

Besides the shading constraint, there are also other ways of fus-
ing range and intensity data. A number of authors exploit the fact
that an edge in the intensity data often co-occurs with an edge in
the range data. Nadabar and Jain [12] use a Markov random field
(MRF) to identify different types of edges. Diebel and Thrun [2]
use edge strengths estimated on a high-resolution color image to
increase the resolution of a low-resolution depth map.

The idea of integrating the shading constraint with other range
information has been investigated by a number of researchers.
Most of this work focuses on the integration of SfS with stereo.
These two techniques complement each other well because SfS
works well on uniformly colored areas, whereas stereo requires
surface texture to find stereo correspondences. Because of this,
the fusion of SfS with stereo has a slightly different focus than
the fusion of SfS with a TOF range map. In the stereo case, we only
have range information in textured areas and need to rely on shad-
ing cues in untextured areas. In the TOF case, we have a dense
range map and wish to fuse information from TOF and shading at
the same pixel.

Many approaches to the fusion of SfS and stereo (see for exam-
ple the work of Thompson [16], Fua and Leclerc [6], and Hartt and
Carlotto [9]) use an objective function that depends directly on the
two or more images obtained from a multi-camera setup; for this
reason, they do not generalize to settings where a range map has
been obtained in some other way than through stereo. Samaras
et al. [15] combine stereo with SfS by using stereo in textured areas
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and SfS in untextured areas, but they do not perform a fusion of
stereo and SfS at the same location. Haines and Wilson [7,8] fuse
stereo and SfS in a probabilistic approach based on a disparity
map and the shading observed in one of the stereo images. Because
there is a one-to-one correspondence between disparity and range,
the approach could also be used with range maps obtained by arbi-
trary means. However, since color is used to segment areas of dif-
ferent albedo, the approach is not suitable for use with TOF
cameras, which typically only deliver a grayscale image.

There are several other approaches that combine shading with a
range map obtained by arbitrary means; stereo may be used, but it is
not essential to the formulation of the algorithm. Leclerc and Bobick
[10] use a stereo range map to initialize an iterative SfS method.
Cryer et al. [1] use a heuristic that combines low-frequency compo-
nents from the stereo range map with high-frequency components
from the SfS range map. Mostafa et al. [11] use a neural network to
interpolate the difference between the SfS result and a more coarsely
sampled range map from a range sensor; the SfS result is corrected
using this error estimate. These approaches allow arbitrary range
maps to be used, but they are all somewhat ad-hoc.

Our approach to improving the accuracy of the range map using
the shading constraint is based on a probabilistic model of the im-
age formation process. We obtain a maximum a posteriori estimate
for the range map using a numerical minimization technique. The
approach has a solid theoretical foundation and incorporates the
sensor-based range information and the shading constraint in a
single model; for details, see Section 2. The method delivers robust
estimation results on both synthetic and natural images, as we
show in Section 3.

2. Method

2.1. Probabilistic image formation model

We seek to find the range map R that maximizes the posterior
probability

pðXR;XIjR;AÞpðRÞpðAÞ: ð1Þ

p(XR,XIjR,A) is the probability of observing a range map XR and
an intensity image XI given that the true range map describing the
shape of the imaged object is R and that the parameters of the
reflectance model are A. Typically, A is the albedo of the object –
we will discuss this in more detail below. p(R) is a prior on the
range map, p(A) is a prior on the reflectance model parameters.

The conditional probability p(XR,XIjR,A) is based on the follow-
ing model of image formation: First of all, we assume that
p(XR,XIjR,A) can be written as follows:

pðXR;XIjR;AÞ ¼ pðXRjR;AÞpðXIjR;AÞ: ð2Þ

In other words, the observations XR and XI are conditionally
independent given R and A.

We now assume that the observed range map XR is simply the
true range map R with additive Gaussian noise, i.e.

pðXRjR;AÞ ¼NðXR � Rjl ¼ 0;rRðR;AÞÞ: ð3Þ

Note that the standard deviation rR is not constant but can vary
per pixel as a function of range and albedo. As we will see in Sec-
tion 2.4, the noise in the range measurement of a TOF camera de-
pends on the amount of light that returns to the camera.

The shading constraint postulates that a given range map R is
associated with an intensity image I(R, A), where the function ex-
pressed by I depends on the reflectance model. We generally use
the Lambertian reflectance model, see Section 2.2; in this case, A
is the albedo of the object, which may vary from pixel to pixel.

Again, we assume that the intensity image is corrupted by additive
Gaussian noise, i.e.

pðXIjR;AÞ ¼NðXI � IðR;AÞjl ¼ 0;rIÞ: ð4Þ

For the range map prior p(R), we use the shape prior introduced
by Diebel et al. [3], which favors surfaces with smoothly changing
surface normals. We tessellate the range map into triangles (see
Section 2.3) and compute the surface normal nj for each triangle.
The shape prior is then given by the energy function

ERðRÞ ¼ wR

X

triangles j; k

adjacent

knj � nkk2;

ð5Þ

which implies the distribution pðRÞ ¼ 1
Z expð�E RðRÞÞ, where Z is a

normalization constant. wR is a constant that controls the disper-
sion of the distribution.

We now turn to the prior p(A) for the parameters A of the reflec-
tance model. In the Lambertian reflectance model, these are the al-
bedo values at each pixel location. We will investigate several
alternatives for the prior p(A): (i) ‘‘Fixed albedo”: A single albedo
value, specified beforehand, is used for all pixels. (ii) ‘‘Global
albedo”: The same global albedo is used for all pixels, but its value
is allowed to vary; we assume a uniform distribution for this global
albedo. (iii) ‘‘Local albedo”: Each pixel location may have a differ-
ent albedo, and the prior p(A) favors smooth albedo changes. In
this latter case, we use an energy function

EAðAÞ ¼ wA

X

pixels j; k

adjacent

jaj � akj;
ð6Þ

which implies the prior pðAÞ ¼ 1
Z expð�EAðAÞÞ, in analogy to the

shape prior defined above.
As usual, we take the negative logarithm of the posterior and

eliminate constant additive terms to obtain an energy function

EðR;AÞ ¼
X

j

XR
j � Rj

� �2

2r2
R

þ
X

j

XI
j � IjðR;AÞ

� �2

2r2
I

þ ERðRÞ þ EAðAÞ;

ð7Þ

where the index j runs over all pixels. (For the ‘‘fixed albedo” and
‘‘global albedo” models, the term EA(A) is omitted.) Note that all
the terms in the energy function are unitless due to multiplication
or division by the constants rR, rI, wR, and wA.

We find the maximum a posteriori estimate for the range map
by minimizing E(R,A) using the Polak–Ribière variant of the non-
linear conjugate gradient algorithm (see e.g. [14]). As the starting
point for the minimization, we use the observed range map XR,
smoothed using a median filter, and an albedo guess (see Section
2.4). The gradient of E(R,A) is computed numerically using a finite
differences approximation. The parameters rR, rI, wR, and wA

should be set to reflect the noise characteristics of the sensor and
the statistical properties of the scene.

2.2. Lambertian reflectance model

Under the Lambertian model of diffuse reflection [17], the
intensity I with which a point on an object appears in the image
is obtained as follows:

I ¼ a
n � l
r2 ; ð8Þ

where n is the surface normal, l is the unit vector from the surface
point towards the light source, r is the distance of the surface point
to the light source, and a is a constant that depends on the albedo of
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the surface, the intensity of the light source, and properties of the
camera such as aperture and exposure time. For brevity, we will re-
fer to a simply as the albedo, because any changes to a across the
scene are due to albedo changes, while the properties of the light
source and camera remain constant.

On a TOF camera, the light source can be assumed to be co-
located with the camera, and so r is simply the range value for
the surface point, and l is the unit vector from the surface point
to the camera.

2.3. Computation of surface normals

Both the Lambertian reflectance model and the shape prior for
smooth surfaces require the normals of the surface to be known;
some care needs to be taken when computing these normals on
a discretely sampled range map. An obvious way is to compute
the cross product of two tangent vectors p(i + 1, j) � p(i � 1, j) and
p(i, j + 1) � p(i, j � 1) (where p(i, j) are the three-dimensional coor-
dinates of the point corresponding to pixel (i, j)), but surface nor-
mals calculated in this way can lead the minimizer astray:
Because the normals of pixels with even indices depend only on
the positions of pixels with odd indices, and vice versa, neighbor-
ing pixels are not constrained to have similar range values, and
the minimizer may happily compute a surface with a ‘‘checker-
board” pattern, where neighboring pixels are alternately displaced
upwards and downwards by a certain offset, instead of forming a
smooth surface.

For this reason, care needs to be taken when evaluating the
reflectance model and shape prior to obtain a formulation that is
physically realistic and does not lead the minimizer astray. For
any given pixel, the range and intensity measured by the camera
are averaged over the area covered by the pixel. Nevertheless, we
will assume that these values correspond to the range and inten-
sity of an individual point on the object’s surface. To obtain a con-
tinuous surface between this grid of points, we tessellate the grid
into triangles. Of the many possible tessellations, we choose one
where the diagonals dividing a quad of pixels into two triangles
run parallel.

To compute the intensity of a pixel, given a certain range map,
we compute the average intensity over all triangles adjacent to it.
(All triangles have the same projected area in the image, hence
they are all weighted equally.) Because the triangles in the mesh
are small compared to their distance from the camera, we can as-
sume that intensity is constant across a triangle. The intensity Ij for
pixel j is thus obtained as follows:

Ij ¼
aj
P

k2Nj
nk � lj

R2
j jNjj

; ð9Þ

where aj is the albedo of the pixel, Rj is the range value of the pixel, lj

is the unit vector from the surface point to the light source, nk is the
surface normal of triangle k, and Nj is the set of triangles that are
adjacent to pixel j; see Fig. 1 for an illustration of the triangles that
are adjacent to a pixel.

When computing the shape prior, we must take care to count
each edge exactly once. We do this by iterating over all pixels
and, for each pixel, evaluating the shape prior only for those edges
in the tessellation that lie below and to the right of the pixel in the
grid. This is illustrated in Fig. 2a, where the bold edges are the ones
for which the shape prior is evaluated when considering the cen-
tral pixel.

The direction in which the diagonals run in the tessellation
introduces an asymmetry, and we have found that this asymmetry
can cause the shape prior to generate directional artefacts. For this
reason, we evaluate the shape prior for both of the two possible
directions of the diagonal and sum over the results. Fig. 2b shows

which edges are evaluated for a given pixel on the tessellation with
the alternative direction of the diagonal.

2.4. Application to time-of-flight cameras

When applying the method to images recorded using a TOF
camera, some particular characteristics of this sensor need to be ta-
ken into account to obtain optimal results.

First, the noise rR in the measured range map is not the same
for all pixels but depends on the amount of light collected at each
pixel – the more light, the more accurate the measurement. Hence,
for each pixel, we set rR as a function of intensity. To estimate the
functional relationship between intensity and rR, we recorded a
sequence of images of a static scene and, at each pixel, calculated
the standard deviation of the measured range values. We then fit
a power law function to the calculated standard deviations as a
function of intensity and used this function to set rR in the surface
reconstruction algorithm.

Another important point is that most TOF cameras do not illu-
minate the scene homogeneously; typically, the illumination falls
off towards the edges of the field of view. To measure this effect,
we recorded an image, averaged over 100 frames, of a planar object
with constant albedo. By comparing the actual image XI

a to the im-
age predicted by our shading model XI

p (which assumes homoge-
neous illumination), we were able to estimate the relative
illumination strength at each pixel and use this to compensate
for the effect in subsequent recordings XI via

XI
correctedði; jÞ ¼

XI
pði; jÞ � X

Iði; jÞ
XI

aði; jÞ
: ð10Þ

Fig. 1. The intensity of a pixel is computed by averaging over the intensity of all
triangles that are adjacent to it. Triangles that are adjacent to the central pixel are
shaded in gray.

(a) (b)
Fig. 2. To avoid directional artefacts, the shape prior is evaluated over two different
tessellations, with the diagonals running in opposite directions. (a) Tessellation
with diagonals running top left to bottom right. For each pixel, the shape prior is
evaluated for the edges (shown in bold) below and to the right of the pixel. (b)
Tessellation with diagonals running bottom left to top right. The shape prior is
evaluated for the edges below and to the left of the pixel.
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Finally, if the albedo of the measured surface is approximately con-
stant, a good initial albedo estimate can be found as follows: We
find the highest-intensity pixel in the image; generally, this pixel
will correspond to a part of the object that is perpendicular to the
incoming light, because such regions reflect the most light. Hence,
at this location, Eq. (8) reduces to I ¼ a

r2, and we obtain the albedo
as a = Ir2. A conventional camera cannot be used to estimate albedo
in this way because there, the range r is not known.

3. Results

3.1. Synthetic data

To assess the accuracy of the method quantitatively, we first
tested it on synthetic data with known ground truth: A rotationally
symmetric sinusoid (the ‘‘wave” object) and an object composed of
two planar surfaces that meet at a sharp edge (the ‘‘corner” object);
see Fig. 3. To simulate the measurement process of the TOF camera,
we shaded the ground truth surface with a constant albedo, then
added Gaussian noise; the observed range map was obtained by
adding Gaussian noise to the ground truth surface. For all tests that
follow, we set wR = 1 and wA = 50; rR and rI were set to the actual
standard deviations of the noise that was added to the range map
and intensity image.

Fig. 3 shows the ground truth range maps for the ‘‘wave” and
‘‘corner” objects along with the noisy range map and intensity im-
age that were used as input to the reconstruction algorithm, and
the reconstruction result. For comparison, the figure also shows
the result of filtering the range map with a 5 � 5 median filter.
The noise in the range map had a standard deviation of 20 mm;
for comparison, the ‘‘wave” object has a depth of 100 mm, and
the ‘‘corner” object has a depth of 120 mm. The intensity image
noise had a standard deviation of 0.003; the maximum intensity
in the images was 0.19 (‘‘corner”) and 0.22 (‘‘wave”). The ‘‘global
albedo” algorithm was used to reconstruct the surface; the initial
albedo value for the minimization was set to twice the actual value
that was used to produce the intensity image. The RMS error in the
reconstructed surface is reduced by a factor of over 4 for the
‘‘wave” object and around 8 for the ‘‘corner” object.

Next, we examine the results of the algorithm on an object with
varying albedo. First, we use the ‘‘wave” object with albedo set to 0.2
on the left half of the image and 0.4 on the right half (Fig. 4, top); the
noise in the range image was reduced to a standard deviation of
5 mm. Reconstructions were computed using the ‘‘global albedo”
and ‘‘local albedo” algorithms; the initial albedo value for the mini-
mization was set to 0.3. Note that the ‘‘global albedo” algorithm does
not yield a satisfactory result, while the ‘‘local albedo” version does;
local albedo is estimated almost perfectly. A second test (Fig. 4, mid-
dle) used the same object but with albedo varying continuously from
0.2 at the left to 0.4 at the right. Albedo is overestimated slightly on
the left side of the image, and the result is not quite as good as in the
first case but still satisfactory. Finally, we show a case where the al-
bedo estimation does not work properly (Fig. 4, bottom): the ‘‘cor-
ner” object with albedo varying continuously between 0.2 at the
top and 0.4 at the bottom. Here, the result of the ‘‘local albedo” algo-
rithm is not satisfactory and, in fact, its RMS error is higher than that
of the ‘‘global albedo” algorithm. We suspect the reason for the poor
performance may be that the range map does not contain enough
detail for the algorithm to ‘‘latch onto”.

Finally, we measured the effect of the various components of
the probabilistic model. Fig. 5 shows the reconstruction error on
the ‘‘wave” object as a function of the noise rI in the intensity im-
age. We compare probabilistic models that use only the shading
constraint p(XIjR,A), only the shape prior p(R), or both together.
(The term p(XRjR,A), which incorporates the information from
the measured range map, was used in all cases. Because albedo
did not vary across the image, the term p(A) was omitted.)

Since rI appears in the denominator of the shading term in the
energy function (Eq. (7)), we need to treat rI = 0 (no intensity
noise) as a special case. Note that for rI ? 0, the shading term
dominates all the other terms; hence, if rI = 0, we omit all other
terms from the energy function. We can then avoid scaling by 1

r2
I
.

The error for the reconstruction obtained using only the shape
prior (along with the measured range map p(XRjR,A)) is, of course,
constant for all rI because it does not use the intensity image. The
shape prior reduces the RMS error in the range map by around a
factor of 2.

For the reconstructions obtained using only the shading con-
straint (along with the measured range map), the error in the

Fig. 3. Reconstruction results for two synthetic test objects (‘‘wave”, top, and ‘‘corner”, bottom). Gaussian noise with a standard deviation of 20 mm was added to the range
map; for comparison, the ‘‘wave” object has a depth of 100 mm, and the ‘‘corner” object has a depth of 120 mm. Gaussian noise with a standard deviation of 0.003 was added
to the intensity image; the maximum intensity in the images was 0.19 (‘‘corner”) and 0.22 (‘‘wave”).
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reconstruction generally increases with the noise rI in the inten-
sity image. However, it is notable that, even for rI = 0, the range
map is not reconstructed perfectly. Though, in this case, the ground

truth range map is obviously the global minimum of the energy
function, the algorithm appears to get stuck in a local minimum.
Recall that in the case rI = 0, the shading term dominates all other
terms in the energy function. As rI increases, the energy function
begins taking the measured range map into account, and this in
fact leads to an initial slight reduction in the reconstruction error;
we speculate that the additional constraint imposed by the mea-
sured range map makes it easier to minimize the energy function.

This effect is even more prononunced for the full model, which
combines the shading constraint, the shape prior, and the mea-
sured range map. For rI = 0, the shading term again dominates all
other terms in the energy function, and so we obtain the same re-
sult as for the shading constraint alone. As rI begins to increase, the
reconstruction error decreases markedly as the shape prior and
the measured range map come into play. After a certain point,
the reconstruction error begins increasing again; for rI ?1, the
reconstruction error will tend to that of the range prior because
the shading term in Eq. (7) tends to zero. Note that, except for very
small rI, the combined model yields better results than either the
shading constraint or the shape prior alone.

3.2. Real-world data

We now apply the algorithm to data obtained using an SR3000
time-of-flight camera [13], which has a resolution of 176 by 144
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Fig. 4. Reconstruction results on synthetic objects with varying albedo. Top: ‘‘wave” object with an albedo of 0.2 on the left half of the object and 0.4 on the right half. Middle:
‘‘wave” object with albedo varying continuously from 0.2 at the left to 0.4 at the right. Bottom: ‘‘Corner” object with albedo varying continuously from 0.2 at the top to 0.4 at
the bottom. In all cases, the noise in the range map had a standard deviation of 5 mm, and the noise in the intensity image had a standard deviation of 0.003.
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pixels. The parameters rR and rI (standard deviations of range and
intensity) were set to values estimated on a sequence of images of
a static scene; rR was set as a function of intensity for each pixel
(see Section 2.4), while rI was constant across the whole scene,
in accordance with the statistical properties of the sensor. The
parameters for the shape and albedo prior were again set to
wR = 1 and wA = 50.

We first demonstrate the algorithm on two terracotta objects,
which fulfill the assumption of Lambertian reflectance quite well
and can be assumed to have approximately constant albedo.
Fig. 6 shows the input data and reconstruction results for the
two terracotta objects. To compare the results with the effect that
a conventional filtering has on the range map, a 5 � 5 median-
filtered version is also shown. The objects were segmented manu-
ally, and the reconstruction was performed using the ‘‘global
albedo” algorithm. The subjective quality of the reconstruction is
greatly improved compared to both the raw data and the med-
ian-filtered version; note, in particular, how the shading constraint

allows us to reconstruct detail in the objects that was drowned out
by noise in the measured range map.

Fig. 7 shows the results of the algorithm on a human face. This is
a more challenging object for the algorithm because the reflectance
properties of skin are considerably more complex than the Lamber-
tian reflectance assumed by the model; also, albedo variations
occur in places such as the eyebrows and the lips.

We show the result of both the global and local albedo versions
of the algorithm; again, a 5 � 5 median-filtered version is also
shown. It is evident that local albedo estimation allows a much
more faithful reconstruction than global albedo estimation in
areas, such as the lips, where albedo variations occur. Also, despite
the fact that skin is not a Lambertian reflector, the shape of the face
is reconstructed quite accurately, demonstrating that the algo-
rithm is not very sensitive to violations of the Lambertian reflec-
tance assumption.

Finally, Fig. 8 shows the results of the algorithm on the upper
body of a person. Note how the shading constraint allows the cloth
folds to be reconstructed faithfully. This example also illustrates
the limitations of the algorithm: The head is reconstructed less
well than in the previous example; we believe this is because there
is too much albedo variation in an area of only a few pixels. The
lowest part of the body is not reconstructed well either, and this
is probably due to the low reflectivity of the material in this region,
which leads to a large amount of noise in both the range map and
the intensity image.

4. Discussion

As we have shown, enforcing the shading constraint can sub-
stantially improve the quality of range maps obtained using a
time-of-flight (TOF) camera, both in terms of objective measures
as well as subjectively perceived quality.

The TOF camera is particularly well suited for algorithms that
incorporate shape from shading (SfS) because it eliminates many
sources of variability that are difficult to deal with in the general
SfS setting: In the TOF camera, the position of the light source is
known (it is co-located with the camera); the camera attenuates
all other sources of light; and the albedo of the surface can be esti-
mated robustly because its distance from the light source is known
(see Section 2.4).

The main limitation of the current algorithm is that it does not
cope well with range discontinuities, so-called jump edges. Because
the reconstructed surface is always continuous, jump edges lead to
surface normals that are almost perpendicular to the incoming
light; hence, the corresponding regions are shaded with very low
intensity. This disagrees with the observed image, so the algorithm
will flatten the edge to compensate.

It should be possible to overcome this limitation by ignoring
any mesh triangle that straddles a jump edge. Jump edges could
be identified either by searching for large jumps in the measured
range maps or by incorporating jump edges into the probabilistic
image model, as in the work of Nadabar and Jain [12].

It should also be noted that the algorithm is computationally
fairly expensive; the current implementation takes several min-
utes to process an image on a contemporary PC. Since our main
focus was correctness, not performance, we expect that optimiza-
tion should yield a substantial speedup. However, optimizing the
algorithm to the point that it could run at camera frame rates
would present a major challenge and would probably require tech-
niques such as computation on the graphics processing unit (GPU).

Even in its present form, though, the algorithm is suitable for
the post-processing either of individual images or of recorded im-
age sequences. Of course, other range sensors, such as laser range
scanners, still provide far better accuracy than TOF camera data

Fig. 6. Surface reconstructions of two terracotta objects, manually segmented in
images taken with an SR3000 TOF camera. The renderings of the range maps are
rotated 30� around the vertical axis.
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post-processed using our algorithm. The strength of the TOF cam-
era, however, lies in its high temporal resolution and its potential
to be manufactured at low cost for mass-market applications.
Enforcing the shading constraint allows TOF cameras to provide
range maps of considerably enhanced quality, opening up many
new application fields.
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(a) (b) (c) (d) (e) (f)
Fig. 7. 3D reconstruction of a human face. (a) Manually segmented intensity image, (b) measured range map, (c) 5 � 5 median-filtered range map, (d) ‘‘global albedo”
reconstruction, (e) ‘‘local albedo” reconstruction, and (f) ‘‘local albedo” reconstruction textured with intensity image. The renderings of the range maps are rotated 30 degrees
around the vertical axis.

(a) (b) (c) (d)
Fig. 8. 3D reconstruction of a person’s upper body. (a) Manually segmented intensity image, (b) measured range map, (c) 5 � 5 median-filtered range map, and (d) ‘‘local
albedo” reconstruction. The renderings of the range maps are rotated 30� around the vertical axis.
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