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Abstract: We describe a facial feature tracker based on the combined
range and amplitude data provided by a 3D time-of-flight camera. We
use this tracker to implement a head mouse, an alternative input device
for people who have limited use of their hands.

The facial feature tracker is based on geometric features that are re-
lated to the intrinsic dimensionality of multidimensional signals. We
show how the position of the nose in the image can be determined ro-
bustly using a very simple bounding-box classifier, trained on a set of
labelled sample images. Despite its simplicity, the classifier generalizes
well to subjects that it was not trained on. An important result is that
the combination of range and amplitude data dramatically improves ro-
bustness compared to a single type of data.

The tracker runs in real time at around 30 frames per second. We
demonstrate its potential as an input device by using it to control
Dasher, an alternative text input tool.
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1 Introduction

In the last decade, a novel type of image sensor – the 3D time-of-flight (TOF)
camera – has been developed [5, 6, 8, 10]. This camera fuses the acquisition of both
intensity and range data into a single device at a relatively low cost; the future
pricing of such cameras is expected to be in the range of standard webcams. A
3D TOF camera works by emitting modulated infrared light; the phase shift of the
reflected light provides a range measurement, and the amplitude, which depends
on the reflectivity of the object, provides a conventional intensity image.
In this paper, we use a 3D TOF camera to implement a facial feature tracker and
show how this tracker can be used as an alternative means of controlling a mouse
cursor.
In contrast to conventional cameras, 3D TOF cameras have the obvious benefit of
providing information about the three-dimensional structure of the scene. Com-
puter vision applications that use this information can reasonably be expected to
be more robust than if they used only a conventional intensity image, because
geometric structure is typically more invariant than appearance.
Indeed, our tracker performs better on 3D TOF data than on intensity data alone.
However, beyond this we have observed an interesting phenomenon in our results:
It is not the range data by itself that improves the robustness of the results but
rather the combination of range and intensity data; while both types of data per-
form roughly the same when used individually, the combination of the two yields
substantially better results than either type of data alone. We intend to investigate
whether this effect also occurs for other applications.
Previous work has already identified the nose as an important facial feature for
tracking, see for example [3] and [11]. The first approach determines the location
of the nose by template matching and gives very robust results under fixed lighting
and at a fixed distance of the user from the camera. The second approach works
by fitting a geometrical model of the nose to the image data.
We also consider the nose as being well suited for head tracking because, in terms
of differential geometry, the tip of the nose is the point of maximal curvature on the
surface of the face. Gaussian curvature would therefore seem to be a good choice as
an image feature for tracking the nose, but it has the disadvantage that it is based
on first and second order derivatives, which are sensitive to noise. We propose
alternative features that can be related to generalized differential operators. In
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previous work [4], we describe a nose detector based on these features that achieves
good error rates using a simple threshold-based classifier.
The nose detector described previously [4] was a Matlab implementation that did
not run in real time. In this paper, we describe a real-time C++ implementation
of the nose detector, which we then use as the basis for a nose tracker. Because of
the low error rate of the detector, the tracker requires only simple post-processing
and tracking algorithms. We envisage that this type of tracker can be used for
human-computer interaction and, particularly, for Augmentative and Alternative
Communication. To demonstrate this type of application, we use the tracker to
control the alternative text entry tool Dasher [9].

2 Geometric Features

To define the geometric features used in the classifier, we interpret the range and
amplitude data as a particular type of surface, the Monge patch or 2-1/2-D image,
defined as a function f : R

2 → R
3, (x, y) 7→ (x, y, f(x, y)), where x and y specify a

position on the image sensor and f(x, y) is the corresponding range or amplitude
value. (In practice, this function is sampled on an equispaced grid.)
We point out that the geometry of the range data patch is not identical to the
geometry of the three-dimensional surface that was measured. This is because the
Monge patch implies an orthographic projection, whereas the camera lens performs
a perspective projection. However, in our application, the orthographic projection is
a good approximation because the range variation within the face is small compared
its distance from the camera (this is the so-called weak perspective assumption).
On this data model, we use a set of curvature measures (originally proposed in [1]
and [12]) that provide basic and reliable alternatives to the Gaussian curvature K
and the mean curvature H for the purpose of surface classification. We will briefly
summarize the derivation.
Let us first recall the definition of Gaussian curvature for a Monge patch:

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
. (1)

In case only the sign of the curvature is relevant, one can rely on the DET-operator
D, which can be formulated in terms of the determinant of the Hessian and is equal
to the numerator of (1). Thus the DET-operator takes the following form:

D = fxxfyy − f2
xy = det(hij) = d1d2. (2)

Here, d1 and d2 denote the eigenvalues of the Hessian. Rearranging the first part
of the formula (see [1]) yields

D =
1

4
(fxx + fyy)2 −

1

4
(fxx − fyy)2 − f2

xy = (∆f)2 − ǫ2, (3)

where ∆f denotes the Laplacian and ǫ is referred to as the eccentricity, which is
defined as

ǫ2 =
1

4
(fxx − fyy)2 + f2

xy. (4)
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Figure 1 Discrimination of the six surface types pit, peak, saddle, valley, ridge, and
planar within the feature space spanned by ǫ0 (∆f) and ǫ2 (ǫ).

The above formulation yields a relationship of the curvature to the Laplacian and
the eccentricity. A generalized representation of the operators ∆f and ǫ can be
achieved in the Fourier domain by defining the generalized eccentricity ǫn via the
following filter functions in polar coordinates ρ and θ, where A(ρ) represents the
radial filter tuning function:

Cn = inA(ρ) cos(nθ), Sn = inA(ρ) sin(nθ). (5)

Recall that the transfer functions of partial derivatives are of the form (ifx)n and
(ify)n, where fx and fy represent the spatial frequencies and n denotes the order of
differentiation. Even-order partial derivatives correspond to real transfer functions,
whereas odd-order partial derivatives correspond to imaginary transfer functions.

The transfer functions in (5) correspond to convolution kernels cn(x, y) and sn(x, y)
in the image domain. Using these, we obtain the generalized eccentricity

ǫ2n = (cn(x, y) ∗ l(x, y))
2

+ (sn(x, y) ∗ l(x, y))
2

(6)

for n = 0, 1, 2, . . . , which corresponds to |∆f | for n = 0 and to the eccentricity ǫ
for n = 2, when A(ρ) = (2πρ)2. The modulus of the gradient is defined by ǫn for
n = 1 and A(ρ) = 2πρ. In a purely geometrical interpretation, all measures ǫn

are positive, and as a result one cannot distinguish between convex and concave
curvature using ǫ0 and ǫ2. An extension to this formulation in [1] justifies the use
of ǫ0 with the sign of ∆f , i.e. ǫ0 = −c0 ∗ l.

For practical applications, the radial filter tuning function A(ρ) can be combined
with a low-pass filter, e.g. Gaussian blurring of the form G(ρ, σ) = exp(−πρ2/4σ2).
Ideally, the low-pass filter should be adapted to the distribution of noise inherent
in the data.

The measures ǫn for n = 0 and n = 2 can be used to distinguish between the six
well-known surface types in the feature space spanned by ǫ0 and ǫ2. Figure 1 shows
where the different surface types lie in feature space. Because the nose is a local
minimum in the range data, we would expect the corresponding pixels to lie in
the region labeled pit. Conversely, since the nose tends to be a local maximum in
the intensity data, we would expect to find the corresponding pixels in the region
labeled peak.
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Figure 2 Left: Distribution of feature points for pixels taken from range data of the
SR3000 camera projected into the 2D feature space spanned by ǫ0 (∆f) and ǫ2 (ǫ). Right:
The feature space around the origin at a higher resolution. The black crosses represent
feature points corresponding to the nose tip of various subjects and clearly cluster in the
region associated with the surface type pit as expected. The grey dots represent randomly
chosen non-nose pixels.

3 Nose Detection

To evaluate the potential of using the generalized eccentricity measures ǫ0 and ǫ2
to detect noses, we acquired a database of head images from different users with
different head poses per user. We then hand-labelled the position of the nose in
each image and compared the values of ǫ0 and ǫ2 at the labelled locations with the
values at other, non-nose locations.

Figure 2 shows the results of this comparison; it plots the values of ǫ0 and ǫ2 on the
range data. The values obtained at the labelled nose locations are plotted using
black crosses, and the values at randomly chosen non-nose (and non-background)
locations are plotted using gray dots.

As expected, the nose pixels cluster together in the pit region. Most of the non-
nose pixels are fairly close to the origin (which corresponds to 0D, i.e. locally
constant structures); most of the remaining pixels cluster around the diagonals (1D
structures) with only a few pixels in the remaining regions (2D structures).

The results for the amplitude data are not shown because they are qualitatively
similar, the main difference being that the nose pixels cluster together in the peak
region; again, as expected.

The radial filter tuning function was set to A(ρ) = (2πρ)2 · exp(−πρ2/(4σ2)) with
σ = 0.3 for all feature computations. We expect that filter optimization will further
improve the results.

Based on these results, we implemented a simple nose detector as follows: The radial
structure of the feature space (see Figure 1) suggests that polar coordinates are a
natural representation for points in the space. Therefore, we perform a conversion
to polar coordinates r (radius) and φ (angle). We collect the feature values into
a feature vector F = (F1, . . . ,Fm), which contains the values of r and φ for the
range and/or amplitude data, depending on which data we want to use for the
classification. We then estimate the boundaries Fmin and Fmax of a bounding
box enclosing the “nose” region in feature space. A pixel is classified as “nose” if
Fmin j < Fj < Fmax j for all j = 1, . . . ,m and “non-nose” otherwise.

The values for Fmin and Fmax are determined by taking a set of training images with
hand-labelled nose locations and then choosing the bounding box that contains all
of the training samples in feature space. The trade-off between detection rate and
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false positive rate can be controlled by scaling the box around its centre; we obtain
the new bounding box limits

F̂min = Fcentre − α Fhalfwidth, F̂max = Fcentre + α Fhalfwidth,

where Fcentre = Fmin+Fmax

2
and Fhalfwidth = Fmax−Fmin

2
. We call α the “softness”

parameter.
To avoid misclassifications in regions with low intensity and, thus, low measurement
confidence, we used Otsu’s method [7] to compute a threshold on the amplitude
data and separate the foreground from the background. The background was set
to a fixed value in both the range and the amplitude data.
This is obviously a very simple classifier, but despite its simplicity it yields very
robust results, as we will show in Section 5.

4 Nose Tracking

To track the nose and use it to control the position of the mouse pointer, we need
to choose one of the potentially several nose locations that were detected, and we
need to translate this nose location into a mouse cursor position.
First, we find all of the connected components in the image; each connected compo-
nent yields one candidate location for the position of the nose, which we determine
as follows: We first find the pixel whose feature vector is closest to the centre of the
bounding box, i.e. for which ‖F−Fcentre‖2 is minimal. We then refine this location
with subpixel precision by taking a small window around the candidate location
and computing a weighted centroid of the pixels in the window, where the weight
of a pixel depends on the distance of its feature vector to Fcentre; specifically, the
weight function is a Gaussian centred on Fcentre.
Since the raw results delivered by the nose detector are already quite good (see
Section 5), most camera frames contain only a single connected component and
thus a single candidate location, placed correctly on the nose. If the current frame
contains more than one candidate location, we choose the candidate that is closest
to the position of the nose in the previous frame. For the very first frame, or if
no nose was found in the previous frame, we simply choose one of the candidates
arbitrarily. Even if we choose the wrong candidate, it is quite likely that the next
frame will not contain any misdetections, and from that point on, we will be tracking
the correct position. This is a simple strategy for eliminating misdetections, but it
works quite well in practice.
Once the position of the nose has been identified, we need to convert it into a
position on the screen. We define a rectangular “active region” in the camera
image, sized so that when the user rotates his or her head, they are able to place
their nose anywhere within this region. We then convert the nose position to a
mouse cursor position by defining a mapping from camera image coordinates to
screen coordinates such that the borders of the active region are mapped to the
borders of the screen (see Figure 3a.) The mapping has to flip the horizontal axis
(for clarity, this is not shown in the figure) because a head movement to the left
causes the position of the nose in the camera image to move to the right.
Two questions remain to be solved: Where in the image should we place the active
region? And what should be done if the user’s seating position changes such that
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a) b)
Figure 3 a) Illustration of the mapping between the position of the nose in the camera
image and the position of the mouse cursor on the screen. The shaded rectangle is the
active region, the cross marks the position of the nose, and the arrow symbolizes the
mouse cursor. For clarity, the horizontal flip contained in the mapping is not shown.
b) Adjustment made when the nose moves outside the active region. Top: Before the
adjustment of the active region. Bottom: After the adjustment.

the nose leaves the active region? We solve these problems using an implicit cal-
ibration procedure that continually adjusts the position of the active region. For
example, if the nose moves beyond the left border of the active region, we shift the
active region to the left until the nose is just inside the active region again (see
Figure 3b). Effectively, users “drag” the active region along as they change their
seating position. This procedure works equally well for setting the initial position
of the active region: A quick rotation of the head left, right, up, and down is suffi-
cient to put the active region in a suitable position. If desired, the size and initial
position of the active region could also be determined during an explicit calibration
phase.

5 Results

The algorithms were implemented in GNU C++ and run on a 2.8 GHz Pentium 4
under Linux 2.6. The FFTW library [2] was used for the FFT transforms needed
to calculate the generalized eccentricity measures. Images were acquired using a
MESA SR3000 camera [5], which has a resolution of 176 by 144 pixels.

To evaluate the error rate of the nose detector, we first tested it on a set of static
images, consisting of images from 13 subjects, with nine head orientations per
subject. The position of the nose was hand-labelled in each image. The data from
three subjects was used to estimate the bounding box for the nose detector, which
was then tested on the remaining ten subjects. We calculated the detection rate
as the percentage of images in which the nose was identified correctly (to within
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Figure 4 Examples of detection results. The amplitude data (left column) and the
range data (right column) are given for four subjects. All pixels identified as nose pixels
by our detector are marked in each image, the cross simply highlighting the locations.

five pixels distance from the hand-labelled position) and the false positive rate as
the percentage of images where at least one non-nose pixel was falsely classified as
“nose”. We adjusted the softness parameter until the false negative rate (one minus
the detection rate) and the false positive rate were equal, thus obtaining an equal
error rate (EER). When nose detection was performed on the range and amplitude
data individually, we obtained EERs of 0.64 and 0.42, respectively, When nose
detection was performed on the combination of both types of data, we obtained an
EER of 0.03 (see [4] for details). Figure 4 shows some examples of detection results.
The softness parameter that corresponded to the EER was chosen to set the bound-
ing box for the nose tracker. On the combined range and amplitude data, the tracker
ran at a rate of 27 frames per second. This is adequate for the frame rate we run the
camera at but could be improved further (for example, we currently use a complex-
to-complex FFT for simplicity of implementation, which could be replaced with a
real-to-complex FFT). A video showing the nose tracker in action is available on
the web at http://www.inb.uni-luebeck.de/~boehme/nosetrack_demo.mp4.
To evaluate the usefulness of the nose tracker for interaction tasks, we used it to
control the alternative text input tool Dasher [9]. Dasher can be controlled using
a variety of pointing devices, which are used to “steer” towards the letters to be
input. A test subject using the nose tracker with Dasher to input text from an
English language novel achieved 12 words per minute (wpm). For comparison, the
rate that can be achieved using an eye tracker is between 15 and 25 wpm [9].

6 Conclusions

We have demonstrated how a very simple classifier based on geometric features
can be used to detect a user’s nose robustly in combined range and amplitude data
obtained using a 3D TOF camera. A particularly interesting result is that markedly
better results were obtained on the combination of range and amplitude data than
on either type of data alone.
Based on this classifier, we implemented a real-time nose tracker. To demonstrate
the usefulness of this tracker for human-computer interaction, we have shown that
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it can be used effectively to control the alternative text entry tool Dasher.
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