Gaze-Contingent Temporal Filtering of Video

Martin Bohme* Michael Dorr’

Erhardt Barth®

Thomas Martinetz*

Institute for Neuro- and Bioinformatics
University of Liibeck, Germany

Abstract

We describe an algorithm for manipulating the temporal resolu-
tion of a video in real time, contingent upon the viewer’s direc-
tion of gaze. The purpose of this work is to study the effect that a
controlled manipulation of the temporal frequency content in real-
world scenes has on eye movements. We build on the work of Perry
and Geisler [1998; 2002], who manipulate spatial resolution as a
function of gaze direction, allowing them to mimic the resolution
distribution of the human retina or to simulate the effect of various
diseases (e.g. glaucoma).

Our temporal filtering algorithm is similar to that of Perry and
Geisler in that we interpolate between the levels of a multireso-
lution pyramid. However, in our case, the pyramid is built along
the temporal dimension, and this requires careful management of
the buffering of video frames and of the order in which the filtering
operations are performed. On a standard personal computer, the al-
gorithm achieves real-time performance (30 frames per second) on
high-resolution videos (960 by 540 pixels).

We present experimental results showing that the manipulation per-
formed by the algorithm reduces the number of high-amplitude sac-
cades and can remain unnoticed by the observer.

CR Categories: 1.4.9 [Image Processing and Computer Vi-
sion]: Applications; 1.4.3 [Image Processing and Computer Vi-
sion]: Enhancement—Filtering; J.4 [Social and Behavioral Sci-
ences]: Psychology

Keywords: gaze-contingent display, foveation, temporal multires-
olution pyramid

1 Introduction

Gaze-contingent displays manipulate some property of the (static
or moving) image as a function of gaze direction (see Duchowski,
Cournia and Murphy [2004] for a review). This type of display
was first used in reading research [McConkie and Rayner 1975;
Rayner 1975; Rayner 1998] and has since been used in many psy-
chophysical and perceptual studies (e.g. [Loschky and McConkie
2000; Loschky et al. 2005; Cornelissen et al. 2005]). The image
property that is most commonly manipulated in a gaze-contingent
display is spatial resolution. A popular type of manipulation is to

*e-mail: boehme @inb.uni-luebeck.de
fe-mail: dorr@inb.uni-luebeck.de
*e-mail: martinetz@inb.uni-luebeck.de
Se-mail: barth@inb.uni-luebeck.de

© ACM, 2006. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Eye Tracking Research & Applications
2006, San Diego, California, 27-29 March 2006.
http://doi.acm.org/10.1145/1117309.1117353

Figure 1: Top: Image from one of the video sequences. Bottom:
Same image with gaze-contingent temporal filtering applied. The
white square at the centre left (below the white sail) indicates the
point of regard.

“foveate” an image or video, i.e. to simulate the effect of the vari-
able resolution of the human retina, which is highest at the fovea
and falls off towards the periphery. If the foveation is adjusted
to match the resolution distribution of the retina, the effect is not
noticeable for the observer, but the resulting images can be com-
pressed more efficiently because they contain less high-frequency
content [Kortum and Geisler 1996; Geisler and Perry 1998]. An-
other application is to visualize the effect of diseases of the eye,
e.g. glaucoma [Perry and Geisler 2002]; these visualizations can be
used to educate students or family members of patients about the
effects of such diseases.

The current state-of-the-art algorithm for gaze-contingent spatial
filtering of video is due to Perry and Geisler [2002]. Unlike pre-
vious algorithms, which introduced artifacts in the filtered images,
their algorithm produces smooth, artifact-free results.

In this paper, we present a gaze-contingent display that manipulates
not the spatial, but the temporal resolution of a video. The basic ef-
fect of temporal filtering is to blur the moving parts of an image
while leaving the static parts unchanged (see Figure 1 for an ex-
ample). Our motivation for performing this type of manipulation is
that we want to examine the effect that it has on eye movements;
movement or change in the periphery of the visual field is a strong
cue for eye movements, and indeed we have been able to show that

gaze-contingent temporal filtering reduces the number of saccades
with large amplitude [Dorr et al. 2005b] but can remain unnoticed
by the observer [Dorr et al. 2005a]. We will present a summary of
these results, but our main focus in this paper is on the temporal
filtering algorithm, which has not previously been described. Our
long-term goal is to find ways of guiding an observer’s eye move-
ments [Itap 2002]. This requires two components: We must prevent
saccades to undesired locations (using techniques such as temporal
filtering) and encourage saccades to desired locations (using suit-
able stimuli).

Our algorithm is similar to that of Perry and Geisler in that it is
based on interpolating between the levels of a multiresolution pyra-
mid. However, in our case, the pyramid is built along the temporal
dimension. Because it is not feasible to hold the entire multiresolu-
tion representation of the video in memory, we shift a temporal win-
dow along the pyramid as the video plays and compute the contents
of this window in real time. On a standard personal computer, our
algorithm achieves real-time performance (30 frames per second)
on high-resolution videos (960 by 540 pixels). Note that the com-
putational requirements for temporal filtering are greater than for
spatial filtering because the pyramid reduces resolution (and thus
bandwidth) only along one dimension and because the interpola-
tion between levels of the pyramid cannot be interleaved with the
upsampling steps.

A limitation of temporal filtering compared to spatial filtering is
that the temporal pyramid requires a certain amount of “looka-
head” in the video stream because the filters used in the pyramid
are non-causal. This means that the algorithm is only useful for
pre-recorded video material; on a live video stream from a camera,
the algorithm would introduce a latency of several seconds, making
it impractical for applications such as head-mounted displays with
video-see-through. Note, however, that this latency applies only to
the video stream; the latency of the gaze-contingent effect, i.e. the
time elapsed between an eye movement and the display update, de-
pends only on the time required to process and display one frame.

2 Algorithm

The gaze-contingent temporal filtering algorithm takes a resolution
map R(x,y) that specifies the desired temporal resolution at each
point in the visual field, relative to the point of regard. For each
frame in the video, the resolution map is centred on the current gaze
position (obtained from the eye tracker), and the amount of filter-
ing specified by the map is applied at each pixel. This is achieved
by interpolating between the levels of a temporal multiresolution
pyramid.

For a spatial multiresolution pyramid, the complete data for all
pyramid levels can be kept in memory at the same time. This means
that the whole of pyramid level / can be computed before pyramid
level 141 (which depends on level /). If we wanted to take the
same approach for the temporal multiresolution pyramid, then, be-
cause one level of the pyramid spans the entire image sequence, we
would have to store this image sequence along with all of its mul-
tiresolution versions in main memory—which is clearly not feasible
for all but the shortest of videos. Alternatively, we could precom-
pute all of the pyramid levels and read them from disk, one video
stream per pyramid level. However, we found that decoding these
video streams actually takes more CPU time than computing the
multiresolution pyramid on the fly. (Storing the video in uncom-
pressed form is not an option because this would require excessive
disk bandwidth.) For this reason, we compute the multiresolution
pyramid as the video is being displayed, keeping only those frames
of each pyramid level in memory that are needed at any given time.

P*(0) P(1)

P'(0) Pi(1) P'(2)

PO) || P(D) || P'Q) || P’G) || P'(4)

Figure 2: A temporal multiresolution pyramid with three levels.
The temporal resolution (frames per second) is halved from level
to level. Below the pyramid, ¢ is the time step corresponding to
each column, and A; is the index of the highest pyramid level that
contains an image for time step ¢.

2.1 Notational Conventions

The input video is given as a sequence of images 1(0),1(1),... (the
sequence is assumed to be infinite). The images contain a sin-
gle channel (colour videos can be processed by filtering the colour
channels individually); they have a width of w pixels and a height
of h pixels. The pixel at position (x,y) of image I(¢) is referred to
as I(7)(x,y) (x,y € N, 0 <x <w, 0 <y < h). (The convention that
is chosen for the direction of the image axes is irrelevant for our
purposes.) Operations that refer to entire images, such as addition
of images or multiplication by a constant factor, are to be applied
pixelwise to all pixels in the image.

The individual levels of the multiresolution pyramid are referred to
as PO to PL (i.e. the pyramid contains L+ 1 levels). P!(n) refers
to the n-th image at level /. PO is identical to the input image se-
quence, and P'*! is obtained by low-pass filtering P! temporally
and then subsampling temporally by a factor of 2, i.e. dropping
every other frame. (See Burt and Adelson [1983] for a detailed de-
scription of multiresolution pyramids, albeit with spatial filtering.)
Hence, P/*!(n) corresponds to the same point in time as P!(2n),
and for an input image I(¢) at time ¢, the corresponding image in
pyramid level P is P! (é) (see Figure 2). Of course, such an image

only exists if ¢ is a multiple of 2. By A,, we designate the index of
the highest pyramid level that contains an image corresponding to
I(¢); A; is thus the maximum integer value that fulfils 0 < A; <L
and t mod 2% = 0.

Because each frame of the output video is generated by interpo-
lating between all of the levels of the multiresolution pyramid, we
need to upsample each level to the full video frame rate. We refer to
these upsampled pyramid levels as Q° to Q and will discuss how
to compute them in the next section.

2.2 Relationships Between Pyramid Levels

Figure 3 shows the relationships between different levels of the
multiresolution prramid and the way in which the upsampled ver-
sions QU ..., QL of the pyramid levels PO....,PL are obtained.

P L] [] []

W, W|/ W, w,)

P[] [] [] []

]

PO OO OOOOONO

P=Q* [] [] []

\

Q[]] [] []

N Wy /v,z

U DU

Figure 3: Top: Relationships between different levels of the mul-
tiresolution pyramid. Each level of the pyramid is computed from
the level below by filtering with the kernel w_, ..., w, (in this case,
¢ = 2) and subsampling by a factor of 2. Bottom: Scheme for com-
puting upsampled versions Q' of pyramid levels P!. Q' is computed
from P! by repeatedly inserting zeros and filtering with the kernel
W_¢,...,We. In practice, only the non-zero frames are included in
the convolution with the kernel.

P/*1(z) is obtained by low-pass filtering from images in P*:

C C
P)= Y wi-Pl2an—i) / Y wi
i=—c i=—c
The w_¢, ..., w, are the kernel coefficients. We use a binomial filter
withc=2andwyg=6,w; =w_;=4andw, =w_p =1.

Q' is obtained from P’ by performing / upsampling steps. The inter-
mediate results of these operations are denoted by Qf to Qf), where
Qf =Pl and Qé =Q. Conceptually, Q,’(is obtained from Qi 1 by
inserting zeros to upsample by a factor of 2 and then performing a
low-pass filtering operation. In practice, these two steps are com-
bined into one, as expressed in the following formula:

G- £ wda()/) E m

i=—c i=—c

(n—i) mod 2=0 (n—i) mod 2=0

2.3 Sliding Window Boundaries

As described above, we wish to compute the P! and Q,l{ on the fly,
while the video is being displayed. To minimize memory require-
ments, we will keep only those frames of the P/ and Qf(in memory
that are needed at any given time. This is achieved by using a circu-
lar buffer for each of the P! and Qé to implement a sliding window
that contains the required frames. We will proceed in this section
to derive the appropriate front and rear window boundaries, relative
to the current frame. For example, a front and rear boundary for
P! of 4 and -2, respectively, would mean that, at time ¢, the sliding
window would contain frames PI(§ —2)to P! (37 +4).

Because the filter used in the multiresolution pyramid is non-causal,
the front boundaries have to extend into the future by different
amounts (we also refer to this distance as the lookahead). For this
reason, our algorithm is only suitable for pre-recorded video se-
quences, as noted in the introduction.

To derive the boundaries of the sliding windows, we start by noting
that we need QV(¢) to Q*(¢) in each time step to compute the final
blended output image. We will work backwards from this to find
the window sizes required in the preceding processing steps.

From the equation for Q' (in Section 2.2), we see that to produce
Q!(t) = Q)(r), we need images Q! (i) with 5¢ <i < 5 andi € N.
The front and rear boundaries for Q]l are thus § and —§, respec-
tively, relative to the current image Q} (5). Because Q/ thus needs
a lookahead of § images, we need to produce Q) (% +) at time
t (assuming that both ¢ and ¢ are even). We could now repeat this
argument to compute the window boundaries required for all Qf{.
The argument is simplified, however, by noting that we also obtain
a valid result if we set a front boundary of ¢ and a rear bound-
ary of O for all k. These boundaries are sufficient for the follow-
ing reason: At time 7, we need to produce Qi(zr—k +¢) (assuming
that ¢ is a multiple of 2¢). This requires the images Q| 41 () with
(3¢ +c—¢)/2 = 5f7 <i< (g +c+¢)/2= 5y +c, ie. afront
boundary of ¢ and a rear boundary of 0 is also sufficient for Qi 41
and by induction for all k.

Turning now to the downsampling side of the pyramid, we note
that for all I, the sliding window for P! needs to contain at least
the image Pl(é +¢), because this image is needed for Q, which
has a lookahead of ¢. Additional requirements are imposed by the
dependencies between the P/. We start with PL, which no other
pyramid level depends on, and assign it a front and rear boundary
of . Hence, at time 7, we need to compute P-(5 +c), for which
we need the images PL~! (555 +2c —¢),...,PL ! (5 +2c +c).
This means that pyramid level P-~! needs to have a rear boundary
of ¢ and a front boundary of 3c. By continuing in this fashion, we
find that level P! requires a front boundary of (2L--/+1 —1).¢. The
rear boundary for all P! is ¢ because of the requirements imposed
by the Q. We will refer to the front boundary or lookahead of P!
as A; := (2L7"1 — 1) - c. Because the input images are fed into P,
the total latency of the pyramid is Ag.

2.4 Pyramid Update Algorithm

We are now ready to present the algorithm that updates the mul-
tiresolution pyramid in each time step:

Algorithm 2.1 (Temporal pyramid update step)

Input: t Time step to update the pyramid for
Globals: P°,... Pt Pyramid levels
Q%,...,QY Upsampled pyramid levels

Q;{ Intermediate results for upsampled
pyramid levels
0O<I<LO<k<D

Downsampling phase
PO(t+29) =1(t +A9)
Ay =max({AEN|0< AL At mod2* =0})
for/=1,...,A; do
PG +a) = ¥ wi~Pl—‘<;j+zA,—i>/_i Wi
I==C i=—c

end for

Upsampling phase
for/=0,...,Ldo
if A; > [then

Qi(3 +¢) =P(F +c)
A=1-1

else
A=A,

end if

fork=A,A—1,...,0do
Q(F +0) =

)C: wi- Qb ((2’k+ci)/z>/

i=—c
(75 +c—i) mod 2=0
c

¥ wi

i=—c

(3 +¢—i) mod 2=0
end for
end for

This pyramid update is carried out in each time step before blend-
ing the pyramid levels together to obtain the final output image (see
next section). Because of the latency in the pyramid, a certain num-
ber of images at the beginning of P! and Q' are never computed;
specifically, these are the P!(n) with 0 < n < 4; and Q(n) with
0 <n < c. These images are assumed to be initialized to some suit-
able value (e.g. all black or equal to the first image in the video).

2.5 Gaze-Contingent Temporal Filtering Algorithm

The desired temporal resolution at each pixel is specified by a res-
olution map R(x,y), where (x,y) is measured relative to the point
of regard, —(w—1)<x<w-1, —=(h—1) <y <h-—1, and
0 < R(x,y) < 1. The values contained in the map specify the tem-
poral resolution relative to the resolution of the original video, i.e. a
value of 1 corresponds to pyramid level PY, 0.5 corresponds to pyra-
mid level P!, and in general, 2~/ corresponds to pyramid level P’.
Intermediate values are handled by interpolating between the two
pyramid levels whose resolutions bracket the desired resolution, as
described below. Values less than 277 are treated as referring to
pyramid level PL, since no lower resolution versions of the image
sequence are available.

Note that interpolating between two pyramid levels delivers only
an approximation to the desired intermediate resolution. There are
methods that deliver more accurate results (e.g. [Kothe 2004]), but
they are computationally more expensive, and we believe that the
approximation used here is sufficient for our purposes.

We compute blending functions that are used to blend between ad-
jacent levels of the pyramid from the effective transfer functions for
the pyramid levels (see Perry and Geisler [2002] for details). The
transfer function for pyramid level P! can be approximated by the
Gaussian

Ti(r) = /0290,

where 67 = 1/(2%11n2), and r is the relative resolution. These
transfer functions can now be used to define the blending functions.
The blending function that is used to blend between levels P! and
P/*+1 is given by

LT (R(xy)) (41 4
TR T (R 2 < R(ny) <2
By(x,y) =10 R(x,y) <2-(+1)
1 R()zz’

The algorithm for computing the output image O(¢) at time ¢ for a
gaze position (g.(t),gy(t)) is now as follows:

Algorithm 2.2 (Pyramid level blending)

Input: t Current time step
(gx(t),8 ()) Gaze position
Qr),...,Q%(r) Upsampled pyramid levels
Output: O(7) Output image
O(r) = Q"(r)
fori=L—-1,L-2,...,0do
forx=0,...,.w,y=0,...,hdo

b=B(x—gx(t),y—gy(1))

O(t)(x,y) = (1—b) O(t)(x,y) + b Q' (¢) (x,y)
end for
end for

To process an entire video, we now execute Algorithm 2.1 and Al-
gorithm 2.2 for each video frame, as follows:

Algorithm 2.3 (Gaze-contingent temporal filtering)
forr=0,1,...do
Update pyramid for time step ¢ (Algorithm 2.1)
Get current gaze position (gx(2),gy(t))
Compute output image O(¢) (Algorithm 2.2)
Display image O(z)
end for

Note that the gaze position is not needed for the pyramid update
(Algorithm 2.1), so its measurement can be deferred until directly
before the blending step (Algorithm 2.2).

2.6 Miscellaneous Considerations

As remarked above, colour images can be filtered simply by filter-
ing the colour planes separately. In our implementation, we operate
directly on the three colour planes of the YUV420 images read from
the digital video files (MPEG-2 format). This has two advantages:
First, we avoid having to transform the images to the RGB colour
space before processing them; the processed images in YUV420
format can be output directly to the graphics card and are converted
to RGB in hardware. Second, in the YUV420 image format, the
chroma channels U and V are subsampled by a factor of two in hor-
izontal and vertical direction. This reduces the number of pixels
that have to be processed in these channels by a factor of four and
halves the total number of pixels compared to the RGB format.

Another noteworthy point is that the processing time required by
Algorithm 2.1 depends on A;, the index of the highest pyramid
level that is updated in time step ¢, and thus varies with each time
step. Furthermore, the difference between the average and maxi-
mum processing time required is quite large. We omit the exact
analysis here, but the average processing time is on the order of

O(2L), while the maximum time is on the order of O(%) Hence,
if we choose the video resolution such that the maximum process-
ing time will fit within the inter-frame interval, then, on most other
frames, the CPU will be idle for a substantial proportion of the time.
This can be avoided by introducing a variable-length buffer of sev-
eral frames length to buffer the output of the multiresolution pyra-
mid and compensate for the variation in processing time between
frames.

1 F T T T T T T T T T 7]
f =
S o8l g
=
19; 06 g
(0]
2 oaf 4
k]
& o2} 4
0 1 1 1 1 1 1 1

40 30 -20 -10 0 10 20 30 40
Eccentricity [deg]

Figure 4: A slice through the radially symmetric resolution map
used to generate the filtered image in Figure 1 and in the exper-
iments on the effect of gaze-contingent temporal filtering on eye
movements. The horizontal axis (radial eccentricity from the point
of regard) has been scaled to give the visual angle in degrees, tak-
ing into account the monitor size and viewing distance used in the
experiments.

3 Implementation and Results

We implemented the algorithms in C++, with performance-critical
parts written in Intel x86 assembly language using the SSE2 vec-
tor instructions. Experiments were run under the Linux operating
system on a PC with a 3.2 GHz Pentium 4 processor and 1 GB
of RAM. For gaze tracking, we used a SensoMotoric Instruments
iView X Hi-Speed eye tracker that provides gaze samples at a rate
of 240 Hz. The eye-tracking software ran under Windows 2000 on a
separate PC, and the gaze samples were sent to the Linux PC using
a UDP network connection.

The video sequences used in the experiments were taken with a JVC
JY-HD10 camera and had a resolution of 1280x720 pixels at 30
frames per second (progressive scan). These video sequences were
then scaled down to a resolution of 960x540 pixels; at this resolu-
tion, with a multiresolution pyramid of six levels (L =5 downsam-
pled levels plus the original video sequence), the gaze-contingent
filtering algorithm was able to process the video at the full rate of
30 frames per second.

Figure 1 shows a still frame from one of the video sequences (top)
along with the image produced by the algorithm (bottom). The ob-
server’s point of regard (centre left of the image) is marked by a
white square. The resolution map used in this example specified
full resolution at the point of regard, with a smooth reduction to-
wards the periphery (see Figure 4). Accordingly, the area around
the point of regard is unchanged, and increasing amounts of tem-
poral filtering (causing moving objects to blur or even vanish) are
visible towards the periphery. Note for example that the two men
walking at the left of the image are slightly blurred and that the per-
son who is about to leave the image at the right edge has practically
vanished completely.

We have performed experiments on the detectability of the gaze-
contingent temporal filtering and of its effect on eye movements.
These results have already been published [Dorr et al. 2005a; Dorr
et al. 2005b], so we will only summarize them briefly.

In one study [Dorr et al. 2005a], we investigated the detection
threshold of the gaze-contingent temporal filtering effect as a func-
tion of retinal eccentricity. We used a resolution map that retained
the temporal resolution of the original video across the whole of the
visual field except for a ring-shaped region at a certain eccentricity
from the point of regard, which was set to a reduced resolution R,.
For various eccentricities, we then measured the threshold for R,
beyond which the manipulation was no longer detectable. These
experiments were performed for four video sequences of twenty

Subject CK

30 T T T T T T T
beach —+—
street! ~--x---
street2 :-----

a5 r round i--8-- |

Temporal resolution [fps]
o
T

Eccentricity [deg]

Figure 5: Detection threshold for temporal filtering as a function of
eccentricity. Each line indicates results for one image sequence.

50 T
iltered
451 Unfiltered |

40f 1

351 b

30r b

251 1

20r

of saccades

A -

15-20 20-25 25-30 >30
Saccade amplitude [deg]

Figure 6: Histogram with error bars of saccade amplitudes with
and without gaze-contingent temporal filtering. Only the histogram
bins for saccades of 15 degrees and greater are shown.

seconds duration each (a beach scene, a traffic scene at a round-
about and two scenes of pedestrian areas).

Figure 5 shows the detection thresholds that were measured for one
subject. It is apparent that the amount of temporal filtering that
can be performed without being detected increases with eccentric-
ity. Indeed, at high eccentricities, we can filter out almost all of the
dynamic content of the video without the observer becoming aware
of this manipulation. Note that we are not measuring whether the
observer can detect certain temporal frequencies at all but whether
the observer will notice that something is missing if we remove
these temporal frequencies from the video. For example, in Fig-
ure 1, the person who is about to leave the scene at the right edge is
clearly visible in the top image; but the absence of this person from
the bottom image is not noticed if one does not know the original
image.

In a second study [Dorr et al. 2005b], we investigated the effect that
gaze-contingent temporal filtering has on eye movements. Here, we
used the same resolution map that was used to generate the sample
image in Figure 1, i.e. full resolution around the point of regard
with a gradual falloff towards the periphery (see Figure 4).

We measured the amplitude distribution of saccades made by eight
observers watching four temporally filtered video sequences (two
of which were identical to ones used in the first study). The ob-
servers were instructed to watch the videos attentively, but no other
specific task was given. We then compared the results to mea-
surements made on the unmanipulated original videos (8 observers
drawn randomly from a pool of 54 observers on which measure-
ments were made, see [Dorr et al. 2005b] for details). Figure 6
shows the results. (Only saccades with amplitudes of 15 degrees
or greater are shown, since this is where we obtain significant dif-
ferences between the two conditions—for smaller amplitudes, no
significant differences were observed. Note that the temporal filter-
ing was strongest in the periphery of the visual field, so this is where
we would expect to see the strongest effect. The error bars for the
unfiltered condition show the range of variation that was obtained
by drawing different random subsets of 8 observers from the pool
of 54 observers; see [Dorr et al. 2005b] for details.) The plot shows
that with gaze-contingent temporal filtering, the subjects made sig-
nificantly fewer large saccades. This is a plausible result, since the
temporal filtering removes high-frequency content in the periphery,
which is usually a strong bottom-up cue for saccades.

4 Conclusions and Outlook

We have presented a new type of gaze-contingent display that ma-
nipulates the temporal resolution of an image sequence, and we
have demonstrated that the temporal filtering effect can remain
undetected by the observer if the cutoff frequency lies above an
eccentricity-dependent threshold. We have also shown that gaze-
contingent temporal filtering can reduce the number of saccades to
the periphery of the visual field. We see this type of display as
a valuable tool for psychophysical research on the spatio-temporal
characteristics of the human visual system when presented with nat-
ural scenes.

In a wider context, our work is motivated by applications that in-
volve the guidance of eye movements [Itap 2002]. In previous
work, we showed that certain visual stimuli can trigger saccades
to a chosen location [Dorr et al. 2004]. The effectiveness of this
stimulation, however, may be reduced if the scene contains other
salient locations that can themselves trigger a saccade. We have
shown that a saliency map can be used to predict a small number of
such locations that are likely candidates for saccade targets [Bohme
et al. 2005]. Temporal filtering could be used to reduce the likeli-
hood that the visual system will choose one of these locations as a
saccade target; this should increase the probability that stimulation
will then trigger a saccade to the intended location. We are cur-
rently carrying out experiments along these lines and plan to report
on the results in a future paper.

As mentioned in the introduction, gaze-contingent spatial filtering
(foveation) can be used to improve the compressibility of video.
We would expect that temporal filtering also improves compress-
ibility, but we have not investigated this since compression is not
the motivating application for us.

The gaze-contingent temporal filtering algorithm presented in this
paper can be combined with Perry and Geisler’s algorithm [2002]
for gaze-contingent spatial filtering. To do this, one would simply
run Perry and Geisler’s algorithm on the output image produced by
the temporal filtering algorithm. This would allow full control over
both the spatial and the temporal resolution at each pixel, allowing
very specific experiments to be carried out on the spatiotemporal
characteristics of the visual system.

Acknowledgements

Our research is supported by the German Ministry of Education
and Research (BMBF) as part of the interdisciplinary project Mod-
Kog (grant number 01IBCO1B) and by the European Commission
within the COGAIN Network of Excellence. We thank SensoMo-
toric Instruments GmbH for their eye-tracking support; data were
obtained using their iView X Hi-Speed system. We also thank the
anonymous reviewers for their helpful comments.

References

BOHME, M., DORR, M., KRAUSE, C., MARTINETZ, T., AND
BARTH, E. 2005. Eye movement predictions on natural videos.
Neurocomputing. (in press).

BURT, P. J., AND ADELSON, E. H. 1983. The Laplacian pyramid
as a compact image code. IEEE Transactions on Communica-
tions 31, 4, 532-540.

CORNELISSEN, F. W., BRUIN, K. J., AND KOOIIMAN, A. C.
2005. The influence of artificial scotomas on eye movements

during visual search. Optometry and Vision Science 82, 1, 27—
35.

DORR, M., MARTINETZ, T., GEGENFURTNER, K., AND BARTH,
E. 2004. Guidance of eye movements on a gaze-contingent dis-
play. In Dynamic Perception Workshop of the GI Section ”Com-
puter Vision”, U. J. lllg, H. H. Biilthoff, and H. A. Mallot, Eds.,
89-94.

DORR, M., BOHME, M., MARTINETZ, T., AND BARTH, E. 2005.
Visibility of temporal blur on a gaze-contingent display. In
APGYV 2005 ACM SIGGRAPH Symposium on Applied Percep-
tion in Graphics and Visualization, 33-36.

DORR, M., BOHME, M., MARTINETZ, T., GEGENFURTNER,
K. R., AND BARTH, E. 2005. Eye movements on a display with
gaze-contingent temporal resolution. Perception ECVP 2005
Supplement 34, 50.

DucHOWwWSKI, A. T., COURNIA, N., AND MURPHY, H. 2004.
Gaze-contingent displays: A review. CyberPsychology & Be-
havior 7, 6, 621-634.

GEISLER, W. S., AND PERRY, J. S. 1998. A real-time foveated
multiresolution system for low-bandwidth video communica-
tion. In Human Vision and Electronic Imaging: SPIE Proceed-
ings, B. Rogowitz and T. Pappas, Eds. 294-305.

ITAP, 2002. Information technology for active perception website.
http://www.inb.uni-luebeck.de/Itap/.

KoRrTUM, P., AND GEISLER, W. 1996. Implementation of a
foveated image coding system for image bandwidth reduction.
In Human Vision and Electronic Imaging, SPIE Proceedings,
vol. 2657, 350-360.

KOTHE, U. 2004. Accurate and Efficient Approximation
of the Continuous Gaussian Scale-Space. In 26th DAGM-
Symposium, Springer, Heidelberg, C. E. Rasmussen, H. H.
Buelthoff, M. Giese, and B. Schoelkopf, Eds., vol. 3175 of
LNCS, 350-358.

LOSCHKY, L. C., AND MCCONKIE, G. W. 2000. User perfor-
mance with gaze contingent multiresolutional displays. In Pro-
ceedings of Eye Tracking Research & Applications, 97-103.

LOSCHKY, L. C., MCCONKIE, G. W., YANG, J., AND MILLER,
M. E. 2005. The limits of visual resolution in natural scene
viewing. Visual Cognition 12, 6, 1057-1092.

MCCONKIE, G. W., AND RAYNER, K. 1975. The span of the ef-
fective stimulus during a fixation in reading. Perception & Psy-
chophysics 17, 578-586.

PERRY, J. S., AND GEISLER, W. S. 2002. Gaze-contingent real-
time simulation of arbitrary visual fields. In Human Vision and
Electronic Imaging: Proceedings of SPIE, San Jose, CA, B. E.
Rogowitz and T. N. Pappas, Eds., vol. 4662, 57-69.

RAYNER, K. 1975. The perceptual span and peripheral cues in
reading. Cognitive Psychology 7, 65-81.

RAYNER, K. 1998. Eye movements in reading and information
processing: 20 years of research. Psychological Bulletin 124, 3,
372-422.

