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Analysis of Superimposed Oriented Patterns
Til Aach, Senior Member, IEEE, Cicero Mota, Ingo Stuke, Matthias Mühlich, and Erhard Barth

Abstract—Estimation of local orientation in images may be
posed as the problem of finding the minimum gray-level variance
axis in a local neighborhood. In bivariate images, the solution is
given by the eigenvector corresponding to the smaller eigenvalue
of a 2 2 tensor. For an ideal single orientation, the tensor
is rank-deficient, i.e., the smaller eigenvalue vanishes. A large
minimal eigenvalue signals the presence of more than one local
orientation, what may be caused by non-opaque additive or
opaque occluding objects, crossings, bifurcations, or corners. We
describe a framework for estimating such superimposed orienta-
tions. Our analysis is based on the eigensystem analysis of suitably
extended tensors for both additive and occluding superpositions.
Unlike in the single-orientation case, the eigensystem analysis does
not directly yield the orientations, rather, it provides so-called
mixed-orientation parameters (MOPs). We, therefore, show how
to decompose the MOPs into the individual orientations. We also
show how to use tensor invariants to increase efficiency, and derive
a new feature for describing local neighborhoods which is in-
variant to rigid transformations. Applications are, e.g., in texture
analysis, directional filtering and interpolation, feature extraction
for corners and crossings, tracking, and signal separation.

I. INTRODUCTION

ESTIMATION of local orientation is essential in a variety
of image filtering and analysis tasks, such as directional

filtering by spectral-domain [1], [2] or steerable [3], [4] filtering,
directional interpolation [5], [6], texture and pattern analysis
[7]–[11], or compression [12], [13]. In these applications, ori-
entation estimation seeks to find local one-dimensional (1-D)
structures such as lines in bivariate [1], [2], [8] or trivariate and
higher variate image data [5]–[7]. Similarly, in the sense of
finding locally oriented structures in spatiotemporal image se-
quences, orientation estimation is a key ingredient of estimating
optical flow [14]. Approaches to local orientation estimation
include quadrature filters [11], [15] [16], steerable filters [17],
and inertia-tensor based methods [18]–[23]. Regarding 1D
local orientation as the direction in which the gray-level profile
varies least [19], [24], [25], the latter find the orientation by
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analysing the eigensystem of a symmetric matrix, or tensor,
computed from the gradients of the image. In bivariate images,
the orientation is given by the eigenvector corresponding to
the tensor’s lower eigenvalue, while the other (orthogonal)
eigenvector points in the direction of maximum variation. The
lower and larger eigenvalue quantify the gray-level variations
along and perpendicular to the orientation axis, respectively.
This framework assumes that only a single orientation is
present. In the case of two or more superimposed orienta-
tions, the eigenvectors no longer represent orientation. Such
neighborhoods—generated, for instance, by corners [26]—are
characterized by the lower eigenvalue being reasonably large,
indicating that no axis along which the gray-level variation is
low can be found. Superimposed orientations appear in X-ray
projection imaging [27], in multioriented textures and fabrics,
or locally as corners and junctions. Superimposed orientations
also occur ubiquituously in radon space (“sinograms” in com-
puter tomography [28]), where sine curves of different objects
cross. Corners and junctions are a rich source of information:
L- and Y-junctions represent object corners, T-junctions occur
at occluding object boundaries, X-junctions at object crossings,
while -junctions are caused by bending object surfaces [29],
[30].

In the following, we describe a framework for identifying
and estimating superimposed orientations. After reviewing
single-orientation estimation in Section II, we develop the
approaches for the estimation of overlaid orientations. Starting
from the problem description for transparently superimposed
optical flows in [31] and multiorientation fields in [32], we
show that both additively overlaid and occluding orientations
can be treated in the same manner. The superimposed orienta-
tions can be estimated by the eigensystem analysis of suitably
extended tensors, yielding so-called mixed-orientation parame-
ters (MOPs). When normalized to unit length, the MOP vector
forms a unique descriptor for double-orientation neighbor-
hoods in bivariate images, but does not provide the orientations
explicitly. We, therefore, show how to decompose the MOP
vector into the individual orientations for both bivariate images
and higher-variate data. We, furthermore, derive an hierarchical
algorithm which successively tests for zero-, single-, double-,
and higher orientation neighborhoods based on tensor invariants
without an explicit eigensystem analysis. Moreover, once the
appropriate orientation model for a neighborhood is identified,
its MOP parameters can also be estimated without eigensystem
analysis. We then expand the approach towards multispectral
data and derive a new set of features for describing local
neighborhoods, which are invariant to similarity transforms
such as rotation. Subsequently, we show how both additively
superimposed and occluding patterns can be separated. We
provide results for both synthetic and real images, and conclude
by a discussion.

1057-7149/$20.00 © 2006 IEEE
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II. ESTIMATION OF SINGLE ORIENTATIONS

A. Bivariate Gray-Level Images

Let , , with denote a bivariate
gray-level image. The image is oriented in a local region

if and only if

(1)

where we exclude the case that is constant over . The
unit vector describes the orienta-
tion of in terms of the angle . With the directional deriva-
tive operator along defined as

, condition (1) is equivalent to
[19], [20]

(2)

where is the gradient of . When met for
, this condition holds also for , we therefore restrict to

lie within . Condition (2), in turn, is equivalent to

(3)
is a measure of the gray-level variation in the direction de-

termined by . (In practice, the integrand in (3) is often weighted
by a function emphasizing the central pixels in , and with
a continuous roll-off towards its borders. Since this weighting
does not influence our considerations, we drop it for ease of no-
tation.) Generally, due to noise and the fact that the orientation
may not be perfectly constant over , it is impossible to find
such that . We thus seek to minimize [19], [20],
i.e.,

(4)

This can be interpreted as seeking the axis of minimum intensity
variation, or, equivalently, the direction which is “most orthog-
onal” to all gradients of in . can be rewritten to

(5)

The symmetric and positive semi-definite tensor is calculated
from by summing over the pixelwise products of its gra-
dient components , according to

(6)

where denotes the tensor product or outer product. On
a discrete grid, computing can be realized by linear shift
invariant derivative filtering and pixelwise multiplication fol-
lowed by low-pass filtering. Minimizing the composite criterion

is equivalent to finding such
that

(7)

where the constraint excludes the trivial solution
. The solution is the normalized eigenvector of

corresponding to its lower eigenvalue . Note that
is then uniquely determined up to its sign, which in turn is
determined by the constraint . The residual
intensity variation over is equal to the lower eigenvalue,
since . For ide-
ally oriented in the sense of (1), the smaller eigenvalue thus
vanishes, and . Compliance with the single-ori-
entation assumption is hence indicated by a low value of ,
and a high value for the large eigenvalue . Violation of the
single-orientation hypothesis, i.e., the presence of more than
one orientation, is indicated by a high , or having full rank.
For being constant over , both eigenvalues vanish, and

.

B. Multivariate and Vector-Valued Image Data

Let the mapping now denote a multivariate,
multispectral image signal, with, e.g., and in color
movies. The image is oriented in the region if there is a
subspace such that

(8)

This can equivalently be expressed as saying that the in-
trinsic dimension [33] of over is . For
oriented bivariate image neighborhoods, is always
equal to one, which leads to (1). The goal of orientation esti-
mation now is to obtain . Condition (8) is equivalent to [7]

with
and . Equation (3) is,
thus, replaced by

(9)

Let and . Equation (9)
can then be rewritten as

(10)

where the tensor is now given by

...
... (11)

Consequently, the integrand can be rewritten as

(12)

which implies that the tensor extends towards the sum over the
tensors calculated for each component of (cf. [18]
for color images)

(13)
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Fig. 1. Synthetically generated ideal orientation neighborhoods, 25� 25 pixel,
with true and estimated orientations shown in light and dark gray, respectively.
Left: single-orientation, noisefree. Estimation error: 0.43 , � =� = 0:00212.
Center: With additive Gaussian noise, SNR 0 dB. Estimation error 1.72 ,
� =� = 0:23. Right: double-orientation, noisefree. The single-orientation
estimate captures neither of the true orientations. � =� = 0:6.

Since is symmetric and positive semi-definite, (10) is equiv-
alent to , which means that is the null-eigenspace
of . As in (5), is estimated by minimizing subject
to , leading to an eigensystem analysis as in (7). If

is ideally oriented in in the sense of (8),
. Compliance with the single-orientation hypoth-

esis can thus be derived from the eigenvalues of .
Fig. 1 illustrates this approach: Left, the ideal single ori-

entation is estimated with very low error. Compliance of the
analyzed neighborhood with the single-orientation hypothesis
is indicated by a low relative to the larger eigenvalue .
Additive noise (center) leads to an increased but still relatively
low . The additive double orientations on the right-hand side
of Fig. 1 violate the single-orientation model. Consequently,
the estimate captures neither orientation, but signals the model
violation by a relatively large . In these examples, the
derivatives and were calculated with the finite-difference
kernel in horizontal resp. vertical direction com-
bined with simultaneous orthogonal smoothing by the kernel

.

III. ESTIMATION OF DOUBLE ORIENTATIONS

A. Bivariate Gray-Level Images

1) Modelling and Eigensystem Analysis: Let us now assume
that within , is composed additively of two non-opaque
oriented subimages according to

(14)

The orientations of and are given by the unit vectors
and

, respectively. and thus obey

(15)

The composite image then satisfies [32]

(16)

This constraint can be rewritten as the inner product
, where is a three-dimensional (3-D) vector given

by

(17)

and

(18)

The components of are the so-called MOP resulting from the
concatenation of two directional derivatives. The constraint is
equivalent to

(19)

The 3 3 tensor is the result of the outer product of the vector
with itself followed by integration over

(20)

Alternatively, might be composed from two oriented sig-
nals and within which occlude each other. Then,
in some part of , we have , while in its
complement , , whereby and

. Our model is thus

(21)

with and
. Evidently, condition (16) also holds in this case. However,

an alternative constraint can be found to

(22)

where the vector is formed from first-order derivatives only
according to

(23)

Conditions (16) and (22) hold for all except for the
boundary between and , where they may differ from
zero. Neglecting , (22) leads to the tensor

(24)
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which is structurally very similar to , and replaces in (19).
The following discussion therefore applies to both and in
the same manner.

As for the estimation of single orientations, we cannot expect
to find a MOP vector such that . Minimizing
subject to the constraint leads to

(25)

The sought MOP vector is the eigenvector corresponding to the
lowest eigenvalue of the 3 3 tensor . The residual error of
this solution is equal to . Confidence in the double-orientation
hypothesis is high if is small and the other two eigenvalues
are large. If the image exhibits two ideal orientations in
as defined by (14) and (15), we have , and .
Since, therefore, , is a so-called homoge-
neous vector which can only be determined up to scale and sign
[34], [35]. Homogeneous vectors are elements of a projective
space, where two vectors are considered equivalent when they
differ only in sign and norm [34], [36]. We may therefore con-
strain to unit length, hence reducing its number of degrees
of freedom (DoF) from three to two—a number which is equal
to the number of DoF of two orientations in a bivariate image
neighborhood. Except for its sign, the normalized MOP vector

therefore is an unambiguous—albeit implicit—descriptor of
two-orientation neighborhoods. We show later how from this
descriptor features for, e.g., tracking or classification purposes,
can be computed. Explicit orientation analysis, though, requires
a decomposition of the MOP vector into the two orientations.

2) Mop Vector Decomposition: To obtain the orientation an-
gles and from the MOP vector , one could observe that

, and , where is an
unknown scaling factor. Even though and are restricted to
lie within , solving these equations for leads
to ambiguities, since the latter lie within .
On this interval, sine and cosine cannot be unambiguously in-
verted. Therefore, to decompose into the unit vectors and

, we define and . Then, the product
is equal to the product of the first and third component of

the MOP vector in (17), i.e., . Similarly, we obtain
. It follows that and are the

roots of the polynomial

(26)

which can be formed from the components of the MOP vector
. The orientation vectors are now obtained by normalizing

and to unit length

(27)

Both alternatives to compute and can equally be applied
except when one orientation is horizontal and the other vertical:
for and , we have ,

Fig. 2. Neighborhoods as in Fig. 1, with true and estimated orientations shown
in light and dark gray, respectively. All orientations are estimated based on the
additive double-orientation model. Left: single-orientation, noisefree, � =� =

0:0018, � =� = 0:0004. Center: noisefree double-orientation, angular esti-
mation error 0.46 for each orientation, � =� = 0:74, � =� = 0:00016.
Right: with additive Gaussian noise, SNR 3 dB. Estimation errors 1.72 and
2.73 , � =� = 0:64, � =� = 0:078.

Fig. 3. Neighborhood with two occluding orientations, 25� 25 pixel,
with true and estimated orientations shown in light and dark gray, respec-
tively. Left: noisefree, estimation errors 0.29 and 1.11 , � =� = 0:78,
� =� = 0:017. Right: with additive Gaussian noise, SNR 3 dB. Estimation
errors 1.58 and 3.56 , � =� = 0:69, � =� = 0:078.

and . Vice versa, for and ,
, and . These cases are easily

detected, and can be handled by either selecting the appropriate
alternative from (27), or by directly setting and

whenever . Scaling does not change the
results of (27) except for the sign of and , what confirms that
we may indeed constrain to unit length.

Fig. 2 illustrates this approach. The left-hand side shows the
single orientation estimated based on the double-orientation hy-
pothesis. One of the two vectors captures the true orientation.
The very small lower eigenvalues and of indicate that
the double orientation assumption is too complex for the single
orientation neighborhood. The neighborhood in the center ex-
hibits two ideal orientations, which are both estimated with low
error. Compared to the largest eigenvalue , only is very
small, thus confirming the double-orientation hypothesis. The
right-hand side shows the same double-orientation structure in
noise. Both and the average estimation error increase, the es-
timate is, though, still reasonable. Derivatives were calculated as
in Fig. 1, with the first derivative operator applied twice to ob-
tain the second order derivatives. (Replacing the simple deriva-
tive filters by a derivative-of-Gaussian with reduced
the estimation errors in the noisy neighborhood to 0.73 and
0.23 , and the lowest eigenvalue to ). Fig. 3
shows a similar illustration for two occluding orientations ana-
lyzed using constraint (22), where the estimation was based on
derivatives-of-Gaussian filters with .

3) Hierarchical Orientation Estimation: Single- and double-
orientation estimation is ideally only possible if the tensors
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and (or ) exhibit exactly a single zero eigenvalue, respec-
tively. Using the eigenvalues for testing whether or not to ac-
cept the single- or double-orientation hypothesis, however, re-
quires an eigensystem analysis. In this section, we describe a
hierarchical algorithm to test for single or double orientations,
and show how the eigensystem analysis can be avoided using
tensor invariants such as determinant and trace, what, for 2 2
and 3 3 tensors, leads to faster and simpler implementations.
We start by developing a test for the presence of a single local
orientation. The determinant of is

, and its trace is
, where is the element in row and column of

. Clearly, if and only if ; this indi-
cates a homogeneous neighborhood without oriented struc-
ture. Presence of a single ideal orientation in results in

, . Furthermore, since always , with
equality only for , confidence for the single-ori-
entation assumption is high if

(28)

where , , is a confidence parameter.
In regions where the single-orientation model is rejected, we

test for double orientations. For the double-orientation tensors
or , we use the invariants

and
, where is the minor [37] obtained from

by deleting row and column . Since we already tested for
a single orientation based on , only one eigenvalue of can
be zero. Since , a suitable confidence criterion for the
double-orientation assumption therefore is

(29)

where , , is another confidence
parameter. All quantities needed for these tests can be computed
directly from and .

If either one of the tensors and is thus found to possess
exactly one (close to) zero eigenvalue, the corresponding eigen-
vector can also be found directly: an eigenvector such that

as in (7) is evidently orthogonal to both rows of . Fur-
thermore, since , both rows are linear dependent.
The sought eigenvector is thus given by a unit vector orthog-
onal to the first row of , i.e., by

(30)

Similarly, for the double-orientation tensor, condition (25)
means we seek the eigenvector orthogonal to all rows of ,
which are linear dependent. At least one pair of rows, however,
must be linear independent. If the double-orientation assump-
tion holds, the MOP vector can thus be calculated as the
normalized cross product of two linear independent rows of

.1 An even more robust estimate of the MOP vector could be
obtained as the average of the eigenvectors computed from two
(or more) different pairs of linear independent rows of .

B. Multivariate and Vector Valued Image Data

Extension of the described approach from scalar images
towards multispectral images is straightforward
[40]: as in (13), it suffices to replace the double-orientation
tensor by the sum of tensors computed
for each spectral component . Similarly, the tensor in (24)
extends to [29] and (31), shown at the bottom of the page.

For trivariate and higher variate signals, however, ambigu-
ities may arise which require modifications especially in the
decomposition of the MOP vector into the individual orienta-
tions. We, therefore, consider now the -variate mapping

which, as in (14), is assumed to be composed from two
single-oriented subimages and by

, . In bivariate images, the subim-
ages can only be oriented along lines. For trivariate data,
we may have ,
what can be regarded as a single signal oriented along a line
orthogonal to both (unit) vectors and , or as the super-
position of two signals oriented along planes with normals
and , respectively. We focus in the following on orientation
along lines. In other words, if is oriented along and

along according to (8), with and
, we have . The subimages

then obey , and satisfies
. With the notation for the

partial derivative operators, and , the constraint ex-
pands to

(32)

1More generally, it can be shown that for a matrix with only one zero eigen-
value, the eigenvector corresponding to the zero eigenvalue can be found directly
from the minors of that matrix [38], [39].

(31)
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since . The right-hand side exhibits
components. The MOPs depend on the components and

of and according to

for
else (33)

which is consistent with (17) for . Ordering the MOPs
into the -dimensional MOP vector

(34)

and with the vector of second derivatives, (32)
becomes

(35)

As before, is a homogeneous vector which we may constrain
to . Furthermore, since we focus on orientations
along lines, i.e., , any two vectors

are linear dependent. The same holds for any
two vectors . Thus, and
hold, with . This implies that any two MOP vec-
tors and out of the set

are also linear dependent,
since . In other
words, the subspace spanning the set of admissible solutions
for according to (33) is also 1-D.

With the symmetric tensor

(36)

the MOP vector satisfies , . Similarly, the
alternative constraint (22) for occluding orientations expands to

(37)

since . This can be written as , where the
vector is constructed from first-order derivatives by

, yielding the tensor .
Let us now examine the relation between the MOP vector

and the sought orientations more closely. As a -dimen-
sional unit vector, the MOP vector has
DoF, whereas two 1-D orientations in -variate signals exhibit

DoF. Only for (and , i.e., univariate signals
where no orientation can be defined), these numbers are iden-
tical. For trivariate signals, has five DoF, while we seek two
3-D unit vectors with together only four DoF. This discrepancy
increases with increasing . For , solving

(38)

will, thus, not necessarily lead to a vector which complies
with (33) and (34). However, from solutions consistent with

(33), the symmetrized tensor can
be constructed by setting and ,

, . Thus, holds. The following
theorem is proven in Appendix 1.

Theorem 1: Let be unit vectors with angle between
them. Then is of rank two, and its two
nonzero eigenvalues are

(39)

The corresponding eigenvectors are

(40)

where and are scaling factors.
Instead of computing the eigensystem of the matrix , we

can alternatively analyze the coefficients , of its
characteristic polynomial

(41)

where is the identity matrix and , , denote
the eigenvalues of . Expanding the lower row of (41) shows
that the coefficients are symmetric polynomials of the eigen-
values. If is formed as in theorem 1, we have ,

, and, for , . For the coeffi-
cients, follows:

(42)

The last equality holds since it consists of sums over products
of three and more different eigenvalues, of which at least one is
always equal to zero. Thus, we can conclude that is consistent
with (33) if and only if the coefficients of the characteristic poly-
nomial of the matrix formed as in theorem 1 satisfy
and , [40]. Since the can be computed ana-
lytically from the entries of , these can be tested without an
eigensystem analysis of .

1) MOP Vector Decomposition: As a rank-two matrix, can
thus alternatively be composed from its principal components
by . With (40) and (39), this leads to

and for the normalization factors.
From (40), the sought orientation vectors can then be recovered
by

(43)

and subsequent normalization. Double orientations in general
-variate image data can thus be estimated as follows.
• Calculate from the second-order derivatives over .
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• Estimate the MOP vector as in (38).
• Form the tensor from the entries of .
• Perform an eigensystem analysis of . If is consistent

with the double-orientation hypothesis (up to small devia-
tions and noise), will exhibit eigenvalues close
to zero between and . Ignoring these in the subse-
quent steps is equivalent to approximating by the closest

-matrix in terms of the Frobenius-norm. Alterna-
tively, test the coefficients for and for

.
• Recover the sought orientations from the eigenvectors ,

of by transform (43).
Based on the above derivation, we state in the following

which invariant features are encoded in the MOP vector .

C. Invariant Features

A rotation applied to locally within leads to the
transformed vectors , . The tensor then
transforms to . Since, for a rotation, ,

is obtained from by a (rigid) similarity transformation, and
therefore has the same eigenvalues as . All scalar invariants
under local rigid transformations are thus generated by and

or, in other words, by the angle between the orientations.
As shown in Appendix 1, the cosine of , for instance, is given
by

(44)

Invariant features for double-orientation neighborhoods, for
instance for tracking purposes, can hence be found from the
MOP vector without explicitly computing the orientation vec-
tors. Even the eigensystem analysis of can be avoided. For
bivariate image data, we can compute analytically from
the MOP vector in (17) according to

(45)

For trivariate and higher variate data, we exploit the fact that,
being formed from the eigenvalues according to (42), the co-
efficients are also invariants. Since and

, we have as an alternative invariant feature

(46)

where is the squared trace of , while is a linear combina-
tion of its 2 2 minors. Again, these quantities can be computed
analytically from the entries of .

IV. SIGNAL SEPARATION

In both additive and occluding superpositions, the individual
signals and can be separated from each other once
the orientations and are known. To this end, we apply the
directional derivatives along and , respectively, to the com-

Fig. 4. Synthetic additive double-orientation pattern in noise (PSNR 28 dB).
Upper row: (left) original image and (right) estimated orientation fields. Lower
row: result of local directional derivative filtering along each one of the esti-
mated orientations.

posite signal . With (15), this reduces one signal to zero.
For the additive case, we, thus, obtain

(47)

i.e., filtered versions of and extending over all of
. For occlusions, we get

for
for

(48)

and

for
for .

(49)

Evaluating expressions (48) and (49) allows us to esti-
mate the subregions and . Calculating and

, where in practice we average over a 3 3
neighborhood around each pixel , and are assigned as
follows:

(50)

V. RESULTS

Fig. 4 shows the additive superposition of a diagonal and a cir-
cular sine pattern in additive Gaussian (pseudo)noise with vari-
ance (PSNR 28 dB, image size 256 256 pixel). The



AACH et al.: ANALYSIS OF SUPERIMPOSED ORIENTED PATTERNS 3697

Fig. 5. Double-orientation estimation applied to a texture image.

upper right image depicts the result of double-orientation esti-
mation. First, the MOP vector was estimated for each pixel as
described in Section III-A1, which was then decomposed into
the orientations as discussed in Section III-A2. The size of the
sliding local neighborhood was 13 13 pixel. The derivatives

and were calculated by convolving with the finite-differ-
ence kernel in the horizontal, respectively, vertical
direction combined with simultaneous orthogonal smoothing by
the kernel . The orientation fields are subsampled and
depicted as black arrows. Evidently, the estimated orientations
correspond well to the underlying true ones. This observation
is confirmed by the lower row of Fig. 4, which shows the sep-
aration between the two overlaid orientation patterns by direc-
tional derivative filtering according to (47). In both cases, one
of the patterns vanishes almost completely as expected, while
a linearly filtered version of the other one is retained. It should
be noted, however, that the estimation algorithm only provides
the two locally estimated orientations and for each pixel ,
without sorting these into the global “diagonal” and “circular”
patterns. Before directional filtering along each one of the es-
timated orientations, we therefore sorted these globally by first
computing the mean vectors for both and over the entire
image plane, tacitly assuming that each pattern is represented
by one of the mean vectors. For each pixel , one of the orien-
tation vectors was then assigned to the pattern with mean vector
closest to it, while the other orientation vector was assigned
to the other pattern. This straightforward procedure worked for
all examples given here. Alternatively, the global sorting of the
orientation fields could be carried out by, e.g., -means clus-
tering with , or by optimizing a homogeneity criterion
[41], [42] of the vector fields. Results for images of real tex-
tures are given in Figs. 5 and 6. Fig. 7 shows orientation esti-
mation results for a part of an image of an X-rayed tire, which
reveals its internal metal gratings. The number of gratings and
hence the number of orientations varies over the image plane,
and is a priori unknown for each pixel. The number of orien-
tations was therefore detected according to (28) and (29), with

and , and 19 19 pixel for . The detec-
tion results are shown gray-level coded in the left image of the
lower row, distinguishing between areas with single (dark-gray),
double (light-gray), and more than two orientations (white). For
the single- and double-orientation regions, the estimated orien-
tations are shown in the upper right image. The results of nulling

Fig. 6. Double-orientation estimation applied to a texture image. Upper row:
(left) original and (right) estimated orientations. Lower row: result of local di-
rectional derivative filtering along each one of the estimated orientations.

Fig. 7. Part of an X-ray image of a tire showing its internal metal grating struc-
ture. Upper row: (529� 639 pixel, left) original image and (right) estimated
single and double orientations superimposed onto the original. Lower row: (left)
detected orientation structure and (middle and right) results of nulling out one
of the gratings in the double-orientation regions.

out one of two the metal gratings in the double-orientation re-
gions by directional derivative filtering are given in the middle
and right image of the lower row.

Fig. 8 shows an image of two differently oriented corrugated
cardboards occluding each other. The occluding boundary was
detected invoking (28) with . Around the boundary,
double orientations were then estimated using the tensor in
(24), resulting in two orientations for each pixel in the vicinity
of the boundary, as shown in the middle of Fig. 8. The estimated
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Fig. 8. Left: two corrugated cardboards occluding each other (128� 128
pixel). Middle: Result of orientation detection and estimation, yielding two
orientations for each pixel in the vicinity of the occluding boundary. Right:
result after separating the double orientations as described in Section IV,
retaining one orientation for each pixel (these results are shown enlarged for
better perceptibility).

Fig. 9. Upper row: additively superimposed sine patterns in white Gaussian
(pseudo)noise, SNR 28 dB, 128 �128 pixel. Orientations: (left) � = 5 ,  =
50 ; (middle left) � = 40 ,  = 85 ; (middle right)� = 5 ,  = 55 ;
(right) � = 35 ,  = 85 . The cosine of the true difference angle � = � � 

for the left image pair is cos � = cos 45 = 0:71, and for the right image
pair cos� = cos 50 = 0:64. Middle row: estimated values of cos� shown as
gray-level plot scaled to [0:6; 0:8]. The lineplot shows the values of cos� along
row 64.

orientations were then separated according to (50), retaining one
orientation vector for each pixel, as also shown in Fig. 8.

Finally, Fig. 9 illustrates the invariance properties of the dif-
ference angle as calculated directly from the MOP vector

by (44), i.e., without explicit orientation computation. The
upper row shows rotated versions of two doubly oriented sine
patterns in noise with and , respec-
tively. The values of estimated for each pixel according
to (44) are shown in the gray-level plots of the middle row. Evi-
dently, there is a slight sensitivity to noise. Still, even though the
true values of between left and right image pair are very
close to each other, the difference between them is well cap-
tured. This observation is confirmed by the line plot in Fig. 9,
which moreover proves that the rotation has indeed almost no

effect on the estimated values. The line plot also reveals that
the estimates exhibit a slight bias caused by effects of differ-
entiation on the discrete image grids. In fact, the mean of the
estimated values of for the left image pair is 0.715 (true
value: ), and for the right image pair 0.66 (true
value: ). This corresponds to a systematic error
for of about 1 .

VI. DISCUSSION

We have described a framework for the detection and es-
timation of superimposed double orientations. The first step
is always the formation of a symmetric positive semi-definite
tensor from image derivatives. Its eigensystem analysis pro-
vides the MOP vector, which encodes the sought orientations.
For a bivariate image data, the MOP vector can be regarded
as an unambiguous albeit implicit descriptor of double-ori-
entation neighborhoods, from which the orientations can be
obtained by a closed-form approach. For higher variate data,
the MOP vector becomes more and more overparametrized. Its
decomposition then requires another eigensystem analysis of
an additional matrix formed from the MOP vector components.
These considerations also led to a new set of rotation-invariant
features for the description of double-orientation neighbor-
hoods in bivariate and higher variate image data, which can
be calculated without explicit orientation analysis, and even
without eigensystem analyses. Being implicitly based on orien-
tations, however, such features may help to solve tasks such as
tracking more robustly, since the relative orientations of a rigid
junction will change less than the appearance and other features
of the junction. Assessing the suitability of such features for,
e.g., tracking purposes will be a future research topic.

Furthermore, we have developed tests for the detection of
flat-, single-, and double-orientation neighborhoods. We have
shown that the quantities needed in these tests can be computed
directly from the tensors involved, without the need to actually
perform the eigensystem analyses. Once the number of orienta-
tions is known, we have shown that the MOP vector can also be
calculated without explicit eigensystem analysis as long as the
corresponding tensor is (approximately) rank deficient.

For additive superpositions, the tensor consisted of second-
order derivatives. We showed that the same tensor can also be
applied to the analysis of oriented patterns which occlude each
other. Alternatively, in this case, a structurally similar tensor
formed from products of first-order derivatives of the image
signal can be used. We have here computed this latter tensor
at the original image resolution. As shown in [23], an improve-
ment in the accuracy of the tensor entries can be achieved by
first upsampling the image signal before computing the tensor,
since the multiplications correspond to convolutions in the fre-
quency domain, which extend the bandwidth beyond the orig-
inal Nyquist frequency. Furthermore, our experiments on tex-
tured images confirm that the framework can successfully be
applied to data which comply with neither the additive superpo-
sition hypothesis nor the occlusion hypothesis perfectly.

For both additively superimposed and occluding orientation
patterns, a separation of the patterns can be accomplished by di-
rectional filtering along one of the estimated orientations, thus
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nulling out the corresponding subsignal while retaining a fil-
tered version of the other subsignal. In the case of occluding
patterns, this operation also permits to estimate the subregions

and occupied by each subsignal and .
Our experiments show that even simple derivative filters per-

form reasonably well. Nonetheless, future work will, e.g., eval-
uate the accuracy and noise resistance of other, optimized fil-
ters, such as in [43], [44]. Another topic for future research is
to improve the segmentation into regions with different number
of orientations by adaptive thresholding, for instance based on
a Markov random field model [45].

Finally, the extension towards estimation of more than two
orientations will be of interest. This would, for instance, allow
to deal with the problem of generally non-vanishing derivatives
along the boundary between two oriented patterns occluding
each other, by introducing a third directional derivative along
the occluding boundary. Besides allowing the analysis of three
or more superimposed patterns, we expect that this will also lead
to additional invariant features. We believe, however, that this
extension is more challenging than it appears at a first glance.
First, it will require the computation of derivatives of order three
and higher in the tensor , which may become impractical. An
interesting question in this respect is whether the tensor for
the analysis of occluding patterns, which utilizes only first-order
derivatives, will be more stable in this respect. Secondly, for
three and more orientations in bivariate images, the quadratic
polynomial (26) will be replaced by polynomials of degrees
three and higher. Closed-form solutions for up to four orien-
tations thus exist, as shown for multiple motions in [39], or,
for multiple subspace estimation, in [46]. In the general case of
three or more orientations in trivariate and higher variate data,
the matrices in (20) or in (24) will extend to three- and
higher-dimensional tensors, to which the discussed framework,
which is heavily based on matrix algebra, may not be directly
applicable anymore.

APPENDIX

To prove Theorem 1, we multiply by , obtaining

(51)

and similarly for and . Setting concludes
the proof. Any other eigenvalue must be zero, since its eigen-
vector must be orthogonal to both and . From

and follows that is
also orthogonal to both and , i.e., . Hence,

. Thus, has only two nonzero eigenvalues, and its
rank is two.

To calculate directly from and , we have to bear
in mind that the matrix is formed from the components of
the MOP vector , which, being a homogeneous vector, is only
determined up to an unknown scale factor . The same holds
thus for as well as for and . We, therefore, have

and , from which (44) follows.
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