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ZUSAMMENFASSUNG

Kiinstliche Intelligenz hat sich im letzten Jahrzehnt rasant weiterentwickelt und
ist in viele Aspekte des Lebens eingedrungen, vor allem in Bereiche wie Mensch-
Computer-Interaktion, virtuelle Realitédt, autonomes Fahren und intelligente medizinis-
che Systeme. Bei Videos handelt es sich um hochdimensionale Daten, die eine Dimen-
sion mehr haben als Bilder und daher mehr Rechenressourcen erfordern. Da immer
mehr hochwertige, grof} angelegte Videodatensitze verdffentlicht werden, hat sich die
Analyse von Videos zu einer aktuellen Forschungsrichtung entwickelt. Es gibt inzwis-
chen viele erfolgreiche Ansétze zur Erkennung von dynamischen Inhalten in Videos.

Bei unserer Arbeit konzentrieren wir uns darauf, neue Ansitze und Architekturen
fiir die Analyse von Videos vorzuschlagen und deren Anwendungen in der Medizin
zu untersuchen. Wir fiihren eine neue RG B;-Abtaststrategie ein, um mehr zeitliche
Informationen in einzelnen Bildern zu integrieren, ohne die Rechenlast zu erhohen
und untersuchen verschiedene Farbabtaststrategie, um die Erkennungsleistung weiter
zu verbessern. Wir finden, dass Einzelbilder mit zeitlichen Informationen, die durch
Fusion der griinen Kanile aus zeitlich verschiedenen Einzelbildern gewonnen werden,
die besten Ergebnisse erzielen. Wir verwenden Bereiche unterschiedlicher Grofle, um
zeitliche Information besser einzubetten, ohne die Rechenleistung zu erhthen. Wir
fiihren auBerdem ein neues aus der Hirnforschung inspiriertes Neuronenmodell ein. Wir
haben insgesamt eine neue rdumlich-zeitliche Netzwerk-Architektur vorgeschlagen, die
es 2D-CNNs ermoglicht, zeitliche Informationen zu nutzen. Alle genannten Methoden
werden anhand von mindestens zwei Benchmark-Datensitzen evaluiert und weisen alle
eine verbesserte Leistung auf.

Wir konzentrieren uns auch auf die Anwendung unserer Netzwerke in der Medi-
zin. Wir verwenden unsere Netzwerk-Architektur welche oOrtlich-zeitliche Schnitte
durch das Video verwendet fiir die Analyse von Glaukomen und Sehbehinderungen
und wir stellen fest, dass Sehbehinderungen das Gehverhalten von Menschen beein-
flussen konnen und somit das Gehverhalten diagnostisch relevant wird. Wir entwerfen
auerdem ein KI-Modell zur Diagnose von Psychosen und zeigen, dass es moglich ist

vorherzusagen, ob Risikopatienten tatsdchlich eine Psychose entwickeln.



ABSTRACT

Artificial intelligence has developed rapidly over the past decade and has penetrated
into nearly every aspect of life. New applications in areas such as human-computer
interaction, virtual reality, autonomous driving and intelligent medical systems have
emerged in large numbers. Video is a kind of high-dimensional data, which has one
more dimension than images, requiring more computing resources. As more and more
high-quality large-scale video datasets are released, video understanding has become a
cutting-edge research direction in the computer vision community. Action recognition
is one of the most important tasks in video understanding. There are many successful
network architectures for video action recognition.

In our work, we focus on proposing new designs and architectures for video under-
standing and investigating their applications in medicine. We introduce a novel RG B;
sampling strategy to fuse temporal information into single frames without increasing the
computational load and explore different color sampling strategies to further improve
network performance. We find that frames with temporal information obtained by fus-
ing the green channels from different frames achieve the best results. We use tubes of
different sizes to embed richer temporal information into tokens without increasing the
computational load. We also introduce a novel bio-inspired neuron model, the Min-
Block, to make the network more information selective. Furthermore, we propose a
spatiotemporal architecture that slices videos in space-time and thus enables 2D-CNNs
to directly extract temporal information. All the above methods are evaluated on at least
two benchmark datasets and all perform better than the baselines.

We also focus on applying our networks in medicine. We use our slicing 2D-CNN
architecture for glaucoma and visual impairments analysis. And we find that visual
impairments may affect walking patterns of humans thus making the video analysis
relevant for diagnosis. We also design a machine learning model to diagnose psychosis
and show that it is possible to predict whether clinical high-risk patients would actually

develop a psychosis.

Keywords: Deep Learning, Transformers, CNNs, Video Understanding, MRI Images.



ACKNOWLEDGEMENT

First, I would like to express my sincere thanks to my supervisor Prof. Erhardt
Barth, without his patient guidance and continuous encouragement, my work would not
successfully completed. He has helped me a lot with my life in a new country and he
has revised my papers in detail every time.

I would like to thank all colleagues at the Pattern Recognition Company GmbH
and all the colleagues at the Institute for Neuro- and Bioinformatics, for motivating
me to carry out and complete my research, and also for providing me with knowledge,
computational resources and many other resources needed for my research.

I would also like to thank all my colleagues from OptiVisT EU, for their friend-
ship, support and encouragement. I like to acknowledge the support given by Prof.
Frans W. Cornelissen, Prof. Michael Hoffmann and my colleagues Ahmet Burak Kurt
and Safa Andac throughout the Secondments. And I want to thank Andrea, Anna,
Marcin and Ola for supporting me whenever I needed.

I would like to thank my parents for encouraging me all the time and supporting
me in doing what I want to do, as well as for their patience and understanding. I would
also like to thank all my friends for their constant encouragement and support along
with friendship and kindness.

This project received funding from European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No0.955590.
Without this funding, this research would be impossible completed. Thanks to it, I have
attended a lot of interesting workshops and had collaborations with many scientists in
other field from different institutes and countries.

’Always remember that the answer must be in the attempt.’

Place: Liibeck

Date: 15/10/2024 Yaxin Hu

il



TABLE OF CONTENTS

ZUSAMMENFASSUNG . . . . . . .. e
ABSTRACT . . . . . .
ACKNOWLEDGEMENT . . . . . . ... ... . ..
LISTOF FIGURES . . . . . . . . . . e
LISTOF TABLES . . . . . . . .. e
1 Introduction
2 Related Work
2.1 Hand-crafted Features . . . . . . . . ... .. ... ... ... ...
2.1.1 Holistic Features . . . . ... ... ... ... ... .. .....
2.12 LocalFeatures . . . . . . . .. .. ... ...
2.2 Convolutional Neural Networks . . . . . . .. ... ... ... .. ....
2.2.1 Two-Stream Architectures . . . . . . .. ... ... ... .. ..
2.2.2 Segment-based Architectures . . . . . .. .. ... ... ...
2.2.3 CNN-RNN Architectures . . . . . . .. .. ... ... .. ....
2.2.4 Other 2D-CNN Architectures . . . . . . . . . .. ... ... ...
2.2.5 3D-CNN Architectures . . . . . . .. .. ... oo
2.2.6 3D Convolution Factorization . . . . . . .. ... .. ... ....
2.3 Video Transformers . . . . . . . ... . ... ... ..
2.3.1 Tokenlization . . . . .. . .. ... ...
2.3.2 Architecture . . . . . ...
233 RelatedWork . . ... ... ...
24  Multimodality . . . . . . ...
2.5 Benchmark Datasets . . . . . .. . ... ... .. ... .. ... ...
3 Novel Designs of Video Transformers for Action Recognition

iii

10
11
11
13
14
15
15

18



3.1
3.2

33

34

4.1
4.2

4.3

4.4

5.1
5.2

53

Introduction . . . . . ...
Methodology . . . . . . . . .
32.1 RGBtSampling . . . ... ... ... ... ... .. .. ...
3.2.2 Variable Sized Tubes Tokenization . . . . . .. .. ... .....
3.2.3 Bio-inspired MinBlock . . . . .. ... o000
Experiments . . . . . . . . . ...
33.1 Datasets . . . . . . ..
3.3.2 Implementation Details . . . . .. ... ... ... ........
3.3.3 Resultsand Discussions . . . . . . ... ... ... ... ... ..
Conclusion. . . . . . . . . . e

Salient Spatiotemporal Slices on 2D-CNNs for Video Understanding

Introduction . . . . . ...
Methodology . . . . . . . . .
4.2.1 Spatiotemporal Slices (xtandyt) . . ... ... ... ... ....
4.2.2 Sampling Strategies . . . . . . . . . ...
423 Architecture . . . . ...
Experiments . . . . . . . . . .. e
43.1 Datasets . . . . . ...
4.3.2 Implementation Details . . . . . .. ... ... ... .......
4.3.3 Resultsand Discussions . . . . . .. ... ... Lo

Conclusion . . . . . . . . . e,

Medical Application: 2D-CNNs using Salient Spatiotemporal Slices

to Analyze Glaucoma and Visual Impairment via Walking Patterns

Introduction . . . . . ...
Methodology . . . . . . . . ..
5.2.1 Pre-processing . . . . . . . . ...
5.22 MotionSlices . . . . .. ...
5.2.3 Sampling Strategies . . . . . . . . .. ..o
5.2.4 Workflow and Architecture . . . . . . ... ... L.
5.2.5 Performance Metrics . . . . . . ... ... oL
Experiments . . . . . . . . ...

v



5.3.1 Datasets . . . . ... e, 51

5.3.2 Implementation Details . . . . ... ... ... .. ........ 51
5.3.3 Resultsand Discussions . . . . . . ... .. ... ... 51
5.3.4 Ablation Experiments . . . . . . ... ... Lo 56
54 Conclusion. . . . .. ... 56
6 Effective Use of Color and Temporal Information for Video Analysis 58
6.1 Introduction . . . . . ... .. ... 58
6.2  Methodology . . . . . . . . ... 59
6.2.1 Color Sampling Strategies . . . . . .. ... ... ... ..... 59
6.2.2 Network Architecture . . . . . ... .. ... L. 61
6.3  Experiments and Discussions . . . . . . ... ... ... ... 64
6.3.1 Datasets . . . . . . .. e 64
6.3.2 Implementation Details . . . . . ... ... ... ... ...... 64
6.3.3 Resultsand Discussions . . . . . . ... ... ... ... 64
6.4 Conclusion. . . . .. .. .. 68
7 Machine Learning Model for Structural MRI Image Analysis 71
7.1 Introduction . . . . . ... 71
7.2 Methodology . . . . . . . . . ... 72
7.2.1 ImageProcessing . . . . .. ... ... . ... ... ... ..., 72
7.2.2 Fractal Dimension . . . . . . ... ... Lo 73
7.2.3 Machine Learning . . . . . ... ... ... oL 73
7.3  Experiments and Discussions . . . . . . .. ... .. ... .. ..., 78
7.3.1 Dataset. . . . . . .. 78
7.3.2 Implementation Details . . . . . .. .. ... ... ... .... 78
7.3.3 Resultsand Discussions . . . . . . ... .. ... ... 79
7.4  Conclusion. . . . . . .. .. L 85
8 Conclusions and Future Work 86
REFERENCES . . . . . . . .. . 86
LIST OF PUBLICATIONS . . . . . . .. .. ... ... ... ... 99
Appendix A Major datasets for video understanding 100



Appendix B The 32 selected classes of SthSth32 101

vi



2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

2.10
2.11
3.1
32
33
34
3.5
3.6
3.7
4.1

LIST OF FIGURES

Architecture of a two-stream network. . . . . .. ... L.
Architecture of TSN. . . . . . .. .. .. ... oo
Architecture of a CNN-RNN network. . . . . . ... ... ... ....
Architecture of the PCANet. . . . . . . ... .. ... ... ......
Architecture of I3Dnetwork. . . . . ... ..o o L
Architecture of the SlowFastnetwork. . . . . . ... ... ... ....
Factorization of space and time. . . . . . ... ... ... .......
Factorization of space-time and channel. . . . . . . .. .. ... ....
Input tokenization for Vision Transformers (cls represents class token,
E; represents the i token embedded from i** patch or tubelet, and PE
represents Position Embedding). . . . . . .. ... ... ..
(a) Image tokenization.. . . . . . . ... .. ...
(b) Video tokenization. . . . . . . . . . . . . ...
Basic architecture of a Transformer encoder . . . . . . ... ... ...
An overview of representative datasets for action recognition. . . . . . .
Description of RGBt sampling strategy . . . . . . . . ... ... ....
Tokenization with tubes of differentsizes . . . . . . . . ... ... ...
The structure of a MinBlock. . . . . ... ... ... ... ... ...
Inserting MinBlock after the tokenization layer. . . . . . ... ... ..
Inserting MinBlock inside the local UniBlock. . . . . . . .. ... ...
Top-1 accuracy improvements by our designs on UCF101 and SthSth32.
Top-1 accuracy improvements by different combinations on UCF101.
Overview of slicing xy, xt, and yt slices ("Jump on place” action from
the Weizmann dataset. Note how the jumping action is well represented

in the spatiotemporal ytslices). . . . . . . ... .. ... ........

vii



4.2

4.3

4.4

4.5

4.6

4.7
5.1

5.2

5.3

Examples of salient slices and non-salient slices from the Weizmann

dataset (Action: Jack). The salient xt and yt slices are defined by the

region of interest indicated by the red rectangle. . . . . . ... ... ..

Overview of our salient spatiotemporal slicing CNN. (Type 1, 2, 3 re-

spectively represent one of xy, xt and yt slices; ® means the combina-

tion of different types of slices.) . . . . ... ... ... ........

Examples of frames and salient spatiotemporal slices of the action recog-

nition datasets (Weizmann dataset with action Jack and KTH dataset

with action Boxing). . . . . . . . . . .. . e

Examples of frames and salient spatiotemporal slices from hand gesture-
recognition datasets. Top: Cambridge Hand Gesture dataset with ges-
ture Contract from flat hand shape. Middle: Northwestern University
Hand Gesture dataset with gesture Move down-right with “OK” hand

shape (thumb and forefinger loop). Bottom: IPN Hand dataset with

gesture Pointing with two fingers. . . . . . . . . . . ... ... ..

Confusion matrices of best model’s performance for each dataset (The

classes corresponding to the index values are shown in the Table 4.1).

(@)  Weizmann (Xy+yt) . . . . . . ...
(b) KTH (Xy+xt+yt) . . . . . o o e
(¢) Cambridge (Xy+Xt) . . . . . . . . e
(d) Northwestern (Xy+xt+yt) . . . . . . . . . . . ... .. ...,
(e) IPNHand (xy+yt) . .. ... .. ... .. ..

33

39

Overview of the performances on xy, xt, and yt slices on different datasets. 41

Overview of slicing xy, xt, and yt slices (As we can see different motion

trajectories on xt and ytslices). . . . . .. .. ... L L.

Overview of yt slices from ¢, to ¢563. By calculating the saliency of each
slice, we can exclude non-salient slices and keep only salient slices.
Detailed workflow and architecture of our network. (a) The processing

of our long video. (b) The workflow of our proposed approach. (c¢) The

overview of our architecture. . . . . . . . . . . ... ... ...

viii

48



54
6.1
6.2

6.3

6.4

6.5
6.6

6.7

7.1

7.2

(@)  The processing of our long video. First, we divide a long video

into several 264-frame snippets and obtain different types of slices;

then we sample different types of slices from snippets to form

clips based on our sampling strategies; all the clips obtained from

one participant represent the participant. . . . . . . ... ... .. 50
(b)  The workflow of the proposed approach. Predictions are for frame,

clip and participant. . . . . . . . ... ... L 50
(c)  The overview of our architecture. The left part shows the case for

a single type of slice, the middle part shows the case for two types

of slices, and the right part shows the case for all three types of

slices. . . . .. 50
The selection of participants using the first dimension of the PCA. . . . 53
Color sampling strategy for RGB; frames. . . . . . . ... ... .... 61

Color sampling strategy for GGG, frames. BBB; and RRR,; frames

are obtained in analogy. . . . . . . . ... ... L Lo 61
2D-CNN architecture (here we use GGG, as an example of input. predf
represents the prediction for each frame; and predv means the final pre-
dictionofthevideo) . . . . . . . . . . ... ... 62
3D architecture: 3D-CNN or Video Transformer as backbone (Here we

use GGG, as an example of input; and predv means the final prediction
ofthevideo) . . . . . . . . . ... 63
Two-stream architecture: fusion of spatial and temporal streams. . . . . 63
Overview of results obtained with the 3D-ResNet18. Curves indicate

top-1 accuracies obtained for the different sampling strategies and crosses

the gain in accuracy when fusing two networks. . . . . . .. ... ... 69
Overview of results obtained with the UniFormerV2. Curves indicate

top-1 accuracies obtained for the different sampling strategies and crosses

the gain in accuracy when fusing two networks. . . . . .. .. ... .. 69
The detailed flowchart of our algorithm (Groupl or Group2 is one of

FEP, CHR_.T, CHR NTand HC). . . . . . ... ... . ... ... ... 74
Examples of segmented MRIimages . . . . . .. ... ... ...... 79

X



3.1
32
33
34
4.1
4.2

4.3

4.4

4.5
4.6

5.1

5.2

53

54

5.5

6.1

LIST OF TABLES

Comparison of RGB, RGBt, RGB tubes and MinBlock on UCF101. . . 25
Comparison of RGB, RGBt, RGB tubes and MinBlock on SthSth32. . . 26
Overview of comparison of MinBlocks with different positions on UCF101. 26
Extra experiments on UCFI01. . . . . .. ... ... .. .. ...... 27
Classes of the five datasets . . . . . . ... ... ... ... ...... 37

Topl accuracy of different slices for action recognition on the Weiz-
mann and KTH datasets. . . . . ... ... ... ... .. ....... 38
Results of different slices for hand gesture recognition on the Cam-
bridge Hand Gesture, the Northwestern University Hand Gesture, and
the IPN Hand datasets. . . . . . . ... ... ... ... ........ 40
Number of parameters (M) and Flops (G) for the two CNN backbones
thatweused. . . . . . . ... L 40
Comparison with SOTA methods on the Weizmann and KTH datasets. . 41
Comparison with SOTA methods on the Cambridge, the Northwestern
and the IPN Hand datasets. . . . . .. ... ... ... ... ...... 42
Comparison of diagnosed glaucoma patients and healthy controls with
different types of slices in Visual Acuity (VA) task. . . . ... ... .. 52
Comparison results of visually impaired subjects and healthy controls
with different types of video slices in Visual Acuity (VA) task. . . . . . 54
Comparison results of visually impaired subjects and healthy controls
with different types of video slices in Contrast Sensitivity (CS) task. . . 55
Comparison results of visually impaired subjects and healthy controls
with different types of video slices in Visual Field (VF) task. . . . . .. 55
Comparison results of visual impairment and healthy controls with dif-
ferent types of video slices in the Visual Acuity (VA) task. . . . . . .. 57

Fusionresultson ResNetl8 . . . . . . . . . . . ... . ... ...... 65



6.2
6.3
6.4
6.5
6.6
7.1
7.2

7.3
7.4

7.5

7.6

7.7

7.8

Results on 3D-ResNetl8 . . . . ... .. ... ... ... .......
Results on UniFormerV2 . . . . . . ... ... .. ... .......
Fusionon3D-ResNetl8 . . . . . . . ... ... ... ... ... ..
Fusion on UniFormerV2 . . . . . .. ... ... ... ... ... ...
Parameters, FLOPs and views for inference . . . ... ... ... ...
Overview of the dataset . . . . . . . ... ... ... ... .......
Comparison of clinic high risk with transition (CHR_T) and clinic high

risk without transition (CHR_NT). . . . . . ... .. ... .. .....
Comparison of first-episode psychosis (FEP) and healthy control (HC). .
Comparison of first-episode psychosis (FEP) and clinic high risk with-

out transition (CHR_NT). . . . . . . . . . ... ... ... ... ....
Comparison of first-episode psychosis (FEP) and clinic high risk with

transition (CHR_T). . . . . . . . . . . . . . . .. . . . .. .. .....
Comparison of clinic high risk with transition (CHR_T) and healthy

control (HC). . . . . . . . . . . . ..
Comparison of clinic high risk without transition (CHR _NT) and healthy

control HC). . . . . . . . . .

Clinic high risk with transition (CHR_T) as the testset. . . . . . .. ..

Xi

82



CHAPTER 1

Introduction

In the past decade, with the rise of the self-media industry and the increase in storage
capacity, a large number of high-quality and large-scale video datasets have emerged.
With the increase in computing power, researchers are increasingly interested in re-
search on video understanding tasks, and many great machine learning algorithms and
deep learning networks have been proposed. Video is a kind of high-dimensional data
because it has an additional time dimension, which greatly increases the difficulty of
video processing and analysis. Similarly, medical imagery such as MRI data is also
high dimensional. Usually, Al breakthroughs in a field can be used in other fields,
which illustrates that methods performing well in the field of video understanding can
also be transferred to medical high-dimensional image analysis. Human action recog-
nition is an important task in video understanding and has been an active research field
for many years. Therefore, we here focus on human action recognition tasks.

The aim of this task is to analyze the ongoing actions performed in videos. The
actions consist of movements, gestures, interactions, and activities conducted usually
by humans (Aggarwal and Ryoo 2011). Movements usually refer to physical activities
performed by a person, such as walking, jumping, running, etc. Movement recognition
is commonly used in sports analytics and intelligent security systems. Gestures usually
refer to human hand gestures such as clicking, pointing, and throwing performed by
fingers, palms, and arms. But in a broad sense, gestures also include the movements
made by the head, legs and other human body parts. Gesture recognition enables users
to interact with devices without physical contact or complex input devices, thereby it
is widely used in virtual reality and human-computer interaction. Interaction refers to
actions between people or between people and devices, including facial expressions,
body language, etc. The difficulty of interaction recognition is not only to recognize
individual actions but also to understand situational relationships. Activities are mix-
tures of gestures, movements or interactions, such as cooking, doing housework, etc.
Activity recognition involves the recognition and understanding of complex activities
and is used in smart home and health monitoring system.

Human actions are diverse and often complex, making it difficult to accurately rec-

ognize and understand actions in videos. These actions have both strong intra- and



inter-class variations. The same action can be performed by different people with dif-
ferent postures at various speeds in different scenarios. Moreover, the same action
appears differently from different shooting angles and distances. These videos may be
filmed from above, from the side, or from the front of the participants. The action looks
very different due to the different viewpoints. Some different actions may have some
similar movement patterns or be performed in similar scenarios, these similarities make
them difficult to be distinguished. In addition, factors such as background noise, camera
movement, lighting changes, and occlusions can also affect the performance of action
recognition tasks.

For video action recognition tasks, temporal reasoning is very important. For exam-
ple, the actions ’pushing’ and "pulling’, and the actions *opening the door’ and ’closing
the door’ look similar on still frames. However, by analyzing the context in the video, it
can be inferred that there are two actions. Complete action execution in video provides
more reliable and detailed information than frozen actions on static images. Therefore,
videos are more useful than images when it comes to recognizing and understanding
human actions. Therefore, extracting spatial features from a single frame is not suffi-
cient to represent the video, it is also necessary to capture the changes among frames,
that is, the information in the temporal dimension. Human actions usually involve long-
term space-time interactions. Thus, utilizing spatiotemporal information is crucial for
human action recognition.

Video action recognition tasks involve extracting spatiotemporal representations of
videos and making classification decisions. Spatiotemporal representations of context
is obtained by extracting effective features from video. The methods of obtaining spa-
tiotemporal representation greatly affects the performance of action recognition and
computational efficiency of the entire model. Therefore, we need networks that can
extract valid spatotemporal features and make precise decisions by using these features.

Despite similarities to still image processing, video understanding is much more
complex. Since videos have one more dimension than images, the networks for videos
processing require huge computation resources and longer training time. Another chal-
lenge is that the videos vary in length, but current networks can only process inputs
of the same length. Effective sampling to reduce video redundancy and computational
cost while retaining frames containing useful information is still a research direction
worth exploring. The balance between high accuracy and computational cost is another
important topic for video action recognition tasks.

In order to apply the model to actual scenarios, the generalization ability and real-
time performance of action recognition are crucial. Generalization performance refers
to the ability of a trained model to make accurate decisions on unseen data and it de-
scribes model performance on data independent of the training data. Most of the cur-

rently popular models are trained on public large-scale labeled datasets. When they are



applied to real scenarios, they often cannot generalize well. Because real-world data
comes from a wider range of sources, is more diverse, and has varying data quality.
Real-time performance refers to the ability of models to process data and display re-
sults instantaneously without any delays or interruptions (Maier-Hein et al. 2013). The
real-time performance is necessary for the model to be applied in the real world. The
delayed response of the model brings bad experiences to users, such as virtual reality
and human-computer interaction, and even causes dangerous situations, such as delayed
decision-making of surgical robots.

Video action recognition is a very promising research field and understanding hu-
man behavior in visual data helps make progress in related research fields. These fields
include video retrieval and recommendation, game and entertainment, medical care,
education, etc. Smart Medicine is one of the most cutting-edge cross-cutting research
directions. The video action recognition architecture we studied can be applied to surgi-
cal robots for surgical videos segmentation and workflow recognition, thereby alerting
surgeons possible complications, reducing their operative mistakes and supporting de-
cision making. Moreover, the video architectures can be used in MRI data for detecting
tumors and analysing neurodegenerative diseases such as Alzheimer’s disease, Parkin-
son’s disease.

The rest of the thesis is structured as follows. In the Chapter 2, we review the
classic machine learning methods and convolutional neural network architectures, and
detail state-of-the-art video transformer architectures. In Chapter 3, we propose three
novel designs to improve the video transformer architecture. In Chapter 4, we present
a novel 2D-CNN architecture operating on salient spatiotemporal slices for Video Un-
derstanding. In Chapter 5, we apply the architecture proposed in Chapter 4 to glaucoma
diagnosis and visual impairment detecting. In Chapter 6, we investigate the effective
use of color and temporal information for videos and evaluate our ideas on 2D-, 3D-
CNNs and Video Transformers. In Chapter 7, we design a machine learning model to

diagnose psychosis and predict the transition of psychosis.



CHAPTER 2

Related Work

With the rapid increase of video resources, storage capacity and computing power,
video analysis has become an important and inevitable task in the field of computer
vision. In recent years, deep learning methods have made great achievements in natural
language processing and image processing. Therefore, researchers have also changed
their research focus from initially using handcrafted features and machine learning clas-
sifiers for video analysis to different designs that apply and extend 2D neural networks
to the time domain.

In this chapter, we first briefly introduce the hand-crafted feature based methods. We
then describe the neural network architectures based on CNNs in detail and introduce
the various classic CNN-based architectures for video understanding tasks. Next, we
explain state-of-the-art networks for video processing - Video Transformers. In the end,

we summary the most common video benchmark datasets for video understanding.

2.1 Hand-crafted Features

Traditional machine learning methods for action recognition tasks typically combine
handcrafted features with machine learning classifiers (Zhu et al. 2020). There are two
main methods for extracting handcrafted features. One is based on holistic features, and

the other is based on local features.

2.1.1 Holistic Features

The action of subject in a video not only contains spatial information at different time,
but also dynamic information. Extracting holistic features requires precise localizing
and tracking to capture the motion information of the entire human body, usually based
on computing silhouette, shape and optical flow. Bobick and Davis (2001) proposed
temporal templates that combine motion energy images (MEI), which records the pres-
ence of motion at each pixel and motion history images (MHI), which shows the motion
location and path as it progresses based on MEI. Yilmaz and Shah (2005) presented
spatiotemporal action volumes (STV) by projecting the 3D boundary as 2D contour

in image plane and obtained a set of action descriptors based on the sign of Gaussian
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and mean curvature by analyzing the differential geometry of local volume surfaces.
Optical flow is the apparent motion pattern of image objects between two consecutive
frames caused by object or camera motion (Warren and Strelow 2013) and is a way to

characterize and quantify the motion in videos.

2.1.2 Local Features

However, holistic features based methods are sensitive to noise, perspective changes,
and occlusion. Local features can alleviate these problems by directly extracting fea-
tures from local regions that are more informative and salient. Laptev (2005) extended
spatiotemporal interest points (STIP) to the spatiotemporal domain to capture local
feature and introduced a Laplacian operator for scale selection in space-time. Dollér
et al. (2005) extracted a cuboid at each point of interest as a descriptor to contain all
the information needed to represent the corresponding action. Scovanner et al. (2007)
introduced a 3D SIFT descriptor to better represent the 3D nature of video data and
used a bag of words paradigm to improve model performance. Klaser et al. (2008) ex-
tended Histogram of Oriented Gradient (HOG) features to 3D local descriptors based
on histograms of oriented three-dimensional gradients in space-time. Wang and Schmid
(2013) proposed using speeded-up robust features (SURF) descriptors and dense optical
flow to match feature points between frames to estimate camera motion and perform cal-
ibration to improve the performance of descriptors such as Histogram of Optical Flow
(HOF).

2.2 Convolutional Neural Networks

Compared with hand-crafted features, deep learning networks can automatically extract
features and are more robust and more suitable for large datasets and complex scenarios.
With the breakthrough of convolutional neural networks (CNNs) for image processing,
researchers have adapted them to video processing. Videos have an additional temporal
dimension compared to images, which is a key issue in applying CNNs to videos. There

are several research directions in extending CNNs to the time domain for video analysis.

2.2.1 Two-Stream Architectures

One research direction is to use two-stream networks, typically one stream is used to
capture spatial information and the other stream is used to model temporal dependen-
cies and then a late fusion is applied to the two streams to obtain the final spatiotemporal
representation of the video. The typical architecture of two-stream networks is shown
in Figure 2.1. DeepVideo is one of the earliest attempt, Karpathy et al. (2014) pro-

posed DeepVideo that investigated four different approaches to fuse temporal informa-



tion and a multiresolution architecture, which consisted of a context stream processing

low-resolution image and a fovea stream operating high-resolution center crop.

Spatial Stream
Network

single frame

Score

. — Prediction
Fusion

Temporal Stream __|
Network

multiple-frame
optical flow

Fig. 2.1 Architecture of a two-stream network.

Optical flow is used as the input for the temporal stream in two-stream networks
because it is able to represent the motion information of moving objects and is not af-
fected by background and camera motion. Simonyan and Zisserman (2014) explored a
two-stream network with a spatial stream taking a single still frame as input to extract
spatial information and a temporal stream using optical flow (Horn and Schunck 1981)
as input to capture dynamics between video frames. However, optical flow is computa-
tionally expensive and time consuming, making it is unsuitable for large dataset training

and end-to-end learning.

2.2.2 Segment-based Architectures

Two-stream networks have shown that CNNs can be applied to video processing. How-
ever, they have a limited ability to extract temporal information. Therefore, a novel
sampling strategy was proposed to first uniformly segment the video into multiple snip-
pets, and then randomly select one frame from each snippet to form a clip that represents
the video. The clips obtained through this strategy not only cover the entire temporal
dimension of the video but also make the network more robust.

Wang et al. (2016a) presented the Temporal Segment Network (TSN) that used a
spatial ConvNet to capture spatial features from sparsely sampled frames, a temporal
ConvNet to model temporal dependencies from not only stacked optical flow fields
but also RGB differences. Compared to previous studies, they designed a sparse frame
sampling strategy and used a consensus aggregation module to model longer time series.
Figure 2.2 shows the architecture of the TSN. Lin et al. (2019) introduced a Temporal
Shift Module (TSM) that used TSN as backbone and shifted feature map along temporal

dimension to better model context. Liu et al. (2021) designed a Temporal Adaptive
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Fig. 2.2 Architecture of TSN.

Module (TAM) with two branches, a local branch to model short-term dynamics for
specific video operations, which is location sensitive, and a global branch to generate

an adaptive kernel by using long-range dynamics, which is location invariant.

2.2.3 CNN-RNN Architectures

Recurrent neural networks (RNNSs) contain recurrent structure that allows information
to be passed among neurons, enabling RNNs to effectively process time series data and
preserve the contextual information of the data. Combinations of CNNs and RNNs are
often used in video analysis, especially CNNs combined with long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber 1997). The typical architecture of a
CNN-RNN network is shown in Figure 2.3. LSTM contains memory units and gate
functions that enable it to model longer temporal information. A CNN architecture first
takes frames as input to extract spatial representation and then a LSTM network cap-
tures temporal representation based on the output of the CNN, and at last a MLP clas-
sifier is applied for prediction (Donahue et al. 2015, Yue-Hei Ng et al. 2015). However,
the temporal memory of RNNs is quite short and cannot capture long-range tempo-
ral information. Furthermore, RNNs process spatial and temporal information serially

rather than in parallel, which is both computationally expensive and time-consuming.

2.2.4 Other 2D-CNN Architectures

There are also studies that explore other methods to model dynamics. Temporal down-
sampling can reduce video redundancy to a certain extent but also lead to the loss of
temporal details. Andrearczyk and Whelan (2018) proposed a slicing approach to di-
rectly capture dynamics from slices obtained in three orthogonal planes by using unsu-
pervised learning (PCA) and a shallow CNN. Figure 2.4 shows the architecture of this

network. By slicing the video from different perspectives, CNNs have the capacity to
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Fig. 2.3 Architecture of a CNN-RNN network.

directly capture temporal feature on simple frames.
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Fig. 2.4 Architecture of the PCANet.

2.2.5 3D-CNN Architectures

In addition to the above use of 2D-CNN architectures to process videos, a more straight-
forward method is to extend the 2D kernels to 3D kernels, so that the 3D-CNN (Yao
et al. 2015) can capture spatial and temporal information simultaneously. Tran et al.
(2015) explored a 10-layer 3D-CNN architecture, trained it on the large dataset Sport1M

(Karpathy et al. 2014) and used the learned feature extractors for various video tasks.
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C3D generalized well on other tasks, but the training on the Sport1M dataset is very
time-consuming and computationally expensive. The benefit of expanding the kernel is
that 3D-CNNs can directly use 2D-CNNs’ weights pretrained on large image datasets
by simply inflating them. Carreira and Zisserman (2017) presented a Two-Stream In-
flated ConvNet (I3D) to learn seamless spatio-temporal features from videos using a
ImageNet-pretrained Inception-V1 (Ioffe 2015) as backbone. They post-pretrained the
network on kinetics datasets (Kay et al. 2017) and evaluated I3D on smaller datasets,
such as UCF101 (Soomro et al. 2012a) and HMDBS51 (Kuehne et al. 2011). And they
also compared the results of taking only RGB or only optical flow or both of them as
input and concluded that the two-stream architecture achieved the best results. The
architecture of I3D is shown in Figure 2.5. I3D is a milestone in the development of
video processing, after large-scale datasets have become the benchmarks for video un-

derstanding tasks.

. — 3D ConvNet —

RGB frames — Average —Prediction

— 3D ConvNet —

video

optical flow

Fig. 2.5 Architecture of 13D network.

After 13D, a lot of 3D-CNN variants have been proposed. ResNet3D (Hara et al.
2018) directly inflated a 2D-ResNet into 3D and also adopted the weights of 2D-ResNet
pretrained on ImageNet. Feichtenhofer (2020) proposed a simple step-wise expansion
approach for 2D-CNNs along space, time, width, and depth to obtain a good trade-off
between accuracy and complexity.

Inspired by the primate visual system, Feichtenhofer et al. (2019) argued that differ-
ent temporal speeds should be taken into account. Thus, they proposed a two-pathway
SlowFast Network, a slow pathway operating at low frame rate to capture spatial seman-
tics, and a fast pathway operating at high frame rate to capture motion at fine temporal
resolution. Figure 2.6 shows the architecture of the SlowFast network. Although the
SlowFast network has two pathways, it is not a two-stream network. It is essentially a

single-stream network operating at two different framerates.
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Fig. 2.6 Architecture of the SlowFast network.

2.2.6 3D Convolution Factorization

3D-CNNss are diffcult to train and require high computational costs. Some ideas about
3D factorization were explored. One idea is to factorize a 3D spatiotemporal kernel into
a 2D spatial kernel and a 1D temporal kernel. The factorization of space and time is
shown as Figure 2.7. Tran et al. (2018) presented an R(2+1)D network to sequentially
extract spatial features and capture temporal features, and introduced more non-linearity
by using additional ReLLUs to enable the network to learn more complex semantics. The
results showed that the R(2+1)D network performed better compared to networks of

similar capacity, and this advantage became more obvious as the network deepens.

1xhxw
txXhxw l
| ?x 1x1
Standard 3D A (2+1)D

Convolutional
Block

Convolution

Fig. 2.7 Factorization of space and time.

Another idea is to split a full convolution layer into two separate layers, a depth-
wise convolution layer that applies a single convolutional filter per input channel, and

a pointwise convolution layer that applies 1 x 1 convolution. Figure 2.8 shows the fac-
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torization of space-time and channel. Sandler et al. (2018) proposed MobileNetV?2 that
explored depthwise separable convolutions, linear bottlenecks together with inverted
residuals blocks to obtain a good balance of performance and efficiency. Tran et al.
(2019) designed a ChannelSeparated Convolutional Network (CSN) that explored how
the channel interactions affected the performance and found that factorizing convolution

improved the accuracy and reduced the computational loads.

CxTxHXxW

H xw'

Fig. 2.8 Factorization of space-time and channel.

Unfortunately, 3D-CNNs have limitations in modeling long-term temporal depen-
dencies due to its limited receptive field. Moreover, a 3D-CNN is computationally in-
tensive and data hungry. Thus, new architectures are needed for modeling longer-term

temporal information.

2.3  Video Transformers

The great success of Transformers in the field of natural language processing showed
its excellent capacity in processing sequence data. This has also contributed to the de-
velopment of Transformers in the field of computer vision. Soon, Transformers and its
variants replaced the dominance of convolutional neural networks in the field of im-
age processing, becoming the cutting-edge architectures for large image benchmarks
such as ImageNet (Deng et al. 2009). Based on the achievements of Transformers in
image processing and their ability to model long-range dependency, it is also consid-
ered a promising architecture for processing video. Naturally, Transformers have been
also adapted to video understanding tasks and have quickly become the state-of-the-art

architectures for almost all video benchmarks.

2.3.1 Tokenlization

Similar to natural language processing (NLP), input words or characters are represented

as a sequence of tokens (Vaswani et al. 2023). Figure 2.9 shows the input tokenization
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procedure for images and videos. For image processing tasks, input images are split into
non-overlapping, fixed-size patches and these patches are then linearly embedded into
tokens (Dosovitskiy et al. 2020a); for video understanding tasks, videos are represented
as a series of sampled frames and divided into non-overlapping, fixed-size tubelets (it
consists of patches with different time index in the same space, and the number of
patches is greater than or equal to one.), and then these tubelets are linearly embedded
as tokens (Arnab et al. 2021).

cls PE
E,
— Ez — Tra\rﬂ:‘i;rr:'ner i Class
Eg
Ey

(a) Image tokenization.

PE

Video  __'\iip — Class
Transformer

(b) Video tokenization.

Fig. 2.9 Input tokenization for Vision Transformers (cls represents class token, E; rep-
resents the ¥ token embedded from 7" patch or tubelet, and PE represents Position
Embedding).

As shown in Figure 2.9 (b), the detailed description of video tokenization for an

input of dimension 7" x H x W is as following:
z = [zus, BEx1, Exs, ..., Exy] + PE, 2.1

where x; € R"*% is the i"" non-overlapping video tubelet. E represents the projection
performed on tubelets in order to obtain tokens, and E is usually performed by 3D
convolution with kernel size ¢t X h X w and stride (¢, h, w). z is the sequence of tokens

obtained by projection and z., is the learned classification token. PE € RNumxd

T H w
represents the learned position embedding, and Num = L?J X LEJ X |—] is the
w

number of tubelets.
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2.3.2 Architecture

Although there are many variants of Video Transformers, most of them are based on
the architecture shown in Figure 2.10. After tokenization, the tokens are fed into a
Transformer encoder, which consists of N sequentially connected Transformer blocks.
Each block n contains multi-headed self-attention (MSA) (Vaswani et al. 2023), layer
normalisation (LN) (Ba 2016), and Multilayer Perceptron (MLP). The formulas are

defined as below:

y" = MSA(LN(z")) + 2", (2.2)
z""' = MLP(LN(y")) +y", (2.3)
Class = M LPHead(zq4"), (2.4)

where z" represents the tokens after tokenization layer or the output of the n'h Trans-

former block. y” is the output of multi-headed self-attention (MSA) module. z"™*

1th

represents the output of the n + 1" Transformer block. At last the learned classifica-

tion token z. is passed through a MLP head for classification.

MLP Head — Class

TransformerI Encoder

@?.7

MLP

T

Layer Norm

Ay
K

Multi-Head
Attention

IR

Layer Norm

Tokens

Fig. 2.10 Basic architecture of a Transformer encoder

Transformers succeed not only due to their architectures, but also because of their

multi-headed self-attention (MSA) mechanism. Each head focuses on different parts
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of the input, allowing the model to capture different information at the same time and
learn more complex semantic representation. Suppose there are h heads, the dimension

of each head is d and Z represents z after layer normalisation (LN).

MSA(z) = Concat(04(2), 05(2), ..., 0, (2) )W, (2.5)
(5 (5\T
A; = Softmax (%) ) 2.7

where O; is the output of the 7;, head in multi-headed self-attention (MSA). C'oncat
represents the concatenate operation of multiple heads. W is the weight matrix of the

linear transformation.

2.3.3 Related Work

The capability of capturing long-term temporal dynamics has led to the rapid develop-
ment of Transformers in the field of video processing. There are many video Trans-
former variants. Neimark et al. (2021) presented the VTN model for video recognition
by adding a temporal attention-based encoder on top of a 2D spatial backbone to model
temporal dependencies of extracted spatial features and use an MLP head for classifica-
tion. VTN is similar to the CNN-RNN architecture, but uses an attention mechanism for
temporal information instead of a RNN. Bertasius et al. (2021) proposed the convolution
free architecture Timesformer, which is a fully self-attention-based video classification
method. Following ViT (Dosovitskiy et al. 2020a), Timesformers obtain patches from
frames and learn spatiotemporal features directly from a sequence of patches. Arnab
et al. (2021) proposed the ViviT architecture that adapted the ViT (Dosovitskiy et al.
2020a) network pretrained on CLIP400 (Schuhmann et al. 2021) to videos; it intro-
duced tubelet embedding on video clips to tokenize the spatiotemporal information si-
multaneously and explored four attention designs to find the most effective and efficient
way of handling spatial attention and temporal attention.

In addition to the aforementioned early attempts to adapt Transformers to video,
there are Transformer variants that introduce some novel video-specific designs. Fan
et al. (2021) designed MViT, a channel-resolution scale model that progressively ex-
pands the channel capacity while reducing spatiotemporal resolution to extract low-
level visual features at early layers and model complex semantic features at deep layers.
Yan et al. (2022) presented the MTV architecture, which uses multiple encoders to ex-
tract spatiotemporal features from tokens obtained by tubelets of different dimensions,
and uses cross-view fusion and a global encoder to fuse the features from different
views. Li et al. (2022a) proposed UniFormer, which combines a Transformer with 3D

convolution to capture local and global spatiotemporal features, allowing it to reduce
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the redundancy of videos while modeling long-range dependencies. Piergiovanni et al.
(2023) explored TubeViT that uses sparse video tubes of different sizes and a ViT en-
coder to work seamlessly with images and videos.

Local attention is also one of the research directions in Transformers. Liu et al.
(2022) proposed Swin Transformers, using a 3D shifted windows based multi-head
self-attention module to introduce cross-window connections for capturing the spatio-
temporal locality of videos. There are also Transformers that focus on self-supervised
learning to improve generalization performance. Tong et al. (2022) proposed Video-
MAE, which works by first randomly masking most patches and then using an encoder
operating on the visible patches and a light decoder processing all patches to reconstruct

the input in the pixel space.

2.4 Multimodality

Due to the rapid increase in large networks and large-scale benchmark datasets of var-
ious modalities, multimodal models have become a promising research area. There
are many different data modalities, including RGB, RGB-Depth, Optical Flow, audio,
video, various signals and so on. The state-of-the-art architectures are currently defined
by multi-modality Transformers. Wang et al. (2022) proposed video foundation model
the InternVideo, which conducted self-supervised pretraining by using a video masked
modeling module (Tong et al. 2022) and a video-language contrastive learning module,
and then enhanced video representation by using supervised post-pretraining, and next
used cross representation learning to unify two modules. Srivastava and Sharma (2024)
presented OmniVec network that consists of a modality encoder to extract the features
from modalities, a projection layer to project the features conditioned on meta tokens
of modalities, a Transformer network to process the patches obtained from projection
and a vectorizer to output embeddings for the original data point. Then the output can

be used for different downstream tasks.

2.5 Benchmark Datasets

As computing power and storage capabilities increase, the scale and the quality of
datasets grows. This further increases the complexity of deep learning networks. Fig-
ure 2.11 shows the most common datasets in video understanding tasks. Video datasets
can be roughly divided into two categories.

One are scene-related datasets, such as UCF101 (Soomro et al. 2012a), HMDB51
(Kuehne et al. 2011) and Kinetics (Kay et al. 2017). The recognition of actions in scene-
related datasets relies more on spatial information such as objects and backgrounds. For

example, the model can predict the action ‘playing basketball’ correctly by recognizing
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Fig. 2.11 An overview of representative datasets for action recognition.

the basketball, the human and other scenes related to basketball. Sometimes, the model
can recognize the action by only using a still image of the video, without requiring
much temporal information.

The other kind of dataset is temporal-related dataset, such as Something to Some-
thing V1/V2 (Goyal et al. 2017) and Moment in Time (Monfort et al. 2019). The actions
in temporal-related datasets are more fine-grained. It is not easy for a model to predict
the fine-grained actions correctly by only using spatial information. For example, if
there is a single image with a table, a cup on the table and a human’s hand on it. Even
humans are not sure whether the action is ”take a cup from the table” or ’put a cup on
the table.” To predict action like this, the model needs to know the context of this single
image. Thus, temporal information is needed for correct prediction.

The KTH (Schuldt et al. 2004) and Weizmann (Blank et al. 2005) datasets were
commonly used for hand-crafted feature based models, both of them are very small and
have controlled background. UCF101 (Soomro et al. 2012a) and HMDB (Kuehne et al.
2011) datasets were classic benchmarks for video action recognition tasks before 13D
was proposed. Sports-1M (Karpathy et al. 2014) is one of the largest datasets com-
monly used to pretrain 3D-CNN architectures for evaluation on UCF101 and HMDBS51
datasets. ActivityNet (Caba Heilbron et al. 2015) consists of untrimmed videos, each
containing multiple activities. YouTube-8M (Abu-El-Haija et al. 2016) is currently the
largest video dataset, its annotations are generated through retrieval methods. Charades
(Sigurdsson et al. 2016) includes videos for daily indoor activities, and it is a multi-label
dataset.

The other datasets in Figure 2.11 are most commonly used as benchmarks for Video
Transformers. Kinetics Family (Kay et al. 2017) is the current mainstream benchmark
for video analysis and usually used for post-pretraining for large networks. Something-
Something (Goyal et al. 2017) is the most temporal dependent dataset, most of the
actions in it require strong temporal reasoning. Moments in Time (Monfort et al. 2019)

contains videos that involve not only people, but also animals, objects and natural phe-
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nomena. EPIC-Kitchens (Damen et al. 2018) is a dataset of first-person vision of par-
ticipants recorded by head-mounted cameras. These videos involve different kitchen

tasks. Detailed information about the above datasets can be found in Appendix A.

17



CHAPTER 3

Novel Designs of Video Transformers for Action Recognition

3.1 Introduction

In action recognition tasks, actions can be very difficult for networks to classify. The
same action can be performed by different subjects with different gestures at differ-
ent speeds in different scenarios, meaning that network have to find the commonalities
among these videos. And the different actions can also be performed by the same sub-
ject with similar motion patterns at similar speed in the same background, these simi-
larities make the networks difficult to detect the subtle differences. Therefore, making
good use of both spatial information and temporal information is crucial for video ac-
tion recognition. A successful network must have the capacity to capture useful spa-
tiotemporal features for correctly action classifications. Due to the additional temporal
dimension of videos, much more computational resources are required by video pro-
cessing networks. Thus, a good trade-off between accuracy and computational costs is
a key issue for video action recognition tasks.

3D-CNNs can extract spatiotemporal features from a relatively small 3D neighbor-
hood to capture local dependencies but have limitations in modeling global dependen-
cies on video context due to the limited receptive field. Transformers can capture longer
temporal information due to their self-attention mechanism, but they are limited in re-
ducing local redundancies because all the input tokens are compared blindly.

The combination of 3D convolution and Transformer architecture can simultane-
ously capture local and global spatiotemporal features. UniFormerV2 (Li et al. 2022a)
is a successful variant of Transformers combining 3D convolution and spatio-temporal
self-attention to reduce the local redundancy and also capture long-time dependencies
in videos. Thus, we choose UniFormerV?2 as our backbone for further improving. How-
ever, like other Transformers, the performance of UniFormerV2 is also limited by the
size of the dataset. Therefore, we aim to demonstrate the effectiveness of our three
novel design ideas through relative improvements on small datasets.

The inputs of Video Transformers are usually video clips sampled from videos. The
length of the clips is limited by the available computational resources but the perfor-

mance is proportional to some extent to the length of the clips. Thus, we are motivated
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to find a way to model longer temporal dependencies of videos without increasing much
computational costs and to introduce a bio-inspired nonlinear connection between neu-

rons that makes neurons more selective.

3.2 Methodology

Videos are essentially stacked images in the temporal dimension. They have additional
temporal information, which makes the data higher dimensional and more redundant.
Thus, video processing is more complicated and requires more computational resources
than image processing. It is very important to get a good balance of network perfor-
mance and computational costs.

In this section, we introduce three different novel design ideas that improve Video
Transformer networks on action recognition tasks. We first propose a RGBt Sampling
strategy to sample red, green and blue channels at different times to extract local dynam-
ics. Then we design a tokenization method to use different dimensional tubes to embed
richer temporal information into the tokens. We also present the MinBlock architecture
to implement a bio-inspired nonlinear connection between neurons to make the neurons
more selective, we here extend MinBlock from image processing to video processing
and we also explore the best position to insert MinBlocks within a UniFormerV?2 archi-

tecture.

3.2.1 RGBt Sampling

Videos are high dimensional data and have different lengths, which means processing
the entire videos at once is not affordable for computers and impossible for networks.
Therefore, the strategy is to temporally downsample the videos into clips of the same
length. For almost all Video Transformer networks, the inputs are obtained by sampling
a certain number of frames from each video to form a clip representing this video. Usu-
ally, a video is uniformly divided into a certain number of segments along the temporal
dimension, and then a frame is randomly selected from each segment. All the selected
frames together form a clip to represent the original video. This sparse sampling strat-
egy is reasonable because videos are proven to be redundant and have high temporal
correlation (Tong et al. 2022).

However, due to the limited computational resources, the number of used frames
representing a video is usually not enough and increasing the number of selected frames
will improve the network performance. Especially for temporal-related datasets, the
improvement will be more obvious. To obtain a good trade-off between network per-
formance and computational costs, we introduce a novel strategy to sample the three
color channels at different times. In detail, we first sample 3*N frames from each video

rather than the original N frames. We then only use the R; i, GG;, and B;,; channels
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of the selected frames instead of using R;, GG;, and B; from the same frame, in order
to form a RGBt frame containing temporal information, as shown in Fig 3.1. Thus, we
not only introduce additional temporal information without increasing the input size but

also reduce the spatial redundancy of frames to some degree.

RGB
a; b; Ck dn €r
ap bg cg dp €c

T~

Frame, Frame, Frame; Frame,

RGB,

Fig. 3.1 Description of RGBt sampling strategy

3.2.2 Variable Sized Tubes Tokenization

Our backbone UniFormerV?2 is one of the state-of-the-art architectures. It achieves im-
pressive top-1 accuracies largely due to the pretrained Clip-ViT (Radford et al. 2021)
weights. This benefits the network but also introduces some shortcomings. For using
the pretrained weights of ViT, UniFormerV2 has to keep the same structure as ViT and
then insert its own blocks into the ViT structure. Because of that, the 3D convolutional
layer for tokenization in UniFormerV?2 has to keep the same channel dimension of 768
as the ViT structure, which is very redundant. Inspired by the concept of Inception net-
works, we can fill 768 channels by concatenating different feature maps in the channel
dimension by tokenizing video clips using 3D kernels of different sizes. By doing this,
temporal information from frames of different lengths is fused by using tubes of differ-
ent sizes. The obtained tokens can span different temporal periods (shorter or longer)
and contain richer information about the dynamics of the actions.

Fig. 3.2 shows how we implement our idea, we first sample 32 frames from each
video to form a clip with dimension 32 x 224 x 224 x 3 (T x H x W x C) as input.
Then we use tubes of three different sizes (1 x 16 x 16,4 x 16 x 16 and 8 x 16 x 16) to
tokenize the inputs, and obtain three outputs with the same shape: 8 x 14 x 14 x 256
(Tyx Hy x Wy x Cy). After that, we obtain the final tokens by concatenating the three
outputs in the channel dimension, which have the same channel dimension of 8 x 14 x
14 x 768 as the tokenization layer of ViT.
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Fig. 3.2 Tokenization with tubes of different sizes

3.2.3 Bio-inspired MinBlock

Min-Nets are a variant of FP-Nets (Griining et al. 2022) inspired by end-stopped cortical
cells with units that output the minimum of two learned filters (Griining and Barth 2022,
Griining and Barth 2023). In previous studies, it has been proven that the addition of
MinBlocks can improve the performance of state-of-the-art CNNs in object recognition
tasks and make the CNNs more robust (Griining et al. 2022, Griining and Barth 2023).
ENets are networks that employ the bio-inspired principle of end-stopping, and both
FP-Net and Min-Nets are particular variants of eNets (Griining and Barth 2023). Here,
we combine not two units, but three pairs of two units in order to generalize eNets
from images to videos. Such computations are related to optical flow computation
(Barth 2000b) and also to the way biological neurons process motion information (Barth
and Watson 2000, Barth 2000a). The geometrical motivation is based on the fact that
the curvature of a 3-dimensional manifold defines the structure of the manifold and
is captured by the invariants of the Riemann curvature tensor based on the sum of 3
pairwise combinations of the derivatives (Barth 20005, Barth and Watson 2000).
Technically, our MinBlock consists of three point-depth-wise convolutional layers,
the pairwise minimum operations and the add operation, as shown in Fig 3.3. We insert

three additional 1x1x1 convolutional layers to convolve the previous feature maps and
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use minimum functions to element-wise combine the feature maps learned by each pair
of 1x1x1 convolutions, and we use an add operation to combine the three outputs from
minimum operations. The 1x1x1 convolutional layers are used as spatiotemporal filters
and capture features across channels by creating one-to-one projections of the feature
maps. The pairwise minimum operations aim to make the neurons more selective and
more robust than classical neurons (Griining and Barth 2022). And the add operation is

to keep the final output dimension the same as the input of MinBlock.
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Fig. 3.3 The structure of a MinBlock.

There is clear evidence that MinBlocks can improve the performance of convolu-
tional neural networks on image processing. Therefore, we expect MinBlocks to bring
performance improvements in video understanding tasks as well. To investigate the
inserted position of MinBlocks, we insert MinBlocks at two different locations in the
backbone architecture that performs convolutions. As shown in Fig 3.4, one position
we chose is after the 3D convolutional tokenization layer is performed. And the other

position is inside the Local UniBlock as shown in Fig 3.5.

3.3 Experiments

3.3.1 Datasets

Since we lack the computational resources to deal with larger benchmarks, we use
the classic scene-related dataset UCF101 and a subset of the temporal-related dataset
Something-Something V2 as our datasets to verify the effectiveness of our novel design
ideas.

UCF101 (Soomro et al. 2012a) is a small dataset for action recognition tasks. UCF101
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Fig. 3.4 Inserting MinBlock after the tokenization layer.

has 101 different action classes with mainly five types of actions: human-object interac-
tion, body-motion only, human-human interaction, playing musical instruments, sports.
Those actions are rather defined by spatial information, which means a relatively good
performance can be obtained even without any temporal information. UCF101 has
13320 videos with an average length of 7.21s and a spatial resolution of 320x240 pix-
els, it consists of around 9.5k training videos and 3.7k validation videos. We randomly
select videos proportionally from each class in the training set forming a total of about
1.6k videos for our validation set, and use the original validation videos as our test set.

Something-Something V2 (Goyal et al. 2017) is one of the most popular datasets for
Video Transformers in video understanding tasks. It consists of 220,847 videos, with
around 169k in the training set, 25k in the validation set and 27k in the test set. The
actions in Something-Something V2 are more temporal-related and thus require more
temporal information for making correct predictions. It has 174 different fine-grained
action classes of human-object interaction scenarios, with an average duration of 4.03s.
More specifically, Fine-grained means the understanding of the actions relies on videos
rather than images, which is important for validating the capacity of networks in captur-
ing temporal information. Action groups in Something-Something V2 usually contain

some very similar actions with only subtle differences, and in order to distinguish these
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Fig. 3.5 Inserting MinBlock inside the local UniBlock.

similar actions within a group, a good understanding of the fine-grained actions at both
spatial and temporal levels is required.

SthSth32 is a subset of the Something-Something V2 dataset containing only 32
classes selected to reduce computational costs. The training set, validation set, and test
set are randomly grabbed from the original sets as suggested by Goyal et al. (2017). The
resulting dataset SthSth32 contains about 41k training videos, 6.1k validation videos
and 6.2k test videos - see Appendix B for more details.

We train our networks from scratch, because pretrained weights are trained on stan-
dard RGB frames and are not available for our RGBt frames. Unfortunately, both
UCFI101 and SthSth32 datasets are not large enough to train Transformer networks
to maximum performance, we here therefore focus on the relative improvements of

network performance brought by our novel design ideas.

3.3.2 Implementation Details

As described above, we first uniformly sample a number of frames to form a video clip
representing the video. We sample 3*N (N is 8 for UCF101 and 4 for SthSth32) frames
for RGBt sampling, 4*N frames for differently sized tubes tokenization and N frames
for MinBlock. All selected frames are then resized into a jittering scale range [240, 320]
and randomly cropped to 224x224 pixels for training. All frames are directly resized to
224x224 pixels for validation and test. Note that before feeding into the Transformer
structure, the dimensions are the same: 8x224x224x768 (T x Hx W x C).

Our training batch size is 256, both validation and test batch sizes are 128. We
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choose the AdamW optimizer to learn network parameters and follow the training
recipe reported in (Li et al. 2022b), a cosine learning rate schedule (Loshchilov and
Hutter 2016) with a linear warm-up strategy for the first 5 epochs. Our warm-up start
learning rate is 1e-6 and cosine end learning rate is the same, and the base learning rate
we use is le-5. The momentum is set to 0.9 and the weight decay is 0.05. We conduct
all experiments on 4 NVIDIA A100 40G GPUs.

3.3.3 Results and Discussions

We validate our three novel design ideas on UniFormerV?2 backbone respectively using
both the UCF101 and SthSth32 datasets. The improvements of network performance
shown in the tables below demonstrate the effectiveness of our designs.

The results for the UCF101 dataset are shown in Table 3.1. The RGB row shows
the baseline performance of the original UniFormerV2 with standard RGB frames, with
43.67% top-1 accuracy and 69.84% top-5 accuracy. RGBt sampling achieves a 3.2%
higher top-1 accuracy compared to the RGB baseline without increasing the correspond-
ing FLOPs and the number of parameters. And tokenization with tubes of different sizes
with standard RGB frames obtains a 6.85% high top-1 gain in accuracy with slightly
more FLOPs and parameters. And inserting MinBlocks into the backbone leads to a
2.34% top-1 accuracy improvement. We find that RGB with variable sized tubes setting

improves the network the most based on both top-1 and top-5 accuracy.

Table 3.1 Comparison of RGB, RGBt, RGB tubes and MinBlock on UCF101.

Method #Frames Param.(M) FLOPs(G) Topl Top5

RGB 8 123.82 157.41 43.67 69.84
RGB; 3*8—8 123.82 157.41 46.87 74.23
RGB tubes  4*8—8 125.78 160.50 50.52 79.54
RGB Min® 8 145.08 190.71 46.01 72.83

I 3#8—8 means 3*8 frames are used to form 8 RGBt frames;

2 4*8—8 means 4*8 frames are used for tokenization, and 8 is the temporal di-
mension after tokenization;

3 Min" reports MinBlock inserted inside Local UniBlock.

Table 3.2 shows the results for the SthSth32 dataset. The baseline performance of
the backbone with RGB frames is 44.91% top-1 accuracy. With RGBt sampling, the
top-1 accuracy is improved by 5.75% compared to the RGB baseline without increasing
parameters and FLOPs. And using different tubes with RGB frames leads to a 6.77%

higher top-1 accuracy gain. The top-1 accuracy obtains 1.3% improvement by adding
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MinBlocks. Again, we notice that RGB tubes setting achieves the best performance on

both top-1 and top-5 accuracy.

Table 3.2 Comparison of RGB, RGBt, RGB tubes and MinBlock on SthSth32.

Method #Frames Param.(M) FLOPs(G) Topl Top5S

RGB 4 123.76 78.72 4491 7749
RGB; 3*4—4 123.76 78.72 50.66 81.94
RGB tubes  4%4—4 125.73 80.26 51.68 83.14
RGB Min" 4 145.03 95.37 46.21 79.02

1 3%4_34 means 3*4 frames are used to form 4 RGBt frames;
2 4*4—4 means 4*4 frames are used for tokenization;
3 Min" refers to MinBlocks inserted inside the Local UniBlock.

The results from the Table 3.1 and Table 3.2 show that all our three designs can
improve the performance for not only scene-related dataset but also temporal-related
dataset (see overview in Fig. 3.6). The performance improvements indicate that using
RGBt sampling can help the network to model longer dynamic dependencies of videos
without increasing FLOPs and the number of parameters, adding Tubes with differ-
ent sizes can embed richer temporal information into tokens and inserting MinBlocks
presumably makes the neurons more selective of useful information than the classic
neurons.

We also perform ablation experiments on UCF101 dataset to explore the best posi-
tion for inserting MinBlocks. As discussed in previous section, MinBlocks can improve
the performance of convolutions. Thus, we choose two positions with convolutions:
one is after the 3D convolutional tockenization layer (as shown in Fig. 3.4), the other is
inside the Local UniBlock and on top of ViT Block (as shown in Fig. 3.5).

Table 3.3 Overview of comparison of MinBlocks with different positions on UCF101.

Method Position Param.(M) FLOPs(G) Topl Top5s

RGB Min  Token 125.59 160.19 43.93 70.08
RGB Min  Local 145.08 190.71 46.01 72.83

I Min indicates the use of MinBlocks;
2 Token: MinBlock inserted after the tokenization layer as in Fig. 3.4;
3 Local: MinBlock inserted inside the local UniBlock as in Fig. 3.5.

Table 3.3 shows the results of ablation experiments, the MinBlocks inserted after the

tokenization layer with RGB frames lead to a 0.26% performance improvement, while
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Fig. 3.6 Top-1 accuracy improvements by our designs on UCF101 and SthSth32.

MinBlocks inserted inside the local UniBlock obtain a 2.34% higher top-1 accuracy.
In Table 3.1 and Table 3.2, we therefore report the better performances obtained by
MinBlocks inserted inside the Local UniBlock.

Table 3.4 Extra experiments on UCF101.

Methods Position Topl Top5
RGB and RGB; - 48.30 74.25
RGB:; tubes Token 53.22 79.60
RGB tubes and Min  Local  54.04 80.63
RGB; Min Local 49.08 75.42

With the inspiration of the Temporal Segments Networks (TSN) (Wang et al. 2016b),
we used both RGB and RGBt frames as two different modalities and fused them at a
late stage on UCF101 dataset to obtain a better performance. The first row of Table 3.4
shows that this fusion achieves a 4.63% top-1 accuracy improvement compared to us-
ing only RGB frames and a 1.43% top-1 accuracy gain compared to using only RGBt
frames. From previous experiments we show that both RGBt sampling and tokeniza-

tion with tubes of different sizes can improve the network performance, so that we also
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try the combination of these two designs. The second row of Table 3.4 shows that the
combination obtains a 9.55% top-1 accuracy gain relative to the RGB baseline and an
extra 2.7% top-a accuracy improvement compares to adding only variable size tubes.
Besides, we also run experiment on combining variable tubes with MinBlocks. This
operation leads to a 10.67% higher top-1 accuracy than RGB baseline. Moreover, the
combination of RGBt sampling and inserting MinBlocks also achieves higher accuracy
(49.08%) than both only RGBt sampling (46.87%) and only MinBlocks (46.01%).

The performance of all combinations as well as the performance of individual de-
signs are shown in the Fig. 3.7. Obviously, all kinds of pairwise combinations of our

design elements can further improve the performance of the network.

=0O= UCF101
A Combinations
54 A A
+MinBlock
A
+Tubes

52 A
o
® 50 A
>
&L)) A
e | A +RGBt
s 48 1RGBt Fusion
'_

46 A

44

RGB(Baseline) MinBlock RGBt Tubes

Designs

Fig. 3.7 Top-1 accuracy improvements by different combinations on UCF101.

3.4 Conclusion

In this chapter, we propose three novel design ideas for Vision Transformers in video
understanding tasks. The first idea is to sample frames differently, which we called
RGBt sampling, that is, sample 3 times the number of frames and select red channel,
green channel and blue channel from the consecutive frames to form new RGBt frames.
This way, the input clips not only contain three times longer temporal sequence but also
maintain the same dimension, meaning that RGBt frames do not introduce additional

computational costs and parameters. The second idea is to tokenize the input clips
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with tubes of different sizes (with 3D kernel dimensions of 1x16x16, 4x16x16 and
8x16x16), in order to span the temporal information from different lengths of frames
and thus embed richer temporal representation into the final tokens. The third idea
is using MinBlocks to introduce a novel type of neurons which are more information
selective and can make the network more robust. We also conduct ablation experiments
to explore the best position to insert the MinBlocks.

We validate our three designs on a scene-related dataset and a temporal-related
dataset. All results on both datasets show that our three novel ideas can improve net-
work performances in action recognition tasks. Moreover, the combinations of two
arbitrary design elements can further achieve even better network performance.

Due to the limitation of computational resources, we train our networks from scratch
and focus only on the relative improvements compared to the baseline. We would expect

better results on large datasets and using pretrained weights.
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CHAPTER 4

Salient Spatiotemporal Slices on 2D-CNNs for Video Understanding

4.1 Introduction

Video understanding is a popular research field in computer vision. Action recognition
and hand gesture recognition are two main classification tasks in video understanding.
The purpose of action recognition is to capture spatiotemporal features that can rep-
resent the entire video and thus make predictions of the specific action. There are a
lot of applications of action recognition, such as intelligent traffic control, smart home
control and so on. For gesture recognition, the goal is to recognize hand gestures of dif-
ferent subjects, and virtual reality, augmented reality and human-computer interaction
are common applications.

2D-CNNs have proven to be good at capturing spatial features of images but cannot
capture temporal information. Therefore, for video understanding, researchers extended
2D kernels to 3D to also extract temporal information by adding a time dimension.
However, 3D-CNNs can only model local dependencies in a rather small 3D neighbor-
hood due to the limited receptive field. This limited 3D-CNNs performance in video
understanding, since long-range dependency modeling is important for this task.

Video understanding remains a challenge because how to effectively use tempo-
ral information is still a key issue. Current methods generally sample a number of
frames to form a video clip as an input representing the entire video. Such temporal
downsampling often causes the loss of critical temporal information. Moreover, current
state-of-the-art networks (e.g., visual transformer variants) require high computational
costs even with the downsampled videos. Generally, video is treated as stacked images
in time. In our work, we have a new perspective on video, treating it as a 3D block.
If we look at the 3D block from the front, we see xy slices (frames); from the above
perspective, we see xt slices and from the left we see yt slices. So, xt slices contain
the horizontal spatial and temporal information and yt slices contain the vertical spatial
and temporal information. The visualization of temporal information on slices makes it
possible for 2D-CNNss to directly extract spatiotemporal features.

It is known that videos are redundant (Tong et al. 2022), because the spatial content

changes little in consecutive frames. Thus, not all frames are needed for videos analysis.
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Likewise, not all xt and yt slices are needed. The redundancy of spatiotemporal slices is
more serious than that of spatial frames. Thus, we propose a simple method to exclude
redundant xt and yt slices by using saliency.

Modeling longer range temporal dependencies can improve the network perfor-
mance in video understanding, but requires higher computational loads. As most current
methods are not able to utilize the temporal information across the entire video and our
salient spatiotemporal xt and yt slices contain the complete timeline of the video, we
propose a simple model that can capture the long-range spatiotemporal representations
by using simple 2D-CNNs on our spatiotemporal slices with a low computational cost.
Moreover, we evaluate our model on five different datasets (for both action recognition
and hand gesture recognition tasks) to prove its efficiency and robustness. We conduct
experiments on only xy, xt and yt slices respectively to compare the performances on
different types of slices, so that we can evaluate the effectiveness of spatiotemporal

slices. Moreover, we combine different types of slices to further improve performance.

4.2 Methodology

4.2.1 Spatiotemporal Slices (xt and yt)

Video is essentially frames stacked in time, so we can think of a video as a 3D cube in
X, Y, and t coordinate systems. In this perspective, a frame is a slice of the video in the
xy plane (xy slice), which represents 2D-spatial information of the video. Thus, a slice
in the xt plane (xt slice) represents horizontal spatiotemporal information of the video.
Similarly, the slice in the yt plane (yt slice) contains vertical spatiotemporal represen-
tation of the video. All kind of slices are shown in Fig. 4.1. Xt and yt slices describe
the movement trajectories of the subjects over the complete timeline of the video, i.e.,
containing every time index. In this way, action dynamics are well represented in the
xt and yt slices, so that simple 2D-CNNs have capacity to extract spatiotemporal infor-
mation simultaneously. 2D-CNNs trained on these spatiotemporal slices are of lower

complexity compared to 3D-CNNs and Video Transformers.

4.2.2 Sampling Strategies

Videos have proven to be quite redundant, because the visual content changes slowly
over consecutive frames. The redundancy also exists in xt and yt slices. We can take
advantages of these redundancies by selecting only a subset of frames and slices that
are useful and sufficient for action recognition. We aim to find sampling strategies that

preserve the essential visual content and temporal context over the entire video.
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Fig. 4.1 Overview of slicing xy, xt, and yt slices ("Jump on place” action from the Weiz-
mann dataset. Note how the jumping action is well represented in the spatiotemporal yt
slices).

4.2.2.1 Sparse Sampling

For xy slices (frames) selection, we use a sparse global sampling strategy described
in (Wang et al. 2016a). We first uniformly divide a video into N segments, and then
randomly choose a frame from each segment to form a clip (defined by the selected
frames) that represents the entire video. Uniform sampling helps our network to model
spatial information changes of the entire video and random sampling makes our net-
work more robust. However, this down-sampling of xy slices may lead to the loss of
temporal information, that’s why we need xt and yt slices to provide the information of

the complete timeline.

4.2.2.2 Saliency-based Sampling

In most cases, for the subjects who are taking the action, their moving does not occupy
the whole video cube; actions only take place at a certain region (as shown on xy slice
in Fig. 4.2). So, there are some xt and yt slices without any motion trajectories. Objects
that do not move, are represented as straight lines in the xt and yt slices (see non-salient
slices shown in Fig. 4.2). These non-salient slices are not helpful for decision making
or may even hurt the performance of the network. Thus, we calculate a saliency value
for each slice to exclude such redundant slices.

Since the redundant frames are defined by straight lines, we use a simple curvature
measure to detect the salient slices as those that do not contain only straight lines.

Assume we have a gray-scale image (or slice) I. If we take a patch at (i, v) and

shift it by (z, t), the gray-scale differences of these two patches is
E(x,t) =Y Y wlp,v)[I(p+z,v+t) = (), (4.1)
“w v

with w(p, ) being a window that slides over the image.
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%

Fig. 4.2 Examples of salient slices and non-salient slices from the Weizmann dataset
(Action: Jack). The salient xt and yt slices are defined by the region of interest indicated
by the red rectangle.

After applying a Taylor expansion we can get

x
E ~ J 4.2
(et)~ | ot ] [t] 4.2)
where J is the structure tensor (Jahne 1993)
ICC(/’LJ V)Q Ix(llﬁ V)It(M7V)
J = w(p, v . 4.3)
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When w(i, v) is an identity matrix, .J is simplified to

2 I
J= v . 4.4
;[Mt IE] o

A simple way to measure deviation from flatness is to use the determinant of J,

which is equal to zero for straight lines:
R =det(J). (4.5)

Technically, we first convert the xt and yt slices into gray-scale images and apply
a Gaussian low-pass filter. Then we use the Sobel operator to calculate the derivatives

in the = (and y) and ¢ directions. After that, we calculate the different terms in Equa-
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tion 4.4 and perform Gaussian filtering on these terms. Furthermore, we calculate the
determinant of .J to obtain R. Finally, we apply non-maximum suppression to get op-
timal values and use the average of these values for selecting salient slices. For fusing
Xy, xt, and yt features, we sample the same number of xt slices and yt slices by selecting
the top values of calculated saliency. By using saliency-based sampling, we ensure that

each xt or yt slice we select contains the entire motion trajectory of the subject.

4.2.3 Architecture

We use simple 2D-CNN architectures (such as the ResNetl18) as backbones for our
model. We first obtain all xy, xt and yt slices from videos and select the most infor-
mative slices by applying our sampling strategies as described in section 4.2.2, then we
feed these selected slices into our CNN backbone. As shown in Fig. 4.3, we explore
several ways to utilize the different types of slices for classification: (1) using the results
obtained from only one type of slice (e.g. just xt slices), (ii) fusing two types of slices

(e.g. xt and yt slices), and (iii) fusing all three types of slices (xy, xt and yt slices).

sampling Preds
_— CNN | FC on 1 type

ayer of slice

) Preds
sampllngi CNN FC —> on 2 types

layer of slices

sampling FC Preds
e CNN —> on 3 types
layer of slices

Fig. 4.3 Overview of our salient spatiotemporal slicing CNN. (Type 1, 2, 3 respectively
represent one of xy, xt and yt slices; ® means the combination of different types of
slices.)

In Fig.4.3, the top branch describes the use of only xy, xt, and yt slices respectively.
The results illustrate how useful the spatiotemporal slices are compare to xy slices. The
middle branch implements different paired combinations of the three types of slices
by using a two-stream network, because the spatiotemporal slices contain the temporal
information of the entire video but cannot fully replace the visual content represented in
xy slices. The last branch combines information from all three types of slices to explore
complementary and redundancy of information.

Since our backbone is a 2D-CNN, the network makes decisions based on each indi-
vidual slice. Thus, we use a voting mechanism to choose the majority prediction of the

sampled slices from the same video as the final prediction for the video.
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4.3 Experiments

4.3.1 Datasets

To evaluate the model, we use five rather small video datasets. Two for action recog-
nition tasks and three for hand gesture recognition tasks, so that we can show that our
network performs well not only on coarse-grained action recognition but also on fine-
grained action recognition (hand-gesture). Datasets such as UCF101 (Soomro et al.
2012a) contain static visual clues of objects and backgrounds, i.e., actions can be recog-
nized without much temporal information. Therefore we choose the Weizmann (Blank
et al. 2005) and KTH (Schuldt et al. 2004) datasets (examples are shown in Fig. 4.4)
in which the static frames do not contain many clues to reveal the action classes. Fine-
grained activities are more difficult to distinguish, the reasoning relies more on the
subtle differences over time. Therefore, we also use hand-gesture datasets such as
the Cambridge Hand Gesture (Kim et al. 2007), Northwestern University Hand Ges-
ture (Shen et al. 2012), and IPN Hand(Benitez-Garcia et al. 2021) datasets (examples

are shown in Fig. 4.5). The classes of each dataset are detailed in Table 4.1.

yt

Fig. 4.4 Examples of frames and salient spatiotemporal slices of the action recognition
datasets (Weizmann dataset with action Jack and KTH dataset with action Boxing).

Xy

KTH Weizmann
Xy xt

xt

The Weizmann Dataset (Blank et al. 2005) consists of 90 videos (resolution 180x144,
25fps) collected from 9 different subjects, each subject performs 10 actions. And the
backgrounds for all subjects and actions is the same.

The KTH Dataset (Schuldt et al. 2004) contains 2391 videos (resolution 160x120,
25fps) for 6 different actions, each action is performed by 25 different subjects within
4 different scenarios: outdoors, outdoors with scale variation, outdoors with different

clothes, and indoors.
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The Cambridge Hand Gesture dataset (Kim et al. 2007) includes 900 videos (resolu-
tion 320x240) of 9 hand gestures. These gestures are performed by two subjects and are
generated by 3 different shapes and 3 motions under 5 different illumination conditions.

The Northwestern University Hand Gesture dataset (Shen et al. 2012) has 1050
videos (resolution 640x480, 30fps) of 10 hand gestures performed by 15 subjects. Each
subject performs each hand gesture with 7 different hand postures, which largely in-
creases the difficulty of classification.

The IPN Hand dataset (Benitez-Garcia et al. 2021) consists of 4039 videos (resolu-
tion 640x480, 30fps) with 13 hand gestures performed by 50 subjects. The gestures are
generated in 28 different scenes and various subject-camera distances, which increases

the generality of the dataset.

Northwestern Cambridge

IPN Hand

Fig. 4.5 Examples of frames and salient spatiotemporal slices from hand gesture-
recognition datasets. Top: Cambridge Hand Gesture dataset with gesture Contract from
flat hand shape. Middle: Northwestern University Hand Gesture dataset with gesture
Move down-right with “OK” hand shape (thumb and forefinger loop). Bottom: IPN
Hand dataset with gesture Pointing with two fingers.

4.3.2 Implementation Details

We use the public train-test splits for the IPN Dataset and we randomly split the other
four datasets into training set, validation set and test set with a ratio 6:2:2. We use a
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Table 4.1 Classes of the five datasets

Dataset #Class Category

0:bending, 1:jack, 2:jumping, 3:jumping in place (pjump),
Weizmann 10 4:running, 5:galloping sideways (side), 6:skip, 7:walking,
8:waving two hands, 9:waving one hand

0:walking, 1:jogging, 2:running
KTH 6 3:boxing, 4:waving, 5:clapping

O:leftward(flat), 1:rightward(flat),2:contract(flat)
3:leftward(spread), 4:rightward(spread),

9 S:contract(spread) 6:leftward(v-shape),

7:rightward(v-shape), 8:contract(v-shape)

Cambridge

0:move right, 1:move left, 2:rotate up, 3:rotate down,

10 4:move down-right, 5:move right-down,

6:clockwise circle, 7:counterclockwise circle,
8:“cross”, 9:“Z”

Northwestern

O:pointing with one finger, 1:pointing with two fingers,
2:click with one finger, 3:click with two fingers,
IPN Hand 13 4:throw up, 5:throw down, 6:throw left, 7:throw right,
8:open twice, 9:double click with one finger,
10:double click with two fingers, 11:zoom in, 12:zoom out

ResNet18 pre-trained on ImageNet1K (Deng et al. 2009) as backbone for the Weiz-
mann, KTH, and Cambridge datasets, and a ResNet34 pretrained on ImageNetlK as
backbone for the Northwestern and IPN Hand datasets because the latter are larger and
more complex.

We conduct all experiments on 3 NVIDIA GeForce RTX 2080 Ti GPUs. Both the
training batch size and the test batch size are 128. The learning rate we use is 0.0001
and we train each experiment for only 20 epochs. For training, all slices are first resized
to 256x256 and randomly cropped to 224x224 pixels. For testing, we directly resize all
slices to 224x224 pixels.

4.3.3 Results and Discussions

Table 4.2 shows the results obtained for the action-recognition datasets. We find that the
topl accuracies obtained for xt and yt slices are better than those for xy slices on both
datasets, which means that the motion trajectories in the salient spatiotemporal slices
make the different actions more distinguishable. For the Weizmann dataset, yt slices are
more useful than xt slices; for the KTH dataset, both xt and yt slices are helpful. These
results indicate that our salient slices contain useful spatiotemporal information which
enable 2D-CNN to capture temporal feature as well as spatial feature. However, the

impact of horizontal and vertical spatial features may vary depending on the dataset. If
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we combine different types of slices, the topl accuracies can be further improved. The
combination of xy and yt slices obtains 100% topl video accuracy for the Weizmann
dataset and the combination of xy, xt, and yt slices achieves 99.16% top1 video accuracy
for the KTH dataset. The confusion matrices are show in subfigures (a) and (b) of
Fig. 4.6.

Table 4.2 Topl accuracy of different slices for action recognition on the Weizmann and
KTH datasets.

Datasets Weizmann KTH

Slices Frame Acc | Video Acc | Frame Acc | Video Acc
Xy 67.66 73.91 77.94 83.19

xt 68.75 69.56 87.45 92.44

yt 80.43 86.96 87.39 92.44

Xy + Xt 80.43 78.26 91.12 92.44

Xy + yt 90.46 100.0 91.12 96.64

Xt + yt 82.61 91.30 93.33 97.48

Xy + xt+yt | 80.98 91.30 93.07 99.16

* Frame Acc means the accuracy for frames; Video Acc means the accuracy for
videos after voting mechanism.

* Bold indicates the highest top1 accuracy, and underline indicates the second
highest accuracy.

The results obtained for the hand-gesture recognition datasets are shown in Ta-
ble 4.3. All performances of xt slices and yt slices are better than those on xy slices.
As we described before, each gesture of the Northwestern dataset is performed with 7
different hand postures by different subjects, making it more difficult for the model to
make correct predictions by using only the visual content of xy slices. This is the reason
why the network obtains poor performances on xy slices (only 32.81% frame accuracy
and 45.71% video accuracy). On the other hand, the top1 frame accuracies obtained on
xt slices (88.62%) and yt slices (90.83%) are much higher than accuracy on xy slices,
suggesting that the salient spatiotemporal slices contain relevant temporal features.

Similar to the results of the action recognition tasks, training the network on two
or three different types of slices achieves better performance. The combination of xy
and xt slices obtains 100% top1 video accuracy on the Cambridge dataset. As expected,
using xy, xt, and yt slices leads to the highest accuracy (93.81%) on the Northwestern
dataset; introducing xt and yt slices improves the top1 video accuracy by 48.1% com-
pared to only xy slices. The model achieves 88.37% topl video accuracy on the IPN
Hand dataset by fusing the spatiotemporal features from xy and yt slices. Subfigures (c),
(d), and (e) of Fig. 4.6 show the confusion matrices for these best models of different
datasets respectively.

We find some interesting findings from the above results: (i) both xt slices and

38



3.0

20.0
17.5
2.5
15.0
2.0
12.5
T ]
K &
o 1.5 o 10.0
= =1
[= (=
7.5
1.0
5.0
0.5
2.5
0.0 0.0
0 1 2 3 4 5
Predicted label Predicted label
(a) Weizmann (xy+yt) (b) KTH (xy+xt+yt)
20.0
20.0
17.5
17.5
15.0
15.0
12.5
T T 12.5
8 £
- 10,0 =
“E-‘ % 10.0
= [=
1.5 75
5.0 5.0
2.5 2.5
0.0 0.0

Predicted label

(c) Cambridge (xy+xt)

True label
o o -~ o [, I S VY ] N o

=
NP O

4 5
Predicted label

(e) IPN Hand (xy+yt)

6 7 8 11

Predicted label

(d) Northwestern (Xy+xt+yt)

250

200

150

100

50

Fig. 4.6 Confusion matrices of best model’s performance for each dataset (The classes

corresponding to the index values are shown in the Table 4.1).
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Table 4.3 Results of different slices for hand gesture recognition on the Cambridge
Hand Gesture, the Northwestern University Hand Gesture, and the IPN Hand datasets.

Datasets Cambridge Northwestern IPN Hand
Slices F_Acc | V_Acc | F_Acc | V_Acc | F_Acc | V_Acc

Xy 87.91 | 95.56 | 32.81 | 45.71 | 60.12 | 68.66
Xt 97.48 | 97.22 | 88.62 | 89.05 | 67.90 | 71.30
yt 95.17 | 97.22 | 90.83 | 91.90 | 70.53 | 78.84

Xy + xt 100.0 | 100.0 | 90.35 | 91.43 | 77.65 | 82.56
Xy + yt 94.46 | 96.11 | 87.94 | 89.05 | 79.63 | 88.37
Xt + yt 97.37 | 98.89 | 9248 | 92.38 | 77.20 | 82.83
Xy +xt+yt | 9853 | 98.89 | 91.43 | 93.81 | 81.81 | 87.83
* F_Acc means the accuracy for frames; V_Acc means the accuracy for videos
after voting mechanism.

* Bold indicates the highest top1 accuracy, and underline indicates the second
highest accuracy.

yt slices lead to better performances than xy slices (in our experiments, xt and yt slices
always outperform xy slices, as shown in Fig. 4.7), (ii) the relative improvement brought
by xt or yt slices can vary a lot (e.g. yt is more useful for the Weizmann dataset, but for
other datasets the performances are similar on xt and yt), as it depends on the actions
or hand gestures the dataset contains, (iii) the combination of different types of slices
does not always improve the performance of the network (for instances, fusing yt slices
with xy slices reduces the accuracy relative to only using yt slices on the Cambridge
and Northwestern datasets and using all three types of slices does not always achieve
the best performance).

The number of parameters and FLOPs for the two backbones that we use are shown
in Table 4.4. As the numbers in the table show, our method is not computationally
expensive and the network has few parameters. Moreover, our architecture is flexible

since one can easily exchange the backbone network to adapt to specific datasets.

Table 4.4 Number of parameters (M) and Flops (G) for the two CNN backbones that
we used.

Backbone ResNet18 ResNet34
#Slice Types Xy | Xy+xt | Xy+xt+yt | Xy | Xy+Xxt | Xy+xt+yt
Parameters (M) | 11.18 | 2236 | 33.54 | 21.19 | 42.58 | 63.87
FLOPs (G) 1.82 | 3.65 5.47 3.68 | 7.36 11.03

We evaluate our model on five different datasets (both action recognition and hand
gesture recognition tasks) and obtain very good results. Next, we would like to com-

pare our results with those of other studies. The performances for five state-of-the-art
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Fig. 4.7 Overview of the performances on xy, xt, and yt slices on different datasets.

methods on the Weizamnn and KTH datasets are shown in Table 4.5. Note that our
approach outperforms all other methods, including those using optical flow and 3D-
CNNs. Besides, the calculation of optical flow and the training of 3D-CNNs are much
more expensive compared to our approach. Thus, our model achieves a good balance

of performance and computational cost.

Table 4.5 Comparison with SOTA methods on the Weizmann and KTH datasets.

Methods Weizmann | KTH

3D-ConVNet (encoded frames) (Baccouche et al. 2011) 94.58 94.39
2D-CNN (dynamic images) (Bilen et al. 2016) 85.2 86.8
3D-CNN (Gaussian-weighted aggregation) (Basha et al. 2022) 96.53 95.86
PCANet-2 (3 types slices) (Abdelbaky and Aly 2020) 100 90.47
AlexNet (optical flow) (Darafsh et al. 2021) 100 97.95

ours 100 99.16

Table 4.6 shows state-of-the-art results for hand gesture recognition datasets. The
performances of our model surpass others on the Cambridge and IPN Hand datasets,
but still need improvement for the Northwestern dataset. More importantly, our model
obtains better results on the Cambridge dataset than 2D-CNNs combined with RGB
frames and optical flow and also outperforms 3D-CNNs on the IPN Hand dataset, which
once again prove that our model achieves a good trade-off between performance and
computational load. The reason for why we do not obtain SOTA results on the North-
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western dataset may be that the lengths of the videos are much shorter than in case of
other datasets (mean length: 40 frames). Due to its high resolution (640x480), the in-
formation on the resized slices (680x40—256x256 or 480x40—256x256) that we feed

into the network may have some degree of distortion and thus reduce performance.

Table 4.6 Comparison with SOTA methods on the Cambridge, the Northwestern and
the IPN Hand datasets.

Methods Cam | North | IPN
Key frames and feature fusion (Tang et al. 2019) 98.23 | 96.89 -
C3D (Tran et al. 2015) - 89.36 | 77.75
ResNetXt-101 (RGB+OF) (Benitez-Garcia et al. 2021) - - 86.32
ResNetXt-101 (RGB+Seg) (Benitez-Garcia et al. 2021) - - 84.77

2D-CNN with key frames (RGB+OF) (Yu et al. 2022) | 98.62 | 97.64 -
Two stream CNN with BGRU (RGB+OF) (Verma 2022) | 99.4 | 98.6 -
ours 100 | 93.81 | 88.37

* OF means optical flow frames; Seg means hand segmentation frames.

4.4 Conclusion

In this chapter, we propose novel slices called salient spatiotemporal slices, which can
represent the spatiotemporal information of videos and enable simple 2D-CNN back-
bones to effectively capture the relevant temporal information needed for video under-
standing. We process videos from a new perspective - not as stacked RGB frames, but
as 3D blocks that can be sliced along different axes (x, y, and t axes) - this is a simple but
effective approach for video understanding. The xt and yt slices can help visualize the
dynamics of the videos, and can help the network to have a more intuitive understanding
of different actions. Moreover, we introduce an easy way to exclude non-salient slices
by measuring the deviation from straight lines with the determinant of the structure
tensor.

We conduct a series of experiments on both coarse-grained action recognition and
fine-grained hand gesture recognition datasets to illustrate the contributions of the dif-
ferent types of slices, and also the effect of using the combinations of different types
of slices. We find that the results on spatiotemporal slices always outperform those
on only xy slices and the combination of slices usually leads to an improvement in
network performance. Moreover, our results suggested that a simple architecture with
proper design can outperform state-of-the-art methods. We expect those good results of
our network because 2D-CNNs are good at extracting local orientation of images and
here we encode the dynamics of an action as local orientations in the xt and yt slices

and feed them into our network.
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In the future, we hope to design different backbones to find the one that best cap-
tures the temporal information of the entire video for better performance. Furthermore,
we would like to find a solution to the distortion problem of the motion trajectories
when resizing the slices of short high-resolution videos, in order to overcome current

challenges.
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CHAPTER 5

Medical Application: 2D-CNNs using Salient Spatiotemporal Slices

to Analyze Glaucoma and Visual Impairment via Walking Patterns

5.1 Introduction

Glaucoma is a common eye disease, mostly found in the elderly. It causes visual impair-
ments and even irreversible blindness, so early detection and diagnosis are crucial for
intervention and treatment of glaucoma. Although there is no cure for glaucoma, timely
intervention and treatment can prevent or slow down its progression. However, clini-
cal diagnosis of glaucoma is complex and requires patients to take a lot of examinations
and visual tests, which require clinical expertise and are time-consuming and expensive.
In addition, insufficient medical resources are common in remote and underdeveloped
areas. The development of artificial intelligence in the medical field provides the possi-
bility of remote diagnosis of glaucoma and visual impairment, which can alleviate the
current medical dilemma to a certain extent.

The increase in computing resources and large amounts of medical data has enabled
the application of artificial intelligence methods, especially deep learning, in medicine
and neuroscience and achieved good results. Specifically, some proposed convolutional
neural network (CNN) models utilize medical images, such as retinal fundus photogra-
phy and optical coherence tomography (OCT) for glaucoma diagnosis and prediction.

Artificial intelligence models usually use the same data as the clinical experts do,
such as various visual field test results, clinical data, retinal images, and OCT images.
A few studies examine the impact of glaucoma and visual impairment on motion and
show there is evidence that glaucoma affects brain structure and function, leading to
defects such as impaired visual-motor coordination. This may result in impaired postu-
ral control and orientation of the patient, thereby increasing the risk of falls. Fall is the
leading cause of injury-related death among glaucoma patients. Walking becomes more
difficult as people age and the risk of falls increases accordingly. Moreover, glaucoma
develops with age and further affects peripheral or side vision, meaning that elderly
patients with glaucoma are at further increased risk of falls due to some degree of vi-
sion loss and the effects of advanced age. Thus, we would like to study the relation of

glaucoma, visual impairment, and motion.
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CNNs have become the most successful deep learning networks in glaucoma anal-
ysis. Compared with fully connected neural networks, local connections and weight
sharing strategies of CNNs enable the network to better optimize and suppress model
overfitting. Compared with Vision Transformers, CNNs are more friendly to small
medical datasets and limited computing power, and are easier to generalize. Therefore,
we use CNNs as the backbone of our network.

There are two common motion capture (Mocap) systems, one is the marker-based
optical motion capture systems, for example, using the Vicon system to capture the
movement of markers worn by participants; the other is the inertial measurement unit
(IMU)-based motion capture systems. However, both methods require professional
equipment and specialized laboratories. In addition, subjects may feel uncomfortable
wearing the markers or IMU. Therefore, we would like to design a neural network ar-
chitecture that performs well on simple video recording. This way, we only need to
place a camera at a fixed location to capture moving participants.

In our dataset (Beyer et al. 2024), elderly health controls and elderly glaucoma
patients walked on a treadmill at different speeds while doing visual function measure-
ments and clinicians recorded the experimental videos for further investigation. Al-
though CNNs perform well in action recognition tasks, these actions often have sig-
nificant differences that can be easily identified. The biggest challenge with CNNs in
detecting glaucoma and visual impairment through motion is that even clinicians can-
not find differences between them and controls by motion. The differences in motion
between the two groups are subtle and not sufficient for classification using common
CNNE.

Videos are images stacked in time (with X, y and z axes), and each frame has a frozen
action at a time index. Since all participants perform the same action, it is difficult to
distinguish glaucoma or visual impairment patients from healthy controls by learning
the spatial features on frames. Therefore, we change the perspective, treat the video
as a 3D cube and slice it. By slicing, we obtain xt slices and yt slices that contain
spatiotemporal information. We refer to them as motion slices. In addition, the motion
slice has the complete motion trajectory of the participant without missing any details.
Hu and Barth (2024) proposed a novel 2D-CNN model to recognize not only coarse
actions but also fine-grained gestures. In order to analyse the motion trajectories on
the slices, we use their model to analyze glaucoma and visual impairment based on the

motion patterns.

5.2 Methodology

Compared with motion data captured by Mocap systems and other clinical data, video

recordings do not require specialized equipment and expertise, making them easier to
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access and cheaper. However, video recordings are more difficult to analyze than typical
clinical data or images. 3D-CNN and Video Transformer have achieved great success
in video understanding tasks, but they both require large datasets and computing power.
Unfortunately, our clinical dataset is small and we lack computational resources. Fur-
thermore, the networks are not designed for motion analysis, and detailed motion in-
formation is easily lost during temporal downsampling of these networks. 2D CNNs
are more friendly to small datasets and do not require high computational cost, and the
motion slices enable them to use the entire motion trajectory in the video recording. So

we use the proposed 2D-CNN architecture (Hu and Barth 2024) for motion analysis.

5.2.1 Pre-processing

The recorded videos have a resolution of 1920x1080 (horizontal) or 1080x1920 (ver-
tical) pixels and a frame rate of 25 frames per second. Each video is approximately
60 minutes long. When recording the video, some participants took a break during the
experiment, or there was some intervention from the experimental conductor. There-
fore, we manually clip these distractors from the videos. We manually crop parts of the
video that do not involve motion to reduce the computational load on the network. The
dimensions of the new video are 1280x1080 pixels and 1080x1280 pixels. Since there
are two kinds of videos, horizontal and vertical, we rotate the vertical videos to ensure
that all the same kind of slices contain the same kind of spatiotemporal information
(horizontal or vertical spatiotemporal). Since the videos are too long and participants’
walking patterns are repetitive, we segment the videos into shorter clips. Each clip con-
sists of around 264 frames (~10.56 seconds), which is close to the clip length of public
video datasets. Afterwards, we resized the video from 1280x1080 pixels to 264x222

pixels to speed up training.

5.2.2 Motion Slices

Due to the redundancy of video and limited computing resources, a clip composed of
multiple frames obtained through temporal downsampling is usually used to represent
the entire video in most 3D-CNN and Vision Transformer networks. A lot of mo-
tion details are lost during temporal downsampling, which does not have much impact
on coarse motion classification since excessive detail is not required. However, these
details are crucial for detecting visual impairments using tiny anomalies in motion. 2D-
CNN s lack the ability to model the temporal dependence between frames. Temporal
features can only be extracted after being combined with a recurrent neural network
(RNN) such as a long short-term memory network. But the length of time series that
RNN can process is limited, and the network may miss some key clues for decision-

making.
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In order to obtain the entire motion trajectory contained in the video recordings,
we use the spatiotemporal slices (xt and yt slices) described in Chapter 4 as motion
slices. The examples of xy, xt and yt slices of our video recording dataset are shown in

Figure 5.1.

yt

Fig. 5.1 Overview of slicing xy, xt, and yt slices (As we can see different motion trajec-
tories on xt and yt slices).

5.2.3 Sampling Strategies

Sparse sampling for xy slices Since the motion is similar on each frame, there is some
redundancy among xy slices. Therefore, we use sparse sampling to downsample the
video clips. Specifically, we uniformly segment each video clip into N snippets and
randomly select one frame from each snippet to form a new clip representing the origi-
nal video clip.

Saliency sampling for motion slices There is also some redundancy among motion
slices. We observe that the walking participants do not occupy the entire video block,
which results in some slices not containing any motion trajectories. As Figure 5.2
shows, the non-salient slices obtained from parts of the video outside the red rectangle
do not have any motion information, but only the static background. We need to exclude
these non-salient frames as they have no useful information and may even harm the
performance of the network. Only the salient slices obtained within the red rectangle
will contribute to network decisions.

As described in Chapter 4, Section 4.2.2.2, we calculate saliency for each frame
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Fig. 5.2 Overview of yt slices from ¢, to to63. By calculating the saliency of each slice,
we can exclude non-salient slices and keep only salient slices.

and only the N slices with the highest saliency values are selected. For the method of

calculating saliency, see Algorithm 1

Algorithm 1 Slice Saliency Calculation

Input: xt slice or yt slice /;

Output: The average saliency value of slice, S;,4;

1:
2:
3:

Convert slices into gray-scale image /,;
Apply a Gaussian low-pass filter;

Use Sobel operator to calculate the derivatives in the m and n directions:

1 1
dr = |2 *[1 0 —1]*Ianddy: 0 *[1 2 1]*1;

1 -1
Calculate terms I, I,, and I, for structure tensor J: I, = da?, I,,, = dy* and
I, = dx * dy;

Perform Gaussian filtering on the above calculated terms;
Calculate the determinant R = I, * [, - I, * 2;
Apply non-maximum suppression to get optimal values;

Calculate the average of the optimal values Sg,,;

5.2.4 Workflow and Architecture

We use the shallow network ResNetl8 as our backbone for our simple architecture

because our dataset is rather small. Our motion slices enable 2D-CNNs to extract spa-

tiotemporal features directly from images, so complex architectures are unnecessary. It
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is worth noting that the backbone of our architecture is replaceable and more suitable
backbones can be used for specific tasks.

Figure 5.3 (a) and (b) show the processing of long videos and the detailed workflow
of our algorithm. As described in Figure 5.3 (a), a raw video is clipped into several
video clips, each video clip consists of about 264 frames. Then, a video clip is sliced
differently to obtain xy, xt and yt slices. After that, sparse sampling is used to select N
Xy slices that are roughly evenly distributed in time and salient sampling is applied to
select xt and yt slices with the N highest salient values to form a new clip representing
each video clip. Next, the new clips are fed into our 2D-CNN model to make predictions
for each slice. And we use the majority of the predictions of all slices in a new clip
as the prediction for the corresponding video clip. Similarly, the predictions of most
video clips in the same video represent the prediction of this participant. The detailed
workflow is described in Figure 5.3 (b).

In order to obtain the best model for our task, we explore three different architec-
tures as Figure 5.3 (c) shows. As shown in Figure 5.3 (c) left, we use a single-stream
architecture to process different types of slices respectively and compare the perfor-
mance of different slices. As described in Hu and Barth (2024), the combination of
different slices can improve the network performance. So we also use a two-stream
network, as shown in Figure 5.3 (c) middle and a three-stream network, as shown in
Figure 5.3 (c) right to explore the best combination. In these two architectures, we fuse
features of different slices at a late stage. We aim to obtain better results by combining

different types of slices in our task.

5.2.5 Performance Metrics

Performance metrics are used to evaluate the network performance and different fields
of study often use specific evaluation matrices. In the medical field, accuracy, sensitiv-
ity and specificity are often used to evaluate a model, thereby we also use these three
metrics for performance evaluation. Accuracy is the most popular evaluation matrix for
classification. It indicates the proportion of correctly classified samples. However, ac-
curacy does not describe the proportion of each class that is correctly classified, which
is important in clinical research. Sensitivity is the proportion of correctly classified
positive samples (healthy controls, labeled as 1) and specificity is the proportion of cor-
rectly classified negative samples (diagnosed glaucoma or visual impairment, labeled

as 0). The accuracy, sensitivity and specificity are defined as below:

A B TP +TN 5.1)
Y = TP Y TN+ FP+ FN’ '
TP
o 5
Sensitivity TPL PN’ (5.2)
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(a) The processing of our long video. First, we divide a long video into several 264-frame snippets
and obtain different types of slices; then we sample different types of slices from snippets to form
clips based on our sampling strategies; all the clips obtained from one participant represent the
participant.

Input: Deep Learning Prediction Prediction Prediction
salient xt/yt slices Network per frame per clip per participant
(b) The workflow of the proposed approach. Predictions are for frame, clip and participant.
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(c) The overview of our architecture. The left part shows the case for a single type of slice, the middle
part shows the case for two types of slices, and the right part shows the case for all three types of slices.

Fig. 5.3 Detailed workflow and architecture of our network. (a) The processing of our
long video. (b) The workflow of our proposed approach. (c¢) The overview of our
architecture.
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TN
TN+ FP’

where TN is the number of true negatives, FP is the number of false positives, TP is the

Speci ficity = (5.3)

the number of true positives and FN is the number of false negatives.

5.3 Experiments

5.3.1 Datasets

Our participants include 18 glaucoma patients and 30 healthy controls, all aged over
60 years. The dataset consists of video recordings of these participants walking on a
treadmill while they perform three visual tasks (visual field, visual acuity and contrast
sensitivity tasks) under three conditions (static, dynamic and dynamic+ conditions).
Static refers to participants standing in place, dynamic refers to participants walking
at a speed of 3.5 km/h, and dynamic+ refers to participants walking at their preferred
speed.

5.3.2 Implementation Details

For video preprocessing, we use the ffmpeg package to crop and clip videos and use
h264 video encoder to change the video format to mp4 format. Since our dataset is
rather small, we use 5-fold cross validation to evaluate our model. We randomly spilt
the participants into 5 folds and these folds are the same across tasks and under different
conditions for better comparison. We choose the ResNet18 pre-trained on ImageNet1 K
(Deng et al. 2009) as backbone for our architectures.

We conduct experiments on one GeForce RTX 3060 GPU. Our training batch size
and validation batch size are both 128, and we set the learning rate to 0.0001. For
each experiment, we train the model for only 10 epochs. For training, all slices are first
resized to 256x256 pixels and then randomly cropped to 224x224 pixels. For validation,
all slices are directly resized to 224x224 pixels.

5.3.3 Results and Discussions
5.3.3.1 Diagnosed Glaucoma vs Healthy Control

Our dataset is highly unbalanced, with almost twice as many healthy controls as glau-
coma patients. Besides, glaucoma patients vary greatly in severity, meaning they are
in different stages of glaucoma, this makes the dataset even more imbalanced. To ver-
ify if there are significant differences in motion patterns between diagnosed glaucoma
patients and healthy controls and to reduce the impact of dataset’s imbalance, we ran-

domly select 18 healthy controls to compare with 18 diagnosed glaucoma patients.
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We first carry out experiments for the visual acuity task under three conditions and
the results are shown in Table 5.1. We find that the accuracy of frame, clip and par-
ticipant for the dynamic, dynamic+ and static conditions on xy, xt and yt slices are all
around 50%, which indicate that there are no significant difference between diagnosed
glaucoma patients and healthy controls in our dataset. And we also notice that all speci-
ficity values are quite low, meaning that it is difficult to distinguish diagnosed glaucoma
patients from healthy controls. After we check the results of the different folds we use,
we notice that performances vary a lot across folds. This finding again shows that the
severity of glaucoma diagnosis varies greatly among patients. We recommend to group

diagnosed glaucoma patients by severity in future data collections.

Table 5.1 Comparison of diagnosed glaucoma patients and healthy controls with differ-
ent types of slices in Visual Acuity (VA) task.

Dynamic Dynamic+ Static

Xy Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par

Acc % | 4996 | 49.87 | 52.78 | 51.62 | 52.04 | 50.00 | 49.15 | 50.04 | 50.00

Sen % | 59.23 | 59.84 | 66.67 | 59.40 | 62.10 | 61.11 | 65.53 | 66.86 | 66.67

Spe % | 41.39 | 40.73 | 38.89 | 44.17 | 42.24 | 38.89 | 35.43 | 35.70 | 33.34

xt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par

Acc % | 53.81 | 56.15 | 50.00 | 56.54 | 57.55 | 55.56 | 52.69 | 55.15 | 52.78

Sen % | 65.84 | 70.10 | 66.67 | 66.71 | 68.35 | 66.67 | 66.45 | 71.47 | 72.22

Spe % | 40.96 | 41.35 | 33.34 | 4548 | 45.77 | 44.45 | 38.49 | 38.19 | 33.34

yt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par

Acc % | 52.85 | 51.75 | 47.22 | 53.71 | 55.73 | 55.56 | 47.92 | 48.39 | 50.00

Sen % | 67.35 | 70.08 | 61.11 | 64.71 | 66.76 | 61.11 | 59.30 | 62.51 | 66.67

Spe % | 39.26 | 34.55 | 33.34 | 42.83 | 44.80 | 50.00 | 37.45 | 35.94 | 33.33

* Frame: results for frames; Clip: results for clips; Par: results for participants.
* Acc: accuracy; Sen: sensitivity; Spe: specificity.

5.3.3.2  Visual Impairment vs Healthy Control based on OCT

Although no differences in motion patterns are found between diagnosed glaucoma pa-
tients and healthy controls in our experiments, there are many studies assessing visual
impairment through optical coherence tomography (OCT) by deep learning methods.
Therefore, we next use our architecture to analyze differences in motion patterns be-
tween visually impaired subjects and healthy controls.

First, we have to assign visually impaired subjects and healthy controls. Since there
are preperimetric glaucoma patients in our dataset, we perform a principal component

analysis (PCA) using data including OCT to regroup the participants into visually im-

52



paired subjects and healthy controls, in order to examine whether there is a relationship
between retinal changes and motion patterns through our model. Our PCA analysis is
based on OCT measurements because they are sensitive to changes in retinal structure
and retinal thinning is one of the early symptoms of glaucoma disease. We also include
age and gender as covariates in our PCA analysis to eliminate the influence of irrelevant
variables. The percentage of variance explained by the principal component 1 (PC 1) is
91.3%, thereby we use PC 1 to regroup. As shown in Figure 5.4, we choose 10 partic-
ipants from each extreme side as visually impaired subjects (participants in the upper
right box) and healthy controls (participants in the lower left box). Then we train our

model again by using new groups for different visual tests under various conditions.

Group
* Control
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PC 1 (91.3%)
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Fig. 5.4 The selection of participants using the first dimension of the PCA.

Similar to previous experiments, we first conduct experiments on the visual acuity
task to test whether visually impaired subjects and healthy controls can be distinguished
and Table 5.2 shows the related results. The accuracy under all conditions on all types
of slices (except under the static condition on xy slices) suggests that there are strong
differences in motion patterns between visually impaired subjects and healthy controls.
We find that motion slices generally perform better than xy slices. Xt slices obtain
the best results among three different types of slices, achieving the highest participant
accuracy of 85% in the dynamic condition.

To further verify our above experimental observations, we then conduct experiments

for the contrast sensitivity task and the visual field task. Table 5.3 shows the results for
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Table 5.2 Comparison results of visually impaired subjects and healthy controls with
different types of video slices in Visual Acuity (VA) task.

Dynamic Dynamic+ Static

Xy Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par

Acc % | 6047 | 62.02 | 70.00 | 60.85 | 60.41 | 70.00 | 49.89 | 49.38 | 50.00

Sen % | 71.41 | 75.43 | 80.00 | 56.15 | 54.28 | 60.00 | 66.20 | 66.23 | 70.00

Spe % | 53.36 | 52.73 | 60.00 | 65.03 | 65.65 | 80.00 | 36.74 | 35.63 | 30.00

xt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par

Acc % | 71.62 | 75.69 | 85.00 | 73.26 | 77.92 | 80.00 | 67.01 | 72.96 | 80.00

Sen % | 63.87 | 68.07 | 80.00 | 64.05 | 66.01 | 70.00 | 74.27 | 83.06 | 90.00

Spe % | 80.41 | 85.30 | 90.00 | 80.64 | 88.01 | 90.00 | 61.52 | 65.20 | 70.00

yt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par

Acc % | 66.61 | 69.38 | 75.00 | 62.66 | 65.36 | 70.00 | 60.59 | 64.05 | 75.00

Sen % | 56.32 | 61.98 | 70.00 | 43.16 | 43.81 | 50.00 | 61.35 | 63.05 | 70.00

Spe % | 78.59 | 79.51 | 80.00 | 79.91 | 84.85 | 90.00 | 60.94 | 66.02 | 80.00

* Frame: results for frames; Clip: results for clips; Par: results for participants.
* Acc: accuracy; Sen: sensitivity; Spe: specificity.

the contrast sensitivity task, and the results again show that visually impaired subjects
and healthy controls can be distinguished by analyzing motion patterns. All perfor-
mances obtained for motion slices are better than those for xy slices, and xt slices are
most useful in classifying these two groups. The highest participant accuracy of 80% is
obtained on xt slices under the dynamic condition.

The results for the visual field task are shown in Table 5.4. For this task, yt slices do
not perform as good as for the other two tasks. However, xt slices still obtain the best
performances, again demonstrating that visually impaired subjects are distinguishable
from healthy controls.

By comparing all results from Table 5.2, Table 5.3, and Table 5.4, we notice that
xt slices always perform better than yt slices, which suggests that the horizontal spa-
tiotemporal information in the xt slice is important for discriminating visually impaired
subjects and healthy controls compared to the vertical spatiotemporal information in the
yt slice. This indicates that visual impairment may have a greater impact on people’s
horizontal movements than their vertical movements. In general, motion slices perform
better than xy slices, and xy slices seem unable to capture the nuances of motion in
static condition. This demonstrates the effectiveness of our motion slices. Note that
the only difference in the slices is the motion, since all three types of slices are slicing
from the same video. Specifically, the motion differences are the frozen action at a cer-

tain time index in the xy slices, the horizontal spatiotemporal motion trajectory in the
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Table 5.3 Comparison results of visually impaired subjects and healthy controls with

different types of video slices in Contrast Sensitivity (CS) task.

Dynamic Dynamic+ Static

Xy Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % | 60.82 | 61.84 | 65.00 | 49.48 | 49.56 | 55.00 | 47.66 | 47.22 | 55.00
Sen % | 67.67 | 69.10 | 80.00 | 60.71 | 61.15 | 60.00 | 71.52 | 71.19 | 80.00
Spe % | 52.45 | 52.93 | 50.00 | 41.25 | 41.86 | 50.00 | 28.30 | 27.74 | 30.00

xt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % | 73.46 | 77.36 | 80.00 | 63.33 | 65.04 | 70.00 | 63.02 | 64.84 | 70.00
Sen % | 64.16 | 64.98 | 70.00 | 41.60 | 41.60 | 50.00 | 65.09 | 67.95 | 70.00
Spe % | 82.53 | 88.80 | 90.00 | 82.65 | 85.38 | 90.00 | 62.60 | 64.07 | 70.00

yt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acce % | 63.37 | 70.07 | 70.00 | 59.52 | 59.56 | 65.00 | 52.22 | 52.85 | 65.00
Sen % | 52.10 | 52.18 | 50.00 | 33.22 | 28.77 | 40.00 | 55.19 | 47.89 | 60.00
Spe % | 73.58 | 85.80 | 90.00 | 83.11 | 86.92 | 90.00 | 53.67 | 62.85 | 70.00

* Frame: results for frames; Clip: results for clips; Par: results for participants.
* Acc: accuracy; Sen: sensitivity; Spe: specificity.

Table 5.4 Comparison results of visually impaired subjects and healthy controls with

different types of video slices in Visual Field (VF) task.

Dynamic Dynamic+ Static

Xy Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % | 5730 | 57.48 | 55.00 | 54.15 | 53.36 | 55.00 | 60.10 | 59.75 | 60.00
Sen % | 33.63 | 32.59 | 30.00 | 45.09 | 43.68 | 50.00 | 72.63 | 72.61 | 70.00
Spe % | 77.41 | 78.77 | 80.00 | 59.83 | 60.31 | 60.00 | 54.55 | 53.93 | 50.00

xt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % | 6892 | 76.06 | 75.00 | 68.68 | 73.65 | 70.00 | 75.16 | 78.43 | 80.00
Sen % | 54.25 | 59.56 | 60.00 | 62.32 | 66.76 | 60.00 | 72.05 | 78.57 | 80.00
Spe % | 84.27 | 93.30 | 90.00 | 77.93 | 83.78 | 80.00 | 79.96 | 79.97 | 80.00

yt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % | 51.98 | 48.07 | 50.00 | 50.21 | 50.98 | 50.00 | 58.01 | 60.19 | 65.00
Sen % | 39.62 | 32.93 | 40.00 | 34.86 | 33.96 | 40.00 | 58.74 | 66.13 | 70.00
Spe % | 62.83 | 60.58 | 60.00 | 61.04 | 64.70 | 60.00 | 59.80 | 58.80 | 60.00

* Frame: results for frames; Clip: results for clips; Par: results for participants.
* Acc: accuracy; Sen: sensitivity; Spe: specificity.
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xt slices, and the vertical spatiotemporal motion trajectory in the yt slices. These mo-
tion differences make the network performance differ across the three types of slices.
According to our experimental results, xt slices are the best slices to classify different
groups in our task.

By comparing the results of all tasks under the same conditions, we find that the
differences in motion patterns between the two groups are more apparent when per-
forming the visual acuity task. By comparing performance across all conditions in
the same task, we observe that visually impaired subjects are generally easier to de-
tect when participants perform visual tasks in the dynamic conditions. Interestingly,
some of our results differ from what neuroscientists hypothesize, as we find significant
differences in motion patterns of xt slices under static conditions as well. This is eas-
ily explained by the fact that our participants do not absolutely stand still during the
task. Although they stand in place, in order to complete the corresponding visual test
tasks, visually impaired subjects have to make some body movements to compensate
for their visual impairment. Our experimental results show that motion slices can accu-
rately capture these motions. We find that differences in sensitivity and specificity are
generally smaller in the static condition than in the dynamic and dynamic+ conditions.

Specificity is much higher than sensitivity in the dynamic and dynamic+ conditions.

5.3.4 Ablation Experiments

As suggested by Hu and Barth (2024), a combination of different types of slices can
make it easier for the network to distinguish different groups. To verify whether the
above approach is useful for our task, we further implement experiments on combina-
tions of different types of slices for the visual acuity task, i.e. the combination of xt
and yt slices and the combination of all three types of slices. The results from Table 5.5
show that the combinations of slices hurt the network performance, which means there
is no positive information compensation among different types of slices. Information

decoupling is more beneficial in detecting visual impairments in our task.

5.4 Conclusion

Glaucoma is one of the leading causes of visual impairment and brings a lot of inconve-
nience to patients’ lives. Early detection and intervention of glaucoma can effectively
prevent patients from irreversible vision loss. There are many clinical methods to di-
agnose glaucoma, but these methods usually require the full participation of clinicians,
and are very cumbersome and time-consuming. Some studies proved that glaucoma
affects movement. Therefore, studying the relationship between patients and healthy
controls in motion also provides a potential method for diagnosing eye diseases. In this

chapter, we propose a novel 2D-CNN framework to study whether there are significant
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Table 5.5 Comparison results of visual impairment and healthy controls with different
types of video slices in the Visual Acuity (VA) task.

Dynamic Dynamic+ Static

xt+yt Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % 62.04 | 62.24 | 60.00 | 58.49 | 56.96 | 55.00 | 63.11 | 70.52 | 75.00
Sen % 23.97 | 21.05| 20.00 | 19.04 | 12.37 | 10.00 | 63.02 | 67.02 | 70.00
Spe % 97.07 | 100.0 | 100.0 | 94.19 | 97.39 | 100.0 | 63.34 | 73.61 | 80.00
xy+xt+yt | Frame | Clip | Par | Frame | Clip | Par | Frame | Clip | Par
Acc % 54.02 | 51.97 | 55.00 | 62.72 | 63.18 | 70.00 | 47.08 | 48.99 | 50.00
Sen % 16.99 | 11.70 | 20.00 | 24.47 | 23.59 | 40.00 | 36.26 | 35.09 | 30.00
Spe % 87.23 | 88.00 | 90.00 | 95.56 | 97.39 | 100.0 | 56.83 | 61.54 | 70.00

* Frame: results for frames; Clip: results for clips; Par: results for participants.
* Acc: accuracy; Sen: sensitivity; Spe: specificity.

differences in movement patterns between patients and healthy controls by using video
recordings of participants performing visual tasks.

Based on our results for the visual acuity task under three conditions, we do not find
any significant differences in motion patterns between glaucoma patients and healthy
controls, so we conclude that diagnosing glaucoma through motion patterns is not pos-
sible. By analyzing experiments of visually impaired subjects and healthy controls
in all tasks under all conditions, we find that visually impaired subjects can be easily
distinguished from healthy controls by using xt slices. This suggests that there is a re-
lationship between visual impairments and motion patterns, indicating that we can use
motion differences to detect visual impairments.

Currently, we use the majority of predictions from clips of the same participant to
represent predictions for that participant, and the majority of predictions from slices of
the same clip to represent predictions for that clip. However, there may not be abnormal
walking patterns within the 264-frame-clip period, or the abnormal clips may not be the
majority of all clips for a participant. In the future work, we would like to propose a

better method to obtain the prediction for the participant.
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CHAPTER 6

Effective Use of Color and Temporal Information for Video Analysis

6.1 Introduction

Artificial Intelligence (AI) aims to solve problems, perform tasks and meet demands
by perceiving, learning, understanding and reasoning like human or even outperform
human beings. Neural networks such as Convolutional Neural Networks (CNNs) or
Transformers are currently the most popular Al approaches which are inspired by hu-
man vision. CNNs, for example, perform well because they include an additional bias,
which is inspired by vision and reduces the complexity of fully connected networks.
We further investigate potentially useful biases inspired by human visual knowledge to
improve the performance of video understanding.

Color is an important part of vision and has been proven to have a great effect on
attention (MacKay and Ahmetzanov 2005, Pan 2010). The sensor cells in the retina
include approximately 120 million rod cells and 6 to 7 million cone cells, which are
distributed in different parts of the retina. Rod cells are more sensitive to light (Neves
and Lagnado 1999). Cone cells mediate color vision. There are three types of cone
cells, red, green and blue (long, medium and short wavelength) respectively, and they
are most sensitive at around 565 nm, around 535 nm and around 420 nm respectively
(Bull 2014).

The RG B color space used in cameras is designed based on the way the human
visual system perceives color. Some professional cameras have three CCD or CMOS
sensors, each for red, green and blue channel respectively. The more economical way
is to combine a sensor with a single color filter to represent three color channels (Bull
2014). Most color image sensors use Bayer Filters with 50% green elements, 25% red
elements and 25% blue elements. Green filters are more numerous because the human
eye has a peak sensitivity around 555 nm in the green region of the spectrum (Snowden
et al. 2012).

The length of the clips representing the videos affects network performance, because
longer clips contain richer temporal information but require more computing power
from the network. We here propose a novel color sampling strategy inspired by the

human vision system. Specifically, we sample color channels from frames at different
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times rather than using the traditional RGB frames. It turns out that trading color
information for temporal information pays off. We aim to introduce richer temporal
information by using our novel color-sampling scheme.

Here we first choose CNNs as our backbones. 2D-CNNs have been proven to be
good at image processing but lack the capacity to extract temporal features, so we use
a two-stream network adding a temporal stream to show that our sampling strategy
can provide useful temporal information for 2D-CNNs. 3D-CNNs are able to capture
spatiotemporal features in a small 3D neighborhood but unable to model long-range
temporal dependencies for video analysis. Thus, we explore both single and two-stream
architectures for 3D-CNNs and show that our sampling strategy benefits 3D-CNNs and
the performance can be even further improved by fusing a temporal stream using our
sampling strategy. We also use Transformers as our backbone, because they are better
at capturing long-range temporal context but suffer a lot from high computational costs.
Similar to 3D-CNNs, we also use single and two-stream Transformers to show that
our sampling strategy introduces longer temporal information, thereby improving the
network performance of Transformers.

Note that our approach does not introduce any additional computational costs for
the three networks we use. Due to the novel sampling strategies we cannot use weights
pre-trained on standard RG B frames, so we train all the networks from scratch. And we
evaluate our methods on both UCF101 (Soomro et al. 2012b) and HMDBS51 (Kuehne
et al. 2011) datasets and demonstrate the effectiveness of our color sampling strategy

by obtaining significant improvements for both datasets.

6.2 Methodology

In this section, we give a detailed description of our color-sampling strategies. We also
give the overviews of our 2D-CNN, 3D-CNN and Transformer architectures as well
as the two-stream architecture that fuses the outputs of two single streams. The two-
stream network operates on standard RG' B frames and novel frames that we propose

using color sampling strategies respectively.

6.2.1 Color Sampling Strategies

The representation of a frame F’ at time ¢; is as follows: P represents the pixel in one
frame, W and H are the width and height of the frame:

Pooty Poisy - Pow
Paowy Paagy - Pawe

Fogin=| SR (6.1)
P(Hvoyti) P(H’lzti) o P(HJ/Vat'L)
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Each pixel P consists of three color-channel values:

P(x’yvti) = [ PR(I,y,tz’) PG(m,y,ti) PB(m,y,ti) ] : (6'2)

C' represents a video clip that consists of N frames obtained after temporal down-

sampling, s is the temporal sampling stride.

C(Ivyvt) = |: U F(xyyvti—s) F(.Z’,y,ti) F(;E7y,ti+s) U :| : (6'3)

Usually, a frame F' at ¢; in a clip C' is defined as:

Floy) = [ Fragys Fewyn) e } : 6.4)

Since each frame has three color channels and there is a certain degree of redun-
dancy in color information, the idea is to sample colors from different frames and fusing
them into a single frame, so that a single frame contains temporal information of three
frames. In order not to increase the computational loads, we keep the shape of the input
the same. We sample 3 * /V frames from a video rather than the original N frames. For
each group of three frames, we retain the green channel of the current frame at ¢; and
replace the red channel of the current frame with the red channel of the previous frame
at t;_, and the blue channel of the current frame with the blue channel of the next frame
at t; 5. We refer to these new frames containing temporal information as RG B, frames.
Fig. 6.1 shows the detailed description of obtaining RG B; frames. The RG B; frame at

t; 1s defined as:

Fayt) = | Frayt o Fe@yt) Byt |- (6.5)

We also use only green channels, as the green channel proved to be more predomi-
nant and less noisy among the three channels of the video files. The process is similar to
obtaining an RG B, frame, except that we replace the red channel of the current frame
at t; with the green channel of the previous frame at ¢;_,, and the blue channel of the
current frame with the green channel of the next frame at ¢, ;. The details for obtaining
GGG, frames are shown in Fig. 6.2. The GGG, frame at ¢; is:

F(a:,y,ti) = FG(x,y,ti,s) FG’(I,y,ti) FG(x,y,ti+s) . (66)

We also obtain BB B, and RR R, frames in the same way. In the following sections,

we use the term X; as a shortcut for all these non-RG B frames.
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GGGy,_, GGGy, GGG, | GGG,

Fig. 6.2 Color sampling strategy for GGG, frames. BBB; and RRR; frames are ob-
tained in analogy.

6.2.2 Network Architecture

As we mentioned, current network performance is limited by the length of video clips
due to computational constraints, and longer temporal dependencies help the network
better model the context of the entire video and thus make more accurate predictions.
To verify the capacity of our novel color sampling strategy to provide longer temporal
information, we select 2D-CNN, 3D-CNN and Transformer as the backbones of our
network.

We first propose a two-stream 2D-CNN network, where the spatial stream captures
the detailed semantic features provided by the standard RG B frames and the temporal
stream extracts dynamic patterns given by X frames that trade color information for
temporal differences. By fusing these two streams, the network obtains spatiotemporal
information that represents the entire video.

Fig. 6.3 shows our proposed 2D-CNN architecture. Because a 2D-CNN architecture
can only make prediction for each frame, we average the predictions of all frames from
the same video to obtain the final prediction for the video. We here choose a ResNet18
as our 2D-CNN backbone.

Then, we explore 3D-CNN architectures to further verify the effectiveness of our
X, frames. Unlike 2D kernels, 3D kernels can extract spatial and temporal features

simultaneously. Thus, we use a single stream network to compare RG B frames with
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Fig. 6.3 2D-CNN architecture (here we use GGG, as an example of input. predf repre-
sents the prediction for each frame; and predv means the final prediction of the video)

other X, frames. Since we trade some color information for temporal information in X,
frames, we also use a two-stream 3D-CNN architecture for information compensation
in order to obtain better performance.

Compared to 2D kernels, 3D kernels are inflated to an additional temporal dimen-
sion which enables 3D-CNNs to simultaneously extract spatiotemporal feature in a rel-
atively small neighborhood. However, a 3D-CNN has limitations in capturing long-
range temporal information due to limited receptive fields. A video clip consisting of
X; frames contains 3 times the temporal length of a clip consisting of RG B frames, so
X, frames can ’extend’ the receptive field in the time domain to a certain degree. Thus,
3D-CNNSs that operate on X; frames can capture longer-range temporal context without
increasing computational loads. Here we use a 3D-ResNet18 as backbone.

Transformers are designed to model global temporal dependencies of video clips,
they are not limited by the receptive field like CNNs, but by the length of clips. How-
ever, Transformers require larger datasets and involve high computational costs. In-
creasing the length of a video clip to some degree can improve the performance of
Transformers but it also leads to a higher computational load. Therefore, it is impor-
tant to enrich the temporal information contained in a clip without increasing its actual
length.

We also apply our X; frames to single-stream and two-stream Transformer archi-
tectures. The input to the network composed of our proposed X; frames contains richer
temporal information and its size remains the same compared to using RG B frames. To
demonstrate that our method also benefits larger and deeper networks, we choose Uni-

FormerV?2 as our Transformer backbone. The architectures for 3D-CNNs and Trans-
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Fig. 6.4 3D architecture: 3D-CNN or Video Transformer as backbone (Here we use
GGG, as an example of input; and predv means the final prediction of the video)
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Fig. 6.5 Two-stream architecture: fusion of spatial and temporal streams.

formers are shown in Fig. 6.4.

We propose a two-stream network for the 2D-CNNs inspired by the SlowFast net-
work (Feichtenhofer et al. 2019). For the 3D-CNNs and Transformers, we use a single-
stream network and also a two-stream architecture inspired by 13D networks (Carreira
and Zisserman 2017) to further improve the performance. By leveraging the two-stream
architecture, the spatial stream focuses more on extracting spatial information from
standard RG B frames, while the temporal stream operating on X, frames provides ad-
ditional temporal information for the network. We average the predictions of spatial
and temporal streams as late fusion to obtain the final video predictions and this opera-
tion further improves the network performance. The two-stream architecture is shown
in Fig. 6.5.
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6.3 Experiments and Discussions

6.3.1 Datasets

Due to limitations in computational resources, we use two relatively small datasets to
prove the effectiveness of our method: UCF101 and HMDBS51. Both of them are classic
benchmarks in action recognition tasks.

UCF101 (Soomro et al. 2012b) consists of 101 classes, with mainly five types of
actions: sports, body-motion only, human-human interaction, human-object interaction
and playing musical instruments. It contains 13320 videos with a spatial resolution of
320x240 pixels.

HMDBS51 (Kuehne et al. 2011) has 51 classes of different actions that can be grouped
in five types as well: general body movements, general facial actions, facial actions with
object manipulation, body movements with object interaction, body movements for hu-

man interaction. It consists of 6766 videos with various spatial resolutions.

6.3.2 Implementation Details

We use a sparse sampling strategy for standard RG B frames. Firstly, a video is uni-
formly divided into N segments (/N = 8 in our case), then a frame is randomly chosen
from each segment to form a video clip representing the entire video. In case of X,
frames, we first sample 3 x /N frames to represent a video using the same strategy as
sampling RG B frames, and then fuse the temporal information from three consecutive
frames in the clip into a single X; frame as described in Section 3.2.

Like most studies, we use the public train-test split 1 for both datasets. Addition-
ally, we randomly choose 12% of the videos from the training set as validation set for
UCF101. All experiments are conducted on 4 NVIDIA A100 40GB GPUs. We set
the training batch size to 256 for CNNs, 128 for Transformer, and the test batch size
to 128 for all architectures. For network training, we first resize all frames to 256x256
pixels for the 2D-network or a scale jittering range [240, 320] for 3D-networks and then
randomly crop them to 224x224 pixels. For inference, all slices are resized to 224x224
pixels for all architectures, and a single temporal clip with a random spatial crop (1x1
view) is used for 2D-CNNs and 10 temporal clips and 3 spatial crops (10x3 views) are
used for 3D-networks.

6.3.3 Results and Discussions

Evaluation with 2D-CNNs. Since 2D kernels cannot capture spatial and temporal fea-
tures simultaneously, we use a two-stream 2D-CNN architecture to evaluate the perfor-
mance. It consists of a spatial stream operating on traditional RG B frames to capture

spatial features and a temporal stream operating on proposed X; frames to extract tem-
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Table 6.1 Fusion results on ResNet18

Frame Accuracy Video Accuracy
Dataset Modality Topl Top5 Topl Top5

RGB 36.83 5881 39.12 60.14

RGB+ RGB, 3837 53.00 4052 62.33
UCF101 | RGB+ GGG, 39.06 59.86 4155 61.75
RGB + RRR, 3841 6128 40.59 6294
RGB+ BBB; 3824 58.18 40.84 59.95

RGB 11.75 3238 1242 3534

RGB + RGB, 14776 3735 1532 39.04
HMDBS51 | RGB + GGG, 1539  37.80 16.97 40.49
RGB + RRR, 1451 3814 1539 40.09
RGB+ BBB; 14.16 3491 1453 36.72

poral features. Therefore, the fusion of the outputs of the two streams can represent the
spatiotemporal features of the entire video. We explore different combinations of RG B
and X; frames. The results of our experiments are shown in Table 6.1. For all combina-
tions and for both datasets, the performances are better than baseline (a single 2D-CNN
operating on standard RG B frames). All the improvements of network performances
suggest that the proposed X, frames provides useful temporal information for temporal
stream in addition to the spatial information captured by the spatial stream. Note that
the fusion of RG B and GGG, obtains top-1 video accuracy improvements of 2.43%
and 4.55% on UCF101 and HMDBS51 respectively, which are the best results for both
datasets.

Evaluation with 3D-CNNs. 3D kernels can extract spatiotemporal features from plain
RGB frames but only from a small neighborhood. Thus, 3D-CNNs have limitations
in modeling long-range temporal dependencies due to limited receptive fields. Our X,
frames provide three times longer temporal sequences than that provided by plain RGB
frames, enabling the 3D-CNN to capture richer temporal information. To explore the
impact of different color information, we evaluate the network performances on differ-
ent X; frames and compare them with network performances on plain RG B frames.
Table 6.2 shows the results we obtained. Similar to the results on 2D-CNN, all net-
work performances obtained on X; frames are better than those on plain RG B frames.
GGG, frames achieve the best topl accuracy of 55.07% and 28.08% on UCF101 and
HMDBS51 datasets respectively, which are 8.32% and 3.56% higher than the RG B base-
line on UCF101 and HMDBS5]1 datasets.

Evaluation with Transformers. We also conduct experiments and compare results on
RGB and X; frames for Transformers. All the results are shown in Table 6.3. We find
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Table 6.2 Results on 3D-ResNet18

Dataset | Modality Topl Top5
RGB  46.75 76.61

RGB; 50.79 78.36

UCF101 GGGy 55.07 80.71
RRR, 54.73 80.23

BBB, 53.22 79.12

RGB 2452 5254

RGB;  26.17 53.53

HMDBS51 | GGG,  28.08 57.35
RRR; 2696 56.30

BBB;  26.37 55.37

Table 6.3 Results on UniFormerV?2

Dataset | Modality Topl Top5
RGB 4538 7223

RGB; 47.83 7524

UCF101 GGGy 57.82 8295
RRR, 5732 8245

BBB; 5579 81.69

RGB 2347 5544

RGB; 2657 56.89

HMDBS51 | GGG, 3540 68.30
RRR; 33.42 6645

BBB; 31.58 62.69

that the performance of RG B frames on both datasets for Transformers are worse than
with 3D-CNNs, because UCF101 and HMDBS51 are small video datasets and the back-
bone UniFormerV?2 is much deeper than 3D-ResNet18. Transformers are proven to be
better at capturing global information, but lack some of the inductive biases compared
to CNNs and can thus not generalize well when trained on small datasets (Dosovitskiy
et al. 2020b). However, all performances on our X; frames with the same color out-
perform the performances on 3D-ResNet18, which suggests that our X; frames help
the Transformers generalize better on small datasets. And again, the performances on
GGGy frames achieve the highest topl accuracy on both dataset, obtaining 12.44% and
11.93% improvements on UCF101 and HMDBS51 datasets respectively.

By analyzing the results shown in Table 6.2 and Table 6.3, we can draw some

66



Table 6.4 Fusion on 3D-ResNet18

Dataset Modality Topl Top5

RGB 46.75 76.61

RGB + RGB, 5090 79.57
UCF101 | RGB + GGG, 57.03 81.87
RGB + RRR, 57.00 81.47
RGB + BBB; 56.21 82.19

RGB 24.52 52.54

RGB + RGB, 2670 55.17
HMDBS51 | RGB + GGG, 31.64 58.14
RGB + RRR; 3059 5821
RGB + BBB; 30.39 58.27

conclusions. The performance improvements obtained by RG B; frames suggests that
our color-sampling strategy enables the networks to model longer range temporal se-
quences. And the further performance gains obtained by GGG, frames indicates that
the green channel contains richer spatial information than other color channels. The
BBB; frame obtains lower accuracy than the others, which may be due to the blue
channel being noisier because of higher amplification.

Fusion. Finally, we explore the fusion of spatial and temporal streams on 3D-CNNs
and Transformers to further improve the performance. The fusion results of different
modalities are shown in Table 6.4 and Table 6.5. The combination of RGB and GGG,
obtains a 10.28% accuracy gain on UCFI101 dataset and a 7.12% accuracy gain on
HMDB51 dataset for 3D-CNN, it also achieves performance improvements of 15.11%
and 13.71% on the UCF101 and HMDBS51 datasets respectively for Transformer. Note
that all results obtained by a two-stream network are better than those for a single-
stream network.

The overview of all results obtained with 3D-CNNs and Transformers are shown in
Fig. 6.6 and Fig. 6.7. The performance curves illustrate an ordering of how much the
different color-sampling strategies improve the results: GGG; > RRR; > BBB; >
RGB;. A single X; frame fuses temporal differences sampled from three different
RGB frames, so that a video clip consisting of X; frames can represent three times
longer temporal information than clip formed using standard RG B frames. That is the
reason why X, frames improve the performances for both dataset. And all X; frames
with the same color, such as GGGy, achieve higher performances than RG B; frames;
the reason may be that in RG B, frames, color differences and time differences are
coupled together, so that the channel dimension of 3D kernels has to capture color and

temporal feature at the same time. We also find the GGG, frames obtain better network
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Table 6.5 Fusion on UniFormerV?2

Dataset Modality Topl Top5

RGB 4538 72.23

RGB + RGB, 49.66 75.82
UCF101 | RGB + GGG, 60.49 83.96
RGB + RRR;, 60.10 83.93
RGB + BBB; 59.38 83.11

RGB 23.47 55.44

RGB + RGB, 26.83 58.87
HMDBS51 | RGB + GGG, 3718 68.36
RGB + RRR; 36.12 66.84
RGB + BBB;, 3428 64.67

Table 6.6 Parameters, FLOPs and views for inference

Backbone Parameters (M) FLOPS (G) Clips x Crops

ResNet18 11.23 1.82 1x1
3D-ResNet18 33.26 17.06 10x 3
UniFormerV?2 123.82 157.41 10x 3

performance than RRR, and BB B; frames, which verifies our hypothesis that green
channels contain more information than the other color channels. Moreover, all fusions
of X, frames and RG B frames lead to further performance gains. However, the fusion
of spatial stream operating on RG'B frames and temporal stream operating on plain
RG B, frames only improve the accuracy a bit, indicating that there is some redundancy
in the color channels.

Table 6.6 illustrates the complexity of our networks. The number of parameters and
FLOPs in the table demonstrates that the proposed strategies do not increase the com-
putational costs. Our color sampling strategy improves performances by enabling the
networks to model longer temporal dependencies without changing the input dimen-
sion. The last column of the table shows the number of temporal clips and spatial crops

we use for the inference stage.

6.4 Conclusion

In this Chapter, we propose a novel color-sampling strategy that can help networks to
model longer temporal sequences without increasing the input dimension. All the re-

sults we obtain demonstrate that trading color information for temporal information
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pays off in video understanding. Furthermore, we also verify that the two-stream
network brings more improvements to network performance by fusing spatial stream
operating on standard RG'B frames with temporal stream operating on our proposed
X; frames, which contain richer temporal information. We find that among the three
color channels, the green channel is the most informative for video understanding, thus
obtaining the highest topl accuracy among the three network architectures for both
datasets.

To illustrate the effectiveness of our color sampling strategy, we train all networks
that use ResNet18, 3D-ResNetl18 and UniFormerV2 as backbones from scratch. On
the one hand, all current state-of-the-art networks are first pretrained on large image
datasets such as ImageNet and CLIP-400 and then further post-pretrained on huge video
datasets such as Kinetics and Sport1M, but we can not afford such high computational
costs. On the other hand, we propose a novel color sampling strategy to obtain X,
frames which are different from traditional RG B frames, so we could not use pretrained
networks for transfer learning. We believe, however, that the demonstrated performance

improvements of our network will transfer to large datasets.
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CHAPTER 7

Machine Learning Model for Structural MRI Image Analysis

7.1 Introduction

Psychosis refers to a disturbance in the perception of reality, making it difficult to deter-
mine what is real and what is unreal. Psychosis involves some typical symptoms such
as hallucinations, delusions and disordered thinking, speaking and behavior in certain
conditions (Arciniegas 2015). Psychosis can be caused by psychiatric illnesses such as
schizophrenia, major depression, bipolar disorder and Alzheimer’s disease and also can
be triggered by trauma, stress, head injury, and drug or alcohol misuse etc (Griswold
et al. 2015, Davies 2017).

Psychosis may cause complications and even lead to self-harm or suicide. In ad-
dition, it reduces the quality of life of patients and their families as well as increases
the burden on the healthcare system (James et al. 2018). Therefore, early diagnosis and
treatment of psychosis is very necessary. Currently, the diagnostic criteria for psychosis
are not strictly defined. The diagnosis of psychosis is primarily made based on possible
causes and various clinical symptoms, including delusions or formal thought disorders.
There are many studies showing structural changes in the brain as psychosis develops.
However, medical images are currently not part of diagnosing psychosis and have no
contribution to the treatment of psychosis (Sun et al. 2009, de Castro-Manglano et al.
2011, Ziermans et al. 2012, Andreou and Borgwardt 2020).

Nowadays, the goal of psychiatric research is not only to treat psychosis but also
to predict it, allowing early intervention to delay the development of psychosis or even
prevent its onset. Usually, the ultra-high risk criteria or the presence of basic symptoms
such as changes in perception, speaking and behavior are used to determine clinical
high risk of developing psychosis (CHR) (Andreou et al. 2023, 2019). Only 20% to
36% (Fusar-Poli et al. 2020, 2012) of subjects determined as CHR based on the above
criteria develop psychosis. Therefore, we need more accurate criteria to predict whether
CHR will transit into psychosis. Inspired by the theory of structural changes in brain,
we can combine clinical criteria with medical image analysis to provide patients with
better psychosis diagnosis and treatment.

To understand the mechanisms of psychotic disorders and possible indicators for di-
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agnosing and predicting it, factors of the environmental, clinical and biological aspects
have been investigated (Montemagni et al. 2020). There are related studies on struc-
tural MRI images of different measures including global volume (Montemagni et al.
2020, Koutsouleris et al. 2015, 2012, 2009), GM (Howes et al. 2023) and CSF volume
(Dabiri et al. 2022), cortical thickness (Howes et al. 2023) and fractal dimension (FD)
(Squarcina et al. 2015, Zhao et al. 2016, Yotter et al. 2011, Nenadic et al. 2014) in
order to make the transition from CHR to psychosis predictable. These studies found
reductions in fractal dimension, cortical thickness and volume of various regions.

Our work aims to design a model that can analyze psychosis by using the calculated
fractal dimension of brain MRI images. The results show that fractal dimension is useful
for distinguishing different groups from each other. Moreover, the fractal dimension
appears to be a key indicator of whether a clinical high risk (CHR) patient will develop

psychosis.

7.2 Methodology

7.2.1 Image Processing

We used structural MRI images (121 x145x121) from a total of 194 participants. Firstly,
neuroradiologists visually assess each MRI image and manually exclude visible abnor-
malities and artifacts. The MRI images were then preprocessed using the Cat12 toolbox
(Gaser et al. 2024) from the Spm12 software package. All MRI images were segmented
into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). We use GM
based MRI images as our segmented MRI to further process and analyse. Detailed in-
formation of MRI images and preprocessing procedure can be found in (Koutsouleris
et al. 2015, 2009).

As Korda et al (Korda et al. 2022) described, voxel-by-voxel sliding 3D cubes are
used on the segmented MRI images to calculate local values. The resulting overlapping
cubes fill the entire brain. After experimental comparisons of different cube sizes, we
selected the dimensions of 15x15x15 and 25x25x25. Note that only cubes that inter-
sect with the brain region are considered, i.e. cubes containing only zero values are
excluded. For each cube, we binarize them individually and then calculate the fractal
dimension. The algorithm assigns the calculated fractal dimension value to the center
of the cube.

To binarize the cube, we first chose a suitable threshold and then used Matlab to
set all voxels with gray values less than the threshold to O and all voxels with gray
values greater than the threshold to 1. The thresholds we used are 0.05, 0.3, 0.5 and 0.7.
The fractal dimension is calculated individually for each binarized cube at different
threshold.
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7.2.2 Fractal Dimension

Fractal dimension is an index used to describe the complexity of an object’s shape. It
is used in medicine to describe the complex morphology of brain structures (such as
cortex, gray matter, and white matter), thereby being an indicator for neuroimaging
techniques such as MRI to distinguish different physiological and pathological condi-
tions (Zhang et al. 2016). There have been some findings on how the fractal dimension
of the brain changes with the development of certain neurological diseases. For ex-
ample, FD has been shown to decrease with progressive degeneration in Alzheimer’s
disease and to increase with the development of tumors or epilepsy (John et al. 2015).

Mathematically, the fractal dimension quantifies the complexity as a ratio of the
change in detail (N) to the change in scale (S) (Zhang et al. 2016). There are many
ways to calculate FD, but they are all based on the same principle. We calculated the
FD following the work of Beeyanal et al (Beyenal et al. 2004), a modified version of the
Minkowski sausage method (Russ 2006). In 3D fractal dimension calculation, volume
is swept out with increasing dilation of a sphere. If a sphere sweeps out the boundary,
dilation is used to smooth the boundary line. Boundary pixels are set to zero and all
other pixels are set to 1. We then use Matlab to calculate the Euclidean distance in
three dimensions from each pixel in the cube to the boundary. To calculate the dilation
volume, the sphere radius varies and the number of pixels at a distance smaller than this
radius value in the cube are counted. Fractality is the slope of the straight line obtained
by plotting In(sphere radius) against In(volume/radius ratio). The fractal dimension is
defined as FD = 2- slope. Detailed description of the FD calculation can be found in
(Beyenal et al. 2004).

7.2.3 Machine Learning

The calculated fractal dimensions are saved in the Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) format like segmented MRI images. The dimension of the data is
still 3D: 121x145x121. The 3D local fractal dimension calculated cube by cube con-
tains more information than the global fractal dimension, which only uses a single value
to quantify the complexity of the whole brain. However, the high dimensionality of lo-
cal FD increases the difficulty of analysis. Therefore, it is necessary to find a method to
reduce the dimensionality or summarize the local fractal dimension of the whole brain.
Since statistical features have proven to be useful features for machine learning models,
we use statistical features to summarize the local FD of the whole brain.

The local FD index quantifies the complexity of the cerebral cortex within each cube
we use. Since each cube has a different local FD value, we can change our view of them
and treat these values as the intensity of each voxel (Because the cubes are overlapping,

each voxel has a local FD value.). Thus, we process fractal dimension features just
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like medical images. Since we do not know which statistical features are useful for
analyzing psychosis, we decided to use the Pyradiomics package (Van Griethuysen et al.
2017) to automatically extract a large variety of statistical features instead of manually
extracting a few features. After that, automatic feature selection is performed. Our

algorithm flow is shown in Figure 7.1.

[ Input: ]
Groupl & Group2

Fractal Dimension
Calculation

Y

Feature Extraction

coefficient != 0

Classifiers
10-fold cross validation

h 4

| Output |

Fig. 7.1 The detailed flowchart of our algorithm (Groupl or Group2 is one of FEP,
CHR_T, CHR_NT and HC).

7.2.3.1 Feature Extraction

We first mask the entire brain region because masks for different brain regions are not
provided. We then use the Pyradiomics package to extract features from the area cov-
ered by the mask we created. These extracted features contain approximately 1500 fea-
tures per image on average, with eight classes: First Order Statistics, Shape-based (2D),
Shape-based (3D), Gray Level Co-occurrence Matrix (GLCM), Gray Level Dependence
Matrix (GLDM), Gray Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone
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Difference Matrix (NGTDM) and Gray Level Run Length Matrix (GLRLM). All ex-
tracted features are written to comma separated values (.csv) files for saving. Although
the dimension of extracted features is much lower than that of FD features, which is
2122945 (=121x145x121), there are still many redundant features that need to be ex-
cluded.

7.2.3.2 Feature Selection

Irrelevant features introduce redundant information, increase computational complexity
and even hurt model performance, thus feature selection is an important procedure in
machine learning, especially when dealing with high-dimensional data. A good fea-
ture selection method selects the most informative features, thereby speeding up model
training and reasoning and improving model performance.

The features extracted by the Pyradiomics package also include string features,
which need to be excluded first. We then randomly shuffle all retained features and
use multiple feature selectors to select the most discriminative features for better clas-
sification.

We choose the classic T-test as our first feature selector. Before the T-test, the
Levene’s test (Levene et al. 1960) is used to check the homogeneity of variances for
each feature in pairwise groups. Levene test is used to test the equality of variances
between groups, and its results determine which kind of T-test methods to use next.
There are two hypothesises for Levene test, H: the variance between groups is equal
or H;: atleast one pair the variance is not equal to the others. The Levene test is defined
as follows:

(N—k) S NlZi - Z.)

W= ) 7.1
(k=1) S, S (Zi — Z: ) 7D

where N is the sample size of variable Y, N, is the sample size of the i** subgroup,

k is the number of subgroups; Z;; = |Y;; — 17;|, }NQ is the median of the i*" subgroup.
For most underlying distributions of the data, the median can provide good robustness
and good performance (Brown and Forsythe 1974), so we choose the median instead of
the mean and the trimmed mean; and Z, are the group means of the Z;; and 7 is the
overall mean of the Z;;.

The resulting p-value then indicates which hypothesis our feature fits. Empirically,
we use a threshold of 0.05 to compare with the p-value. A p-value greater than the
threshold satisfies the hypothesis Hj, suggesting that the variance of features between
groups is equal; a p-value less than the threshold, contrary to the hypothesis H, but
satisfies [, indicating that the variances of features between groups are unequal.

If the result of the Leneve test shows that the hypothesis Hy is true, we should
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perform a standard independent 2 sample T-test (Student 1908) with equal population
variance assumption. Otherwise, we should perform Welch’s T-test (Welch 1947) that
assumes unequal group variances.
The standard independent 2-sample T-test is defined as follows:
t = ﬂ7 (7.2)
1 1
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where X; is the mean value of sample set i and n; is sample size, 53(1_ is the unbiased
estimator of the population variance.
The definition of Welch’s T-test is as follows:
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where s; is the corrected sample standard deviation.

We then compare the p-value resulted from the T-test with the threshold 0.05 to
select the most informative features. For both T-test methods, a resulting p-value is
less than 0.05 means that there is a statistically significant difference in the features
between the compared two groups. Therefore, we should retain features with a T-test
result p-value less than 0.05 and exclude features with a p-value greater than 0.05.

After the feature selection by T-test, we further use the Least Absolute Shrink-
age and Selection Operator (Lasso) regression to select the most distinguishable fea-
tures. Lasso regression is a regularization technique that applies penalties to improve
model performance and prevent overfitting. It is commonly used for processing high-
dimensional data and as a feature selector. By shrinking the coefficient values associ-
ated with less relevant predictors to zero, Lasso regression can reduce model complexity
and improve classification performance by selecting informative features.

To implement Lasso regression, we preprocess the features selected by the T-test by
first concatenating the two sets of features from different groups and then normalizing
them by mean and standard deviation normalization. After that, we train a Lasso Re-
gression model on the preprocessed features to conduct further feature selection. The

cost function of Lasso regression is defined as follows:

1

oy = Xwllz +ax [l (7.4)

J(w) = min
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where n is the number of training samples, y is the target value and X are the
training data. w is the coefficient associated with predictor variable and « represents
the regularization parameter that controls the strength of the L1 penalty.

We retain the most relevant features by excluding features whose coefficient value of
Lasso regression is equal to zero. After multiple feature selections, we exclude highly
irrelevant and redundant information, which helps speed up the training process and

improve model performance.

7.2.3.3 Classification

After the feature selection procedure, we use machine learning models to make deci-
sion based on the selected features. Ten different classifiers are used for our binary
classification tasks, they are Ada Boosting, Decision Tree, Random Forest, Gradient
Boosting, Gaussian Naive Bayes (GaussianNB), K-Nearest Neighbors (KNN), Logistic
Regression (LR), Multi-layer Perceptron (MLP), Stochastic Gradient Descent (SGD)
and Support Vector Classifier (SVC). By comparing the results of different experimen-
tal groups on different data (segmented MRI and various FD features), we find that
the performances of Logistic Regression (LR), Multi-layer Perceptron (MLP), Gaus-
sian Naive Bayes (GaussianNB) and Support Vector Classifier (SVC) are more robust.
Other classifiers performed less consistently, indicating that they may not be suitable
for our data. It is possible that each classifier will work well with some data and not so
well with others (Fernandez-Delgado et al. 2014), so we only report the results of the
remaining classifiers.

Logistic regression is a generalized linear model, mainly used for binary classifica-
tion tasks. It maps the output of the linear regression model through a logistic function
and limits the output to the range of 0 and 1 to represent the probability that an in-
stance belongs to a certain class. The Multilayer Perceptron (MLP) consists of three
types of fully connected layers. The input layer receives input data, the hidden layer
learns feature representations, and the output layer generates predictions. The MLP
introduces nonlinearities by using activation functions, enabling the network to learn
complex patterns from the data. Gaussian Naive Bayes (GaussianNB) hypothesizes
that each feature follows a Gaussian distribution and features for a given class label are
independent. It calculates the probability that a sample belongs to a certain class based
on Bayes’ theorem. Support Vector Classifier (SVC) aims to find the optimal hyper-
plane in high-dimensional space that separates data points of different classes in the
feature space. The optimal hyperplane is the one with the maximum margin between
the closest points of different classes. For all the classifiers, an input is classified as a

positive sample if the probability is greater than 0.5, otherwise it is a negative sample.
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Table 7.1 Overview of the dataset

Class #Participant
first-episode psychosis (FEP) 77
clinic high risk with transition (CHR_T) 16
clinic high risk without transition (CHR_NT) 57
healthy control (HC) 44

7.2.3.4 Performance Metrics

Empirically, we choose balanced accuracy, sensitivity, and specificity as performance
metrics as in other medical studies. We use balanced accuracy rather than accuracy be-
cause our dataset is highly imbalanced. However, balanced accuracy does not provide
information about how many samples of each group are correctly classified, which is
very important for medical research. So we also use sensitivity and specificity to indi-

cate the ratio of positive and negative samples being correctly classified, respectively.

Speci ficity + Sensitivity
2 Y

where the formulas of Specificity and Sensitivity can be found in Chapter 5.

(7.5)

Balanced Accuracy =

7.3 Experiments and Discussions

7.3.1 Dataset

The dataset is a part of the Early Detection of Psychosis project (FePsy) at the De-
partment of Psychiatry, University of Basel, Switzerland (Riecher-Rossler et al. 2007).
The dataset contains four different groups as shown in Table 7.1. Specifically, there
are 77 first-episode psychosis (FEP) participants, 16 clinic high risk with transition
(CHR_T) participants, 57 clinic high risk without transition (CHR_NT) participants and
44 healthy control (HC) participants. For each participant, there are a segmented MRI
image (as shown in Fig. 7.2) and FD features calculated according to various conditions
based on the MRI image: the combinations of cube_size 15 or 25 and thresholds 0.05,
0.3,0.50r0.7.

7.3.2 Implementation Details

The Pyradiomic library (Van Griethuysen et al. 2017) is used for feature extraction,
both the SciPy library (Virtanen et al. 2020) and the Scikit-learn library (Pedregosa
etal. 2011) are used for feature selection and the Scikit-learn library is used for Machine
Learning classifiers. Since our dataset is small and unbalanced, we apply ten-fold cross-
validation to evaluate model performance. For each fold, we randomly split the training

set and the validation set in a ratio of 0.8:0.2. Moreover, the CHR_Ts group is used as
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Axial Coronal Sagittal

Fig. 7.2 Examples of segmented MRI images

an additional validation set for other models that do not include it, i.e. FEP vs. HC, FEP
vs. CHR_NT and CHR_NT vs. HC. We conduct all experiments on a single GeForce
RTX 3060 GPU.

7.3.3 Results and Discussions
7.3.3.1 Clinic High Risk with vs. without Transition

On the one hand, psychosis not only greatly affects the life quality of patients and their
families, but also places a burden on the healthcare system. On the other hand, First-
episode psychosis (FEP) usually does not appear suddenly but develops with gradual
changes in the patient’s perceptions and thoughts. Therefore, early intervention for
psychosis is necessary and possible. So it is important to understand whether psychosis
is predictable in order to identify potential psychosis and intervene early. However, the
early signs of FEP may not be enough to alert patients and physicians. Therefore, we
use MRI images and FD features to quantitatively analyze psychosis rather than these
subtle signs and further aim to slow or even prevent clinic high-risk subjects (CHRs)
from developing psychosis by introducing specialized treatments.

Hence, we first compare the CHR_T and CHR_NT groups to see if there are differ-
ences between them. If there are significant differences, then it is possible for doctors
to screen for potential psychosis as early as possible and take preventive measures ac-
cordingly. The results are shown in Table 7.2.

For segmented MRI, we notice that the specificity of all classifiers are rather low,
meaning that CHR_T could not be distinguished from CHR_NT based on the features
extracted from segmented MRI. However, the specificity of all classifiers improved sig-
nificantly based on the calculated fractal dimension (FD) with cube size 25 and thresh-
olds 0.3 and 0.7, respectively, resulting in better model performance. All balanced
accuracies (BAcs) are higher than 74.55%, and the highest one achieves 83.93%. Al-
though our dataset is very imbalanced: 16 CHR_T and 57 CHR_NT, using FD features
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Table 7.2 Comparison of clinic high risk with transition (CHR_T) and clinic high risk
without transition (CHR_NT).

Metrics LR MLP GNB SVC
Spe % 31.25 43.75 56.25 31.25
Segmented | Sen % 89.47 8596 84.21 87.72
Bac % 6036 64.86 70.23 59.48
Spe % 75.00 68.75 62.50 62.50
FD25_30 Sen % 89.47 89.47 89.47 94.74
Bac % 8224 79.11 7599 78.62
Spe % 5625 68.75 75.00 56.25
FD25_70 Sen % 92.86 91.07 92.86 96.43
Bac % 7455 7991 8393 76.34
* LR: Logistic Regression; MLP: Multi-layer Perceptron, GNB:

Gausian Naive Bayes and SVC: Support Vector Classifier.
* Spe: specificity; Sen: sensitivity; Bac: balanced accuracy.

makes the performance comparable to other studies (Andreou et al. 2019, Fusar-Poli
et al. 2015, 2020). All results on FD features suggest that whether CHRs transition to
FEPs is predictable.

7.3.3.2 First-Episode Psychosis vs. Other Groups

First-episode psychosis (FEP) is when a patient starts to confuse reality with hallucina-
tions or delusions. Early treatment for FEP can slow down, stop, and even reverse the
progression of psychosis, thereby preserving the life quality of patients. Accurate and
reliable early detection and diagnosis is vital for prompt treatment. To verify whether
FD features can help early diagnosis of FEP, we conduct experiments to compare the
following three pairwise groups: FEP vs. HC, FEP vs. CHR_NT and FEP vs. CHR_T.

Table 7.3 Comparison of first-episode psychosis (FEP) and healthy control (HC).

Metrics LR MLP GNB SVC
Spe % 7792 76.62 7532 74.03
Segmented | Sen %  56.82 5227 54.55 47.73
Bac % 67.37 6445 6494 60.88
Spe % 80.52 75.32 7532 84.42
FD15_05 Sen % 68.18 72.73 7045 63.64
Bac % 7435 74.03 72.89 74.03
Spe % 85.71 81.82 7143 92.21
FD25_30 Sen % 63.64 6591 63.64 63.64
Bac % 74.68 73.87 67.54 77.93

80



First and most importantly, we have to prove that first-episode psychosis can be
distinguished from healthy control. Thus, we compare FEP with HC. Table 7.3 shows
the results.

From the results for segmented MRI images, we note that the sensitivity of all clas-
sifiers are lower than 56.82%, indicating that it is difficult for the classifiers to dif-
ferentiate healthy controls (HCs) from FEPs. By using FD features, the sensitivity of
all classifiers are improved to some extent. This leads to the highest BAc of 77.93%,
demonstrating the ability of our model to distinguish FEP from HC.

Secondly, we have to show that first-episode psychosis (FEP) is different from clinic
high risk without transition (CHR_NT). So we next compare FEP with CHR_NT. Ta-

ble 7.4 shows the results we obtain.

Table 7.4 Comparison of first-episode psychosis (FEP) and clinic high risk without
transition (CHR_NT).

Metrics LR MLP GNB SVC
Spe % 80.50 76.64 81.82 83.12
Segmented | Sen % 7193 63.16 50.88 57.89
Bac % 76.22 69.89 66.35 70.51
Spe % 83.12 84.42 8442 83.12
FD15_30 Sen % 7895 70.18 6842 70.18
Bac % 81.04 77.30 76.42 76.65
Spe % 83.12 81.82 71.43 88.31
FD25 30 Sen % 7895 8246 6842 61.40
Bac % 81.03 82.14 69.92 74.86

By observing the above table, the sensitivity of segmented MRI images shows that
classifiers are not sensitive enough to discriminate CHR_NT from FEP expect for the
Logistic Regression classifier. By using FD features, the sensitivity values of all clas-
sifiers are improved by 3.51% to 19.30%, resulting in significant improvements of
balanced accuracies for all classifiers and obtaining the highest balanced accuracy of
82.14%. The results indicate that there are significant difference between FEP and
CHR_NT.

Further, we have to make sure that first-episode psychosis (FEP) can be differentiate
from clinic high risk with transition (CHR_T). We therefore compare FEP and CHR _T,
and results are shown in Table 7.5.

From the results in Table 7.5, we find that the sensitivity values of classifiers are
extremely low for segmented MRI images, meaning that classifiers are unable to dis-
tinguish CHR_T from FEP based on segmented MRI. FD features largely improves the
sensitivity of all classifiers, resulting in most balanced accuracies exceeding 71.23%.
The highest balanced accuracy of 79.83% is achieved for FD15_05, which indicates
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Table 7.5 Comparison of first-episode psychosis (FEP) and clinic high risk with transi-
tion (CHR_T).

Metrics LR MLP GNB SVC
Spe % 97.40 94.81 93.51 96.10
Segmented | Sen %  12.50 25.00 43.75 6.25

Bac % 5495 5990 68.63 51.18
Spe % 9091 9091 9091 97.40
FD15 05 Sen % 68.75 68.75 56.25 31.25
Bac % 79.83 79.83 73.58 64.33
Spe % 96.10 93.51 97.40 98.70
FD15 30 Sen % 62.50 62.50 56.25 43.75
Bac % 79.30 78.01 76.83 71.23

that there are significant differences between FEP and CHR_T.

In summary, all sensitivities obtained based on the original segmented MRI images
are poor. By using the calculated FD features, the sensitivity values of all classifiers are
greatly improved in all experiments, especially in the experiment that compares FEP
with CHR_T. Thus, we draw the conclusion that there are significant differences in the
fractal dimension of FEP and HC, FEP and CHR_NT and FEP and CHR_T. In other
words, the fractal dimension is a useful feature for reliable and accurate diagnosis of

first-episode psychosis.

7.3.3.3 Clinic High Risk with Transition vs. Healthy Control

Clinic high risk with transition (CHR_T) is the stage preceding first-episode psychosis
(FEP). Subjects in the CHR group are at high risk of developing psychosis, and CHR_T
are the subjects who eventually developed psychosis. The above experiments prove that
CHR_T can be distinguishable from FEP. Since CHR_T subjects eventually became
FEPs, we hypothesize that there are significant differences between CHR_T and HC.
We next compare CHR_T with HC to verify our hypothesis.

By analysing the results shown in Table 7.6, we note that the specificity values of
different classifiers are quite poor for segmented MRI images, similar to the results of
CHR_T vs. CHR_NT. And using FD features largely improved all specificity values.
By using FD25_70 data, we achieve the highest balanced accuracy of 88.35%, which
indicates that there are significant differences between CHR _T and HC.

7.3.3.4 Clinic High Risk without Transition vs. Healthy Control

Clinic high risks without transition (CHR _NT) are the subjects in the CHR group that
do not transition to psychosis. We also compare CHR_NT and HC to find out if there
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Table 7.6 Comparison of clinic high risk with transition (CHR_T) and healthy control
(HC).

Metrics LR MLP GNB SVC
Spe %  43.75 43.75 43.775 37.50
Segmented | Sen % 88.64 86.36 86.36 90.91
Bac % 66.19 65.06 65.06 64.20
Spe % 75.00 50.00 68.75 56.25
FD25 30 Sen % 93.18 93.18 9545 97.73
Bac % 84.09 7159 82.10 76.99
Spe % 75.00 68.75 81.25 75.00
FD25 70 Sen % 9091 88.64 9545 93.18
Bac % 8295 78.69 88.35 84.09

are also large differences between these two groups. If so, doctors should conduct
continual disease monitoring to prevent the progression of psychosis. Results are shown
in Table 7.7.

Table 7.7 Comparison of clinic high risk without transition (CHR_NT) and healthy
control (HC).

Metrics LR MLP GNB SVC
Spe % 77.19 71.93 80.70 77.19
Segmented | Sen %  59.09 54.55 63.64 52.27
Bac % 68.14 6324 72.17 64.73
Spe % 80.70 71.93 75.44 80.70
FD15 50 Sen % 6591 7273 61.36 56.82
Bac % 73.31 7233 6840 68.76
Spe % 85.96 8596 8246 77.19
FD15 70 Sen % 77.27 68.18 4545 65091
Bac % 81.62 77.07 63.96 71.55

From the above results, we notice that the sensitivity values for segmented MRI
images of all classifiers are between 52.27% and 63.64%, which means that it is diffi-
cult for the classifiers to distinguish HC from CHR_NT. Similar to other experimental
results, FD features improve the sensitivity of most classifiers to some extent, except
for the GaussianNB, thereby achieving the highest balanced accuracy of 81.62%. The
performance gain brought by FD features suggests that CHR_NT can be differentiated
from HC.

All the above binary classification experiments show that fractal dimension features
can improve model performance. Based on these result, we conclude that the fractal

dimension is a key indicator for psychosis analysis. We use different combinations of
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two cube sizes and four thresholds when calculating the fractal dimension. In all the
tables above, we have selected the two fractal dimensions with the best results. We do
not find the optimal combination to calculate fractal dimensions because it varies for
each experiment. However, after statistical analysis we found that FD25_30 appeared 4
times in the best two models and the balance accuracy obtained with FD15_30 exceeded
the highest balance accuracy of segmented MRI more frequently (18 times in total)
than the other FD features. So we recommend trying 15 or 25 as cube size and 0.3
as threshold. Another good combination is FD15_05. The optimal parameters for a

specific task should be obtained experimentally.

7.3.3.5 Using Clinic High Risk with Transition as Additional Validation

We use ten-fold cross-validation for the above experiments, then CHR _Ts are used as
an additional test set for the experiments without CHR_T, i.e. FEP vs. HC, FEP vs.
CHR_NT and CHR_NT vs. HC. We first extract from the CHR_T group the same fea-
tures selected by the feature selector for each model, and then feed these features into
the corresponding test model to make predictions. The results for each model are as

follows:

Table 7.8 Clinic high risk with transition (CHR_T) as the test set.

FEP vs. HC
Label FEP: 0, HC: 1
Model SVC with FD25_30

Predictions [0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.]
CHRNT vs. HC
Label CHR_NT: 0, HC: 1
Model LR with FD15_70
Predictions [0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.]
FEP vs. CHR_NT
Label FEP: 0, CHR_NT: 1
Model MLP with FD25_30
Predictions [1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.]

By analysing the test results, we find that in the comparison of 1) FEP and HC, all
CHR _Ts are predicted as FEPs, which suggests that CHR_T is more similar to FEP
relative to HC; i) CHR_T and HC, all CHR _Ts are predicted as CHR_NTs, which indi-
cates that CHR_T is more like CHR_NT than HC; iii) FEP and CHR_T, all CHR_T's are
predicted as CHR _NTs, which indicates that CHR_T is closer to CHR_NT than FEP.
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7.4 Conclusion

In this Chapter, we design a machine learning model to classify different groups re-
lated to psychosis based on calculated FD features. We conducted experiments on four
groups in pairs, i.e. CHR_T vs. CHR_NT, FEP vs. HC, FEP vs. CHR_NT, FEP vs.
CHR_T, CHR_T vs. HC and CHR_NT vs. HC, by using different fractal dimensions
with various cube sizes (15 and 25) and thresholds (0.05, 0.3, 0.5 and 0.7). Compared
to the results obtained by segmented MRI, all the results on fractal dimensions show
that fractal dimension features can improve model performance, making these groups
distinguishable, which demonstrates that the fractal dimension is a useful indicator for
transition prediction in the CHR group and psychosis diagnosis. However, we do not
find an optimal combination for fractal dimensions that suits any condition. The optimal
cube size and threshold need to be learned through practice. And from the additional
experiment using CHR_T as test set, we find that CHR_T is more similar to CHR_NT
whether compared to HC or compared to FEP. We think the reason is that CHR_T even-
tually transitioned to FEP, so it is different from HC, but has not yet developed to FEP
so it also differs from FEP. Besides, both CHR_T and CHR_NT belong to the CHR
group, so they are more similar. The effectiveness of FD features also reveals structural

changes in the brain as psychosis progresses.
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CHAPTER 8

Conclusions and Future Work

In Chapters 1 and 2, we introduce the topic of video-based action recognition, its im-
portance, and its classic and SOTA architectures. In Chapter 3, 4 and 6, we propose
different designs and architectures for video understanding and all of them achieve per-
formance improvements. In Chapter 5 and 7, we present the application of machine
learning methods in medicine. Specifically, we apply our architecture for video pro-
cessing to glaucoma and visual impairment analysis and we design a machine learning
model for psychosis analysis based on MRI data.

Our main contributions for video analysis are that 1) we introduce a RG B; sam-
pling strategy to capture longer temporal information without changing the input size
and without increasing computational costs; 2) we design various-sized tubes for input
tokenization to embed richer temporal information into tokens; 3) we introduce a bio-
inspired and nonlinear connected MinBlock to select more informative features; 4) we
introduce novel spatiotemporal slices to "visualize’ the motion trajectory and a saliency
based sampling strategy to select the most useful slices, and design several 2D-CNN
based architectures to evaluate the effectiveness of our spatiotemporal slices; 5) we
explore a more effective use of color and temporal information, and we find that the
trading of color for temporal information can improve the performance.

Our main contributions in medicine are that 1) we successfully apply our slicing
2D-CNN architectures to glaucoma diagnosis and visual impairment detection and find
that there are relations between visual impairments and walking patterns; 2) we design
a machine learning model for psychosis diagnosis and we obtain very good results in
predicting whether clinic high-risk patients will transition into psychosis.

When exploring video understanding architectures, the biggest challenge we en-
counter was the limitation of computing resources. This forces us to evaluate our de-
sign on small datasets only. Our future plan is to adapt our design to existing pretrained
backbones to bring network performance to the stat-of-the-art. And we would like to
further apply our algorithm to medical applications, such as the diagnosis and monitor-

ing of neurodegenerative disorders.

86



REFERENCES

Abdelbaky, A. and Aly, S. (2020), ‘Human action recognition using short-time mo-
tion energy template images and pcanet features’, Neural Computing and Applications
32(16), 12561-12574.

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B. and
Vijayanarasimhan, S. (2016), ‘Youtube-8m: A large-scale video classification bench-
mark’, arXiv preprint arXiv:1609.08675 .

Aggarwal, J. K. and Ryoo, M. S. (2011), ‘Human activity analysis: A review’, Acm
Computing Surveys (Csur) 43(3), 1-43.

Andrearczyk, V. and Whelan, P. F. (2018), ‘Convolutional neural network on three or-

thogonal planes for dynamic texture classification’, Pattern Recognition 76, 36—49.

Andreou, C., Bailey, B. and Borgwardt, S. (2019), ‘Assessment and treatment of indi-
viduals at high risk for psychosis’, BJPsych Advances 25(3), 177-184.

Andreou, C. and Borgwardt, S. (2020), ‘Structural and functional imaging markers for

susceptibility to psychosis’, Molecular psychiatry 25(11), 2773-2785.

Andreou, C., Eickhoff, S., Heide, M., de Bock, R., Obleser, J. and Borgwardt, S. (2023),
‘Predictors of transition in patients with clinical high risk for psychosis: an umbrella

review’, Translational Psychiatry 13(1), 286.

Arciniegas, D. B. (2015), ‘Psychosis’, CONTINUUM: lifelong learning in neurology
21(3), 715-736.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucié, M. and Schmid, C. (2021), Vivit:
A video vision transformer, in ‘Proceedings of the IEEE/CVF international conference

on computer vision’, pp. 6836—6846.
Ba, J. L. (2016), ‘Layer normalization’, arXiv preprint arXiv:1607.06450 .

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C. and Baskurt, A. (2011), Sequential
deep learning for human action recognition, in ‘Human Behavior Understanding: Sec-
ond International Workshop, HBU 2011, Amsterdam, The Netherlands, November 16,
2011. Proceedings 2’, Springer, pp. 29-39.

87



Barth, E. (2000a), ‘A geometric view on early and middle level visual coding’, Spatial
Vision 13(2-3), 193-199.

Barth, E. (20000), The minors of the structure tensor, in G. Sommer, ed., ‘Mustererken-

nung 2000°, Springer, Berlin, pp. 221-228.

Barth, E. and Watson, A. B. (2000), ‘A geometric framework for nonlinear visual cod-
ing’, Optics Express 7(4), 155-165.

Basha, S. S., Pulabaigari, V. and Mukherjee, S. (2022), ‘An information-rich sampling
technique over spatio-temporal cnn for classification of human actions in videos’, Mul-
timedia Tools and Applications 81(28), 40431-40449.

Benitez-Garcia, G., Olivares-Mercado, J., Sanchez-Perez, G. and Yanai, K. (2021), Ipn
hand: A video dataset and benchmark for real-time continuous hand gesture recog-

nition, in ‘2020 25th international conference on pattern recognition (ICPR)’, IEEE,
pp. 4340-4347.

Bertasius, G., Wang, H. and Torresani, L. (2021), Is space-time attention all you need
for video understanding?, in ‘ICML’, Vol. 2, p. 4.

Beyenal, H., Donovan, C., Lewandowski, Z. and Harkin, G. (2004), ‘Three-dimensional
biofilm structure quantification’, Journal of microbiological methods 59(3), 395—413.

Beyer, R., Al-Nosairy, K. O., Freitag, C., Stolle, F. H., Behrens, M., Prabhakaran,
G. T., Thieme, H., Schega, L. and Hoffmann, M. B. (2024), ‘Treadmill-walking impairs
visual function in early glaucoma and elderly controls’, Graefe’s Archive for Clinical

and Experimental Ophthalmology .
URL: https://link.springer.com/10.1007/s00417-024-06530-w

Bilen, H., Fernando, B., Gavves, E., Vedaldi, A. and Gould, S. (2016), Dynamic image
networks for action recognition, in ‘Proceedings of the IEEE conference on computer

vision and pattern recognition’, pp. 3034-3042.

Blank, M., Gorelick, L., Shechtman, E., Irani, M. and Basri, R. (2005), Actions as
space-time shapes, in ‘The Tenth IEEE International Conference on Computer Vision
(ICCV’05)’, pp. 1395-1402.

Bobick, A. F. and Davis, J. W. (2001), ‘The recognition of human movement using
temporal templates’, IEEE Transactions on pattern analysis and machine intelligence
23(3), 257-267.

Brown, M. B. and Forsythe, A. B. (1974), ‘Robust tests for the equality of variances’,
Journal of the American statistical association 69(346), 364-367.

88



Bull, D. (2014), Communicating pictures: A course in Image and Video Coding, Aca-

demic Press.

Caba Heilbron, F., Escorcia, V., Ghanem, B. and Carlos Niebles, J. (2015), Activitynet:
A large-scale video benchmark for human activity understanding, in ‘Proceedings of

the ieee conference on computer vision and pattern recognition’, pp. 961-970.

Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C. and Zisserman, A. (2018), ‘A
short note about kinetics-600’, arXiv preprint arXiv:1808.01340 .

Carreira, J., Noland, E., Hillier, C. and Zisserman, A. (2019), ‘A short note on the
kinetics-700 human action dataset’, arXiv preprint arXiv:1907.06987 .

Carreira, J. and Zisserman, A. (2017), Quo vadis, action recognition? a new model and
the kinetics dataset, in ‘proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition’, pp. 6299-6308.

Dabiri, M., Dehghani Firouzabadi, F., Yang, K., Barker, P. B., Lee, R. R. and Yousem,
D. M. (2022), ‘Neuroimaging in schizophrenia: A review article’, Frontiers in neuro-
science 16, 1042814.

Damen, D., Doughty, H., Farinella, G. M., Fidler, S., Furnari, A., Kazakos, E., Molti-
santi, D., Munro, J., Perrett, T., Price, W. et al. (2018), Scaling egocentric vision: The
epic-kitchens dataset, in ‘Proceedings of the European conference on computer vision
(ECCV)’, pp. 720-736.

Darafsh, S., Ghidary, S. S. and Zamani, M. S. (2021), ‘Real-time activity recogni-
tion and intention recognition using a vision-based embedded system’, arXiv preprint
arXiv:2107.12744 .

Davies, W. (2017), ‘Understanding the pathophysiology of postpartum psychosis: Chal-
lenges and new approaches’, World journal of psychiatry 7(2), 77.

de Castro-Manglano, P., Mechelli, A., Soutullo, C., Gimenez-Amaya, J., Ortuio, F. and
McGuire, P. (2011), ‘Longitudinal changes in brain structure following the first episode
of psychosis’, Psychiatry Research: Neuroimaging 191(3), 166—173.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), Imagenet: A
large-scale hierarchical image database, in ‘2009 IEEE conference on computer vision

and pattern recognition’, Ieee, pp. 248-255.

Dollér, P., Rabaud, V., Cottrell, G. and Belongie, S. (2005), Behavior recognition
via sparse spatio-temporal features, in ‘2005 IEEE international workshop on visual

surveillance and performance evaluation of tracking and surveillance’, IEEE, pp. 65—
72.

89



Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K. and Darrell, T. (2015), Long-term recurrent convolutional networks for vi-
sual recognition and description, in ‘Proceedings of the IEEE conference on computer
vision and pattern recognition’, pp. 2625-2634.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. et al. (2020a), ‘An image
is worth 16x16 words: Transformers for image recognition at scale’, arXiv preprint
arXiv:2010.11929 .

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. et al. (2020b), ‘An image
is worth 16x16 words: Transformers for image recognition at scale’, arXiv preprint
arXiv:2010.11929 .

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J. and Feichtenhofer, C.
(2021), Multiscale vision transformers, in ‘Proceedings of the IEEE/CVF international

conference on computer vision’, pp. 6824—6835.

Feichtenhofer, C. (2020), X3d: Expanding architectures for efficient video recognition,
in ‘Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion’, pp. 203-213.

Feichtenhofer, C., Fan, H., Malik, J. and He, K. (2019), Slowfast networks for video
recognition, in ‘Proceedings of the IEEE/CVF international conference on computer
vision’, pp. 6202-6211.

Ferndndez-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014), ‘Do we need
hundreds of classifiers to solve real world classification problems?’, The journal of
machine learning research 15(1), 3133-3181.

Fusar-Poli, P., Bonoldi, 1., Yung, A. R., Borgwardt, S., Kempton, M. J., Valmaggia, L.,
Barale, F., Caverzasi, E. and McGuire, P. (2012), ‘Predicting psychosis: meta-analysis
of transition outcomes in individuals at high clinical risk’, Archives of general psychia-
try 69(3), 220-229.

Fusar-Poli, P., Cappucciati, M., Rutigliano, G., Schultze-Lutter, F., Bonoldi, I., Borg-
wardt, S., Riecher-Rossler, A., Addington, J., Perkins, D., Woods, S. W. et al. (2015),
‘At risk or not at risk? a meta-analysis of the prognostic accuracy of psychometric

interviews for psychosis prediction’, World Psychiatry 14(3), 322-332.

Fusar-Poli, P., De Pablo, G. S., Correll, C. U., Meyer-Lindenberg, A., Millan, M. J.,
Borgwardt, S., Galderisi, S., Bechdolf, A., Pfennig, A., Kessing, L. V. et al. (2020),

90



‘Prevention of psychosis: advances in detection, prognosis, and intervention’, JAMA
psychiatry T7(7), 755-765.

Gaser, C., Dahnke, R., Thompson, P. M., Kurth, F., Luders, E., Initiative, A. D. N. et al.
(2024), ‘Cat: a computational anatomy toolbox for the analysis of structural mri data’,

GigaScience 13, giae049.

Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim, H.,
Haenel, V., Fruend, 1., Yianilos, P., Mueller-Freitag, M. et al. (2017), The” something
something” video database for learning and evaluating visual common sense, in ‘Pro-

ceedings of the IEEE international conference on computer vision’, pp. 5842-5850.

Griswold, K. S., Del Regno, P. A. and Berger, R. C. (2015), ‘Recognition and differ-
ential diagnosis of psychosis in primary care’, American family physician 91(12), 856—
863.

Griining, P. and Barth, E. (2022), ‘Bio-inspired min-nets improve the performance and

robustness of deep networks’, arXiv preprint arXiv:2201.02149 .

Griining, P. and Barth, E. (2023), ‘Efficient coding in human vision as a useful bias in

computer vision and machine learning’, Journal of Perceptual Imaging 6, 1-10.

Griining, P., Martinetz, T. and Barth, E. (2022), ‘Fp-nets as novel deep networks in-
spired by vision’, Journal of Vision 22(1), 8-8.

Hara, K., Kataoka, H. and Satoh, Y. (2018), Can spatiotemporal 3d cnns retrace the
history of 2d cnns and imagenet?, in ‘Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition’, pp. 6546—6555.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neural compu-
tation 9(8), 1735-1780.

Horn, B. K. and Schunck, B. G. (1981), ‘Determining optical flow’, Artificial intelli-
gence 17(1-3), 185-203.

Howes, O. D., Cummings, C., Chapman, G. E. and Shatalina, E. (2023), ‘Neuroimaging
in schizophrenia: an overview of findings and their implications for synaptic changes’,

Neuropsychopharmacology 48(1), 151-167.

Hu, Y. and Barth, E. (2024), Video understanding using 2d-cnns on salient spatio-
temporal slices, in ‘International Conference on Artificial Neural Networks’, Springer,
pp. 256-270.

Ioffe, S. (2015), ‘Batch normalization: Accelerating deep network training by reducing

internal covariate shift’, arXiv preprint arXiv:1502.03167 .

91



Jiahne, B. (1993), Spatio-temporal image processing: theory and scientific applications,
Springer.

James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Ab-
bastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A. et al. (2018), ‘Global, regional,
and national incidence, prevalence, and years lived with disability for 354 diseases

and injuries for 195 countries and territories, 1990-2017: a systematic analysis for
the global burden of disease study 2017°, The Lancet 392(10159), 1789-1858.

John, A. M., Elfanagely, O., Ayala, C. A., Cohen, M. and Prestigiacomo, C. J. (2015),
‘The utility of fractal analysis in clinical neuroscience’, Reviews in the Neurosciences
26(6), 633-645.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L. (2014),
Large-scale video classification with convolutional neural networks, in ‘Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition’, pp. 1725-1732.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Vi-
ola, F.,, Green, T., Back, T., Natsev, P. et al. (2017), ‘The kinetics human action video
dataset’, arXiv preprint arXiv:1705.06950 .

Kim, T.-K., Wong, S.-F. and Cipolla, R. (2007), Tensor canonical correlation analysis
for action classification, in ‘2007 IEEE Conference on Computer Vision and Pattern

Recognition’, IEEE, pp. 1-8.

Klaser, A., Marszatek, M. and Schmid, C. (2008), A spatio-temporal descriptor based
on 3d-gradients, in ‘BMVC 2008-19th British Machine Vision Conference’, British
Machine Vision Association, pp. 275-1.

Korda, A., Luebeck, U., Andreou, C., Rogg, H. V., Avram, M., Ruef, A., Davatzikos,
C., Koutsouleris, N. and Borgwardt, S. (2022), ‘Identification of texture mri brain ab-
normalities on rst-episode psychosis and clinical high-risk patients using explainable

artificial intelligence’, structure 25, 27.

Koutsouleris, N., Borgwardt, S., Meisenzahl, E. M., Bottlender, R., Méller, H.-J. and
Riecher-Rossler, A. (2012), ‘Disease prediction in the at-risk mental state for psychosis
using neuroanatomical biomarkers: results from the fepsy study’, Schizophrenia bul-
letin 38(6), 1234—-1246.

Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T.,
Scheuerecker, J., Schmitt, G., Zetzsche, T., Decker, P., Reiser, M. et al. (2009), ‘Use
of neuroanatomical pattern classification to identify subjects in at-risk mental states of
psychosis and predict disease transition’, Archives of general psychiatry 66(7), 700—
712.

92



Koutsouleris, N., Riecher-Rossler, A., Meisenzahl, E. M., Smieskova, R., Studerus, E.,
Kambeitz-Ilankovic, L., Von Saldern, S., Cabral, C., Reiser, M., Falkai, P. et al. (2015),
‘Detecting the psychosis prodrome across high-risk populations using neuroanatomical
biomarkers’, Schizophrenia bulletin 41(2), 471-482.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T. and Serre, T. (2011), Hmdb: a large
video database for human motion recognition, in ‘2011 International conference on
computer vision’, IEEE, pp. 2556-2563.

Laptev, 1. (2005), ‘On space-time interest points’, International journal of computer
vision 64, 107-123.

Levene, H. et al. (1960), ‘Contributions to probability and statistics’, Essays in honor
of Harold Hotelling 278, 292.

Li, K., Wang, Y., He, Y., Li, Y., Wang, Y., Wang, L. and Qiao, Y. (2022a), ‘Uni-
formerv2: Spatiotemporal learning by arming image vits with video uniformer’, arXiv
preprint arXiv:2211.09552 .

Li, K., Wang, Y., He, Y., Li, Y., Wang, Y., Wang, L. and Qiao, Y. (2022b), ‘Uni-
formerv2: Spatiotemporal learning by arming image vits with video uniformer’, arXiv
preprint arXiv:2211.09552 .

Lin, J., Gan, C. and Han, S. (2019), Tsm: Temporal shift module for efficient video
understanding, in ‘Proceedings of the IEEE/CVF international conference on computer
vision’, pp. 7083-7093.

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S. and Hu, H. (2022), Video swin
transformer, in ‘Proceedings of the IEEE/CVF conference on computer vision and pat-

tern recognition’, pp. 3202-3211.

Liu, Z., Wang, L., Wu, W., Qian, C. and Lu, T. (2021), Tam: Temporal adaptive module
for video recognition, in ‘Proceedings of the IEEE/CVF international conference on

computer vision’, pp. 13708-13718.

Loshchilov, I. and Hutter, F. (2016), ‘Sgdr: Stochastic gradient descent with warm
restarts’, arXiv preprint arXiv:1608.03983 .

MacKay, D. G. and Ahmetzanov, M. V. (2005), ‘Emotion, memory, and attention in the
taboo stroop paradigm: An experimental analogue of flashbulb memories’, Psycholog-
ical science 16(1), 25-32.

Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., Elson, D., Groch, A., Kolb, A.,
Rodrigues, M., Sorger, J., Speidel, S. and Stoyanov, D. (2013), ‘Optical techniques for

93



3d surface reconstruction in computer-assisted laparoscopic surgery’, Medical Image
Analysis 17(8), 974-996.

Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S. A., Yan, T., Brown,
L., Fan, Q., Gutfreund, D., Vondrick, C. et al. (2019), ‘Moments in time dataset: one
million videos for event understanding’, IEEE transactions on pattern analysis and
machine intelligence 42(2), 502-508.

Montemagni, C., Bellino, S., Bracale, N., Bozzatello, P. and Rocca, P. (2020), ‘Models
predicting psychosis in patients with high clinical risk: a systematic review’, Frontiers

in psychiatry 11, 223.

Neimark, D., Bar, O., Zohar, M. and Asselmann, D. (2021), Video transformer net-
work, in ‘Proceedings of the IEEE/CVF international conference on computer vision’,
pp- 3163-3172.

Nenadic, 1., Yotter, R. A., Sauer, H. and Gaser, C. (2014), ‘Cortical surface complexity

in frontal and temporal areas varies across subgroups of schizophrenia’, Human brain
mapping 35(4), 1691-1699.

Neves, G. and Lagnado, L. (1999), ‘The retina’, Current biology 9(18), R674—R677.

Pan, Y. (2010), ‘Attentional capture by working memory contents.’, Canadian Jour-
nal of Experimental Psychology/Revue canadienne de psychologie expérimentale
64(2), 124.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011), ‘Scikit-learn: Machine
learning in python’, the Journal of machine Learning research 12, 2825-2830.

Piergiovanni, A., Kuo, W. and Angelova, A. (2023), Rethinking video vits: Sparse video
tubes for joint image and video learning, in ‘Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition’, pp. 2214-2224.

Radford, A., Kim, J. W, Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J. et al. (2021), Learning transferable visual models
from natural language supervision, in ‘International conference on machine learning’,
PMLR, pp. 8748-8763.

Riecher-Rossler, A., Gschwandtner, U., Aston, J., Borgwardt, S., Drewe, M., Fuhr,
P, Pfliger, M., Radii, W., Schindler, C. and Stieglitz, R.-D. (2007), ‘The basel
early-detection-of-psychosis (fepsy)-study—design and preliminary results’, Acta Psy-
chiatrica Scandinavica 115(2), 114-125.

94



Russ, J. C. (2006), The image processing handbook, CRC press.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. (2018), Mo-
bilenetv2: Inverted residuals and linear bottlenecks, in ‘Proceedings of the IEEE con-

ference on computer vision and pattern recognition’, pp. 4510-4520.

Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta, A.,
Coombes, T., Jitsev, J. and Komatsuzaki, A. (2021), ‘Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs’, arXiv preprint arXiv:2111.02114 .

Schuldt, C., Laptev, 1. and Caputo, B. (2004), Recognizing human actions: a local svm
approach, in ‘Proceedings of the 17th International Conference on Pattern Recognition,
2004. ICPR 2004., Vol. 3, IEEE, pp. 32-36.

Scovanner, P., Ali, S. and Shah, M. (2007), A 3-dimensional sift descriptor and its appli-
cation to action recognition, in ‘Proceedings of the 15th ACM international conference
on Multimedia’, pp. 357-360.

Shen, X., Hua, G., Williams, L. and Wu, Y. (2012), ‘Dynamic hand gesture recogni-
tion: An exemplar-based approach from motion divergence fields’, Image and Vision
Computing 30(3), 227-235.

Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A., Laptev, 1. and Gupta, A. (2016),
Hollywood in homes: Crowdsourcing data collection for activity understanding, in
‘Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part I 14’, Springer, pp. 510-526.

Simonyan, K. and Zisserman, A. (2014), ‘Two-stream convolutional networks for action

recognition in videos’, Advances in neural information processing systems 27.

Snowden, R. J., Snowden, R., Thompson, P. and Troscianko, T. (2012), Basic vision:

an introduction to visual perception, Oxford University Press.

Soomro, K., Zamir, A. R. and Shah, M. (2012a), ‘Ucf101: A dataset of 101 human

actions classes from videos in the wild’, arXiv preprint arXiv:1212.0402 .

Soomro, K., Zamir, A. R. and Shah, M. (2012b), ‘Ucf101: A dataset of 101 human

actions classes from videos in the wild’, arXiv preprint arXiv:1212.0402 .

Squarcina, L., De Luca, A., Bellani, M., Brambilla, P., Turkheimer, F. E. and Bertoldo,
A. (2015), ‘Fractal analysis of mri data for the characterization of patients with

schizophrenia and bipolar disorder’, Physics in Medicine and Biology 60(4), 1697.

95



Srivastava, S. and Sharma, G. (2024), Omnivec: Learning robust representations with
cross modal sharing, in ‘Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision’, pp. 1236-1248.

Student (1908), ‘The probable error of a mean’, Biometrika pp. 1-25.

Sun, D., Phillips, L., Velakoulis, D., Yung, A., McGorry, P. D., Wood, S. J., van Erp,
T. G., Thompson, P. M., Toga, A. W., Cannon, T. D. et al. (2009), ‘Progressive brain
structural changes mapped as psychosis develops in ‘at risk’individuals’, Schizophrenia
research 108(1-3), 85-92.

Tang, H., Liu, H., Xiao, W. and Sebe, N. (2019), ‘Fast and robust dynamic hand gesture
recognition via key frames extraction and feature fusion’, Neurocomputing 331, 424—
433.

Tong, Z., Song, Y., Wang, J. and Wang, L. (2022), ‘Videomae: Masked autoencoders
are data-efficient learners for self-supervised video pre-training’, Advances in neural

information processing systems 35, 10078—10093.

Tran, D., Bourdev, L., Fergus, R., Torresani, L. and Paluri, M. (2015), Learning spa-
tiotemporal features with 3d convolutional networks, in ‘Proceedings of the IEEE inter-

national conference on computer vision’, pp. 4489-4497.

Tran, D., Wang, H., Torresani, L. and Feiszli, M. (2019), Video classification with
channel-separated convolutional networks, in ‘Proceedings of the IEEE/CVF interna-

tional conference on computer vision’, pp. 5552-5561.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y. and Paluri, M. (2018), A closer
look at spatiotemporal convolutions for action recognition, in ‘Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition’, pp. 6450-6459.

Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan,
V., Beets-Tan, R. G., Fillion-Robin, J.-C., Pieper, S. and Aerts, H. J. (2017), ‘Com-
putational radiomics system to decode the radiographic phenotype’, Cancer research
77(21), e104—107.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, 1. (2023), ‘Attention is all you need’, arXiv eprint arXiv:1706.03762 .

Verma, B. (2022), ‘A two stream convolutional neural network with bi-directional gru
model to classify dynamic hand gesture’, Journal of Visual Communication and Image
Representation 87, 103554.

96



Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J. et al. (2020), ‘Scipy 1.0: funda-
mental algorithms for scientific computing in python’, Nature methods 17(3), 261-272.

Wang, H. and Schmid, C. (2013), Action recognition with improved trajectories, in

‘Proceedings of the IEEE international conference on computer vision’, pp. 3551-3558.

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L. (2016a),
Temporal segment networks: Towards good practices for deep action recognition, in

‘European conference on computer vision’, Springer, pp. 20-36.

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, L. (2016b),
Temporal segment networks: Towards good practices for deep action recognition, in

‘European conference on computer vision’, Springer, pp. 20-36.

Wang, Y., Li, K., Li, Y., He, Y., Huang, B., Zhao, Z., Zhang, H., Xu, J., Liu, Y.,
Wang, Z. et al. (2022), ‘Internvideo: General video foundation models via generative

and discriminative learning’, arXiv preprint arXiv:2212.03191 .

Warren, D. H. and Strelow, E. R. (2013), Electronic spatial sensing for the blind: contri-
butions from perception, rehabilitation, and computer vision, Vol. 99, Springer Science

and Business Media.

Welch, B. L. (1947), “The generalization of ‘student’s’problem when several different
population varlances are involved’, Biometrika 34(1-2), 28-35.

Yan, S., Xiong, X., Arnab, A., Lu, Z., Zhang, M., Sun, C. and Schmid, C. (2022), Mul-
tiview transformers for video recognition, in ‘Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition’, pp. 3333-3343.

Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H. and Courville, A.
(2015), Describing videos by exploiting temporal structure, in ‘Proceedings of the IEEE

international conference on computer vision’, pp. 4507-4515.

Yilmaz, A. and Shah, M. (2005), Actions sketch: A novel action representation, in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05)’, Vol. 1, IEEE, pp. 984-989.

Yotter, R. A., Nenadic, 1., Ziegler, G., Thompson, P. M. and Gaser, C. (2011), ‘Local
cortical surface complexity maps from spherical harmonic reconstructions’, Neurolm-
age 56(3), 961-973.

Yu, J., Qin, M. and Zhou, S. (2022), ‘Dynamic gesture recognition based on 2d convo-

lutional neural network and feature fusion’, Scientific Reports 12(1), 4345.

97



Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R. and
Toderici, G. (2015), Beyond short snippets: Deep networks for video classification,
in ‘Proceedings of the IEEE conference on computer vision and pattern recognition’,
pp. 4694-4702.

Zhang, L., Yue, G. and Ieva, A. (2016), ‘The fractal geometry of the brain’, Springer

series in computational neuroscience .

Zhao, G., Denisova, K., Sehatpour, P., Long, J., Gui, W., Qiao, J., Javitt, D. C. and
Wang, Z. (2016), ‘Fractal dimension analysis of subcortical gray matter structures in
schizophrenia’, PloS one 11(5), e0155415.

Zhu, Y., Li, X., Liu, C., Zolfaghari, M., Xiong, Y., Wu, C., Zhang, Z., Tighe, J., Man-
matha, R. and Li, M. (2020), ‘A comprehensive study of deep video action recognition’,
arXiv preprint arXiv:2012.06567 .

Ziermans, T. B., Schothorst, P. F., Schnack, H. G., Koolschijn, P. C. M., Kahn, R. S.,
van Engeland, H. and Durston, S. (2012), ‘Progressive structural brain changes during

development of psychosis’, Schizophrenia bulletin 38(3), 519-530.

98



LIST OF PUBLICATIONS

. Hu, Y., and Barth, E. (2024, June). Novel Design Ideas that Improve Video-
Understanding Networks with Transformers. In 2024 International Joint Confer-

ence on Neural Networks (IJCNN) (pp. 1-7). IEEE.

. Guarischi, M., Hu, Y., Kurt, A. B., Zanchi, S., Barth, E., and Gori, M. (2024,
June). A Machine Learning Approach to Unveil Balance Behavior Through Ag-
ing with an Auditory Cue. In 2024 IEEE International Symposium on Medical
Measurements and Applications (MeMeA) (pp. 1-6). IEEE.

. Hu, Y., and Barth, E. (2024, September). Video Understanding Using 2D-CNNs
on Salient Spatio-Temporal Slices. In International Conference on Artificial Neu-

ral Networks (pp. 256-270). Cham: Springer Nature Switzerland.

. Hu, Y., and Barth, E. (2024, December). How to Efficiently Use Color and Tem-
poral Information for Video Understanding? (Accepted by ICONIP2024)

. Hu, Y., Andac, S., Hoffmann, M. and Barth, E. A novel deep learning approach to
assess visual system integrity from movement patterns during treadmill walking

— a pilot study. (to be submitted)

. Hu, Y., Firsman, M., Korda, A. and Barth, E. Using Brain Fractal Dimension and
Machine Learning for the prediction of first-episode psychosis and transition of

psychosis. (to be submitted)

99



Appendix A

Major datasets for video understanding

Dataset Year | #Video | #Class | Length
KTH (Schuldt et al. 2004) 2004 600 6 4s
Weizmann (Blank et al. 2005) 2005 90 10 3.66s
HMDB51 (Kuehne et al. 2011) 2011 6849 51 Ss
UCF101 (Soomro et al. 2012a) 2012 | 13,320 101 6s
Sports-1M (Karpathy et al. 2014) 2014 | 1,133,158 | 487 5.5m

ActivityNet (Caba Heilbron et al. 2015) 2015 28,000 203 [5,10]m

YouTube-8M (Abu-El-Haija et al. 2016) 2016 | 8,000,000 | 4716 | 229.6s

Charades (Sigurdsson et al. 2016) 2016 9848 157 30.1s
Kinetics400 (Kay et al. 2017) 2017 | 306,245 400 10s

Kinetics600 (Carreira et al. 2018) 2018 | 495,547 600 10s

Kinetics700 (Carreira et al. 2019) 2019 | 650,317 700 10s

Something-Something V1 (Goyal et al. 2017) | 2017 | 108.499 174 [2,6]s

Something-Something V2 (Goyal et al. 2017) | 2017 | 220.847 174 [2,6]s

Moments in Time (Monfort et al. 2019) 2017 | 1,000,000 339 3s

EPIC-Kitchens (Damen et al. 2018) 2018 90,000 307 30s
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Appendix B

The 32 selected classes of SthSth32

Class names Index

Approaching [something] with your camera 0

Closing [something] 1

Folding [something] 2

Holding [something] 3

Holding [something] next to [something] 4

Moving [something] away from [something] 5
Moving [something] away from the camera 6

Moving [something] closer to [something] 7
Moving [something] down 8

Moving [something] towards the camera 9
Moving away from [something] with your camera 10
Opening [something] 11
Picking [something] up 12

Plugging [something] into [something] 13
Pretending to pick [something] up 14
Pretending to put [something] next to [something] 15
Pretending to put [something] on a surface 16
Pretending to take [something] from [somewhere] 17
Pushing [something] so that it slightly moves 18
Pushing [something] with [something] 19
Putting [something] into [something] 20
Showing a photo of [something] to the camera 21
Showing that [something] is empty 22
Stacking [number of] [something] 23
Throwing [something] against [something] 24
Turning [something] upside down 25
Turning the camera downwards while filming [something] 26
Turning the camera left while filming [something] 27
Turning the camera right while filming [something] 28
Turning the camera upwards while filming [something] 29
Uncovering [something] 30
Unfolding [something] 31

* Selected from the 40-selected classes reported in (Goyal et al. 2017), from Sth-Sth V2
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