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Abstract

An important requirement for the expression of cognitive structures is the
ability to form mental objects by rapidly binding together constituent parts.
In this sense, one may conceive the brain’s data structure to have the form
of graphs whose nodes are labeled with elementary features. These provide
a versatile data format with the ability to render the structure of any mental
object. Because of the multitude of possible object variations the graphs are
required to be dynamic. Upon presentation of an image a so-called model
graph should rapidly emerge by binding together memorized subgraphs de-
rived from earlier learning examples driven by the image features. In this
model, the richness and flexibility of the mind is made possible by a com-
binatorial game of immense complexity. Consequently, emergence of model
graphs is a laborious task which, in computer vision, has most often been
disregarded in favor of employing model graphs tailored to specific object
categories like faces in frontal pose. Invariant recognition or categorization
of arbitrary objects, however, demands dynamic graphs.

In this work we propose a form of graph dynamics, which proceeds in three
steps. In the first step position-invariant feature detectors, which decide
whether a feature is present in an image, are set up from training images.
For processing arbitrary objects, these features are small regular graphs,
termed parquet graphs, whose nodes are attributed with Gabor amplitudes.
Through combination of these classifiers into a linear discriminant that con-
forms to Linsker’s infomax principle a weighted majority voting scheme is
implemented. The network is well suited to quickly rule out most irrelevant
matches and only leaves the ambiguous cases, so-called model candidates,
to be processed in a third step using a rudimentary version of elastic graph
matching, a standard correspondence-based technique for face and object
recognition. To further di↵erentiate between model candidates with similar
features it is asserted that the features be in similar spatial arrangement
for the model to be selected. Model graphs are constructed dynamically
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by assembling model features into larger graphs according to their spatial
arrangement. The model candidate whose model graph attains the best sim-
ilarity to the input image is chosen as the recognized model.

We report the results of experiments on standard databases for object recog-
nition and categorization. The method achieved high recognition rates on
identity, object category, pose, and illumination type, provided that individ-
ual object variations are su�ciently covered by learning examples. Unlike
many other models the presented technique can also cope with varying back-
ground, multiple objects, and partial occlusion.
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Chapter 1

Introduction

The nervous system is organized (or organizes itself)
so that it computes a stable reality.

Heinz von Foerster

We live in a world of composite structures. For instance, the computer I
write this thesis on is an assembly consisting of a processor, a hard disk, a
number of circuit boards and so forth, which, provided they are properly put
together and are functional, constitute a working machine. The same is the
case for all physical objects. Even the human body, like all other creatures, is
hierarchically composed of cells, organs, subsystems of interacting organs and
so on, that, configured according to the rules of anatomy, constitute a viable
organism. The same applies for the non-physical. For instance, in western
languages, only twenty-six characters and a half-dozen symbols are required
to compose syllables, words, sentences, paragraphs, chapters, this thesis,
and any story on any subject one can ever possibly imagine. At the same
time, from a mere combinatorial point of view, the majority of arrangements
violates grammatical rules, which makes them illegitimate. We give another
example. In philosophy, schema theory (Piaget, 1975a,b) states that the
ability to perform an action, termed skill, for instance, to grasp an object, is
implemented by a schema, which is hierarchically composed out of simpler
ones. These can be innate or learned. Schema theory thus explains the
ability of humans to learn ever more complex skills, for instance, to drive a
car or to play a musical instrument, with the ability to purposefully compose
schemas in a hierarchical fashion.
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Organization by composition is so ubiquitous that it has been suggested to
be fundamental to cognition as well:

Compositionality refers to our ability to construct mental repre-
sentations, hierarchically, in terms of parts and their relations.
The “rules” of composition are such that (i) we have at our dis-
posal an infinite repertoire of hierarchically constructed entities
[ . . . ] and (ii) allowable constructions nevertheless respect spe-
cific constraints, whereby overwhelmingly most combinations are
made meaningless. (Bienenstock and Geman, 1995)

Cognition may thus be understood as a process in which the brain ac-
tively constructs mental representations. This idea is absent in early neural
network models like (Pitts and McCulloch, 1947; Rosenblatt, 1962;
Fukushima et al., 1983). This hypothesis is backed by psychophysical ex-
periments that prove that some recognition tasks take distinctly longer than
others. For instance in (Treismann and Gelade, 1980) human subjects
were presented combinations of green and red crosses. Afterwards, the sub-
jects were asked to give statements like “I have seen a red cross in the left
half of the screen and a green circle in the right half.”. If the presentation
was long enough, this was an easy task. When the presentation times were
reduced below some 50 milliseconds the performance degraded in a remark-
able fashion. The subjects could still decide if they had seen cross and circle
or only crosses and that these had the same or di↵erent colors. However,
the assignment of color to the cross or circle dropped to chance level. This
result can be interpreted with the assumption that the construction of a
suitable representation that correctly associates the visual features ‘cross’,
‘circle’, ‘red’, and ‘green’ according to the presented visual scene takes more
time than the mere detection of uncombined features. This findings cannot
be explained with conventional models of brain function: once developed to
their final state as pattern recognizers, the processing time needed to clas-
sify an input pattern is practically constant, i.e., they implement a simple
stimulus-response scheme. Although these models for their own part have
been successful in the task of invariant pattern recognition they run into
problems when confronted with more realistic problems, for instance, real
images. The reason for this is that the range of invariances achieved by the
brain is so large that it cannot be covered with enough examples for the
network to learn all of them. This can be alleviated by introducing extra
neurons every time a new invariance is needed. This is nicely demonstrated
with the neocognitron in (Fukushima et al., 1983). However, in order to
achieve a realistic system, the amount of new cells to be introduced to cover
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the whole spectrum of invariances would soon exhaust the total number of
cells available. In this respect, sharing constituent-encoding cells among rep-
resentations can be considered as the brain’s method to conserve with its
rich but nonetheless limited resources. Sharing resources, however, implies
the necessity of active construction.

Binding (von der Malsburg, 1981, 1999), a neural mechanism that allows
to correctly associate constituent entities with each other, is a fundamental
requirement for compositionality. The classical example of binding is given
by Rosenblatt (1962). It is concerned with a visual scene containing a red
triangle and a blue square. The mere coactivation of four entities representing
the four visual features ‘red’, ‘blue’, ‘triangle’, and ‘square’ would lead to a
superposition catastrophe (von der Malsburg, 1999) that is, in this case,
the inability to distinguish a scene containing a red triangle and a blue square
from a scene containing a red square and a blue triangle. Composition is
thus more than coactivation of constituents. In order to share constituents
among di↵erent representations at di↵erent points in time, binding needs to
be dynamical. In Rosenblatt’s example the features ‘red’ and ‘triangle’
are to be bound to each other if a visual scene containing a red triangle is
presented, while the feature ‘red’ is to be bound to feature ‘square’ if a scene
containing a red square is presented. Binding further needs to be relational,
that is, qualified in terms of the correct arrangement of constituents in the
composite structure. In Rosenblatt’s example the spatial arrangement of
features in the representation has to reflect that in the presented scene, i.e.,
the feature ‘red’ should be located at the same position in the image plane as
the feature ‘triangle’ and the feature ‘blue’ should reside at the same position
as the feature ‘square’.

How can compositionality be incorporated in theories of human object recog-
nition? We give two examples. Geon structural description (Biederman,
1987) posits that objects and scenes are represented as an arrangement of
a small number of simple, viewpoint-invariant volumetric primitives called
geometric icons, or, as a shorthand, geons. In that theory human object
recognition is described as a three-stage process: first, the object is decom-
posed into its individual components, second, each component is attempted
to be recognized as a geon, and, third, the object is recognized as a mem-
orized arrangement of geons. For instance, a cup may be recognized as
an arrangement of a cylinder and a side-connected arc. In elastic graph
matching (von der Malsburg, 1988; Lades et al., 1993; Wiskott, 1995;
Wiskott et al., 1997) the data structure of stored object views has the
form of two-dimensional graphs, termed model graphs, whose nodes are la-
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beled with elementary features. They provide a versatile data format with
the capability to render the structure of any object. An object in an image
is supposed to be recognized if the model graph represents the object well in
terms of a super-threshold measure of similarity. Because of the multitude of
possible object variations, like changes in identity, pose, or illumination, the
graphs are required to be dynamic with respect both to shape and attributed
features.

1.1 Outline

In this thesis we propose a form of graph dynamics that upon image presenta-
tion lets a model graph emerge that represents the object in the input image
well. We demonstrate the dynamics’ capability in extensive experiments.
Throughout this thesis we use the terms recognition and categorization ac-
cording to (Palmeri and Gauthier, 2004). The term recognition refers to a
decision about an object’s unique identity. Recognition thus requires subjects
to discriminate between similar objects and involves generalization across
some shape changes as well as physical translation, rotation and so forth.
The term categorization refers to a decision about an object’s kind. Cate-
gorization thus requires generalization across members of a class of objects
with di↵erent shapes. Especially, generalization over identity is required.

In chapter 2 elastic graph matching and bunch graph matching are introduced,
which are standard correspondence-based techniques for object recognition
and categorization.

In chapter 3 we present a form of graph dynamics that upon image pre-
sentation lets a model graph rapidly emerge by binding together memorized
subgraphs derived from earlier learning examples.

In the following three chapters the proposed graph dynamics is applied to
the task of invariant object recognition (Chapter 4), to the task of object cat-
egorization (Chapter 5), and to the task of estimating pose and illumination
type of human faces (Chapter 6).

In chapter 7 the thesis will be summarized.

Finally, appendix A gives an abstract of the thesis in German and the au-
thor’s curriculum vitae.
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1.2 List of Symbols

Symbol Description Page

X Set

} (X) Power set of X
|X| Number of elements in X
; Empty set

R Set of real numbers

N
0

Set of natural numbers incl. 0

x Vector

x> Transposed Vector

(x
n

)
1nN

Vector with N components x
n

X Matrix

(x
n,m

)
1nN

1mM

Matrix with N rows, M columns, and compo-
nents x

n,m

J Jet 13

GM Model graph 10, 66

GI Image graph 66

s
abs

Function that returns the similarity between two
jets which is based on the Gabor amplitudes only

14

I Set of images 29

I Image

D Learning set 29

M Model image

K Number of partionings of the learning set 29

k Index of partitioning 29

⇧k Partitioning of the learning set with index k 29

Ck Number of categories in partitioning ⇧k 29

c Index of category 29

Ck

c

Category with label c of partitioning ⇧k, a subset
of learning images that share a semantic property

29
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Symbol Description Page

V Number of nodes of a parquet graph 32

s
graph

Function that returns the similarity between two
parquet graphs

33

" (f, f 0,#) Local feature detector, returns 1 if the similar-
ity between parquet graph f and f 0 is greater or
equal than # and 0 otherwise

33

R Number of feature calculators 35

F Set of all possible features 35

r Index of feature calculator 35

f r Feature calculator with index r 35

f r Feature vector computed using feature calculator
f r

35

T r Number of features in feature vector f r 37

t Feature index 37

f r

t

Feature with index t in feature vector f r 37

H (·) Heaviside threshold function 40

⌧ r

t

(Position-Invariant) Feature detector with refer-
ence feature f r

t

41

⌧ r

t

(I) Result of feature detector ⌧ r

t

, 1 if feature f r

t

can
be observed in I and 0 otherwise

41

F
match

(I) Table of matching features 41

Hr,k

t

Uncertainty of feature detector ⌧ r

t

about choosing
categories of partitioning ⇧k, Shannon entropy

43

ir,k
t

Contribution of feature detector ⌧ r

t

to the deci-
sion about choosing categories of partitioning ⇧k,
measure of information

43

wr,k

t,c

Synaptic weight between the input neuron as-
signed to feature detector ⌧ r

t

and the output neu-
ron assigned to category Ck

c

45
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Symbol Description Page

W r,k Matrix of synaptic weights between the input
neurons assigned to feature detectors ⌧ r

t

with
t 2 {1, . . . , T r} and the output neurons assigned
to categories Ck

c

with c 2 �1, . . . , Ck

 

45

sk

c

(I) Saliency of category Ck

c

46

�k (I) Set of salient categories of partitioning ⇧k 55

M (I) Set of model candidates 55

F
corr

(I, M) Table of corresponding features 65

XI Positions of all valid nodes of image parquet
graphs

65

XM Positions of all valid nodes of model parquet
graphs

65

�I (x) Bunch of jets at position x drawn from image
parquet graphs

66

�M (x) Bunch of jets at position x drawn from model
parquet graphs

66

s
bunch

Function that returns the similarity between two
bunches of jets

66



8 Introduction



Chapter 2

Elastic Graph Matching

Not even the gods fight against necessity.

Simonides

One of the most fundamental problems in computer vision is the correspon-
dence problem:

Given two images of the same object or of two objects of the same
category, a pixel in one image corresponds to a pixel in the other
if both pixels are projections of the same point on the physical
object. The problem is to determine this correspondence between
pixels of the given images.

The correspondence problem occurs in a number of tasks related to vision.
For instance, recognition of objects can be achieved through comparison of
local image features at corresponding points. As much as a solution of the
correspondence problem is desirable as di�cult it has turned out to obtain
one.

Elastic graph matching (von der Malsburg, 1988; Lades et al., 1993;
Wiskott, 1995; Wiskott et al., 1997), an algorithmic implementation of
Dynamic Link Matching (von der Malsburg, 1981, 2002), provides a suc-
cessful method to solve the correspondence problem. In this approach object
views are represented by graphs whose nodes are labeled with local image
features. These graphs are called model graphs. Recognition of an object is
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achieved through optimal placement of a model graph that represents the
object to be recognized on the input image in terms of maximizing a mea-
sure of similarity based on local similarities between local image features
at corresponding points. The process of similarity maximization is called
matching. The object is supposed to be recognized if the final similarity
value exceeds a predefined threshold. Bunch graphs provide a successful ex-
tension of model graphs (Wiskott, 1995; Wiskott et al., 1997). They
combine model graphs of similar object views, for instance faces of approx-
imately the same size in frontal pose, in a stack-like structure and are thus
able to generalize over identity to some degree.

Elastic graph matching and elastic bunch graph matching have mainly been
applied for the reliable recognition of human faces (Phillips et al., 2000;
Messer et al., 2004). Recent research has focused on the development of ob-
ject models that allow to describe object variations with few, low-dimensional
parameters (Wundrich, 2004; Tewes, 2006).

In the following sections the elastic graph matching approach is introduced as
far as the graph dynamics proposed in chapter 3 is concerned. More detailed
descriptions are given in (Wiskott, 1995; Wieghardt, 2001; Tewes, 2006).

2.1 Model Graph

In the elastic graph matching approach object views are represented by model
graphs, which are two-dimensional graphs whose nodes are labeled with local
image features. Usually, the nodes are labeled with the complex responses
of a set of Gabor filters, that constitute a so-called jet. Two nodes may be
connected with an edge. For face recognition, nodes are usually associated
with so-called facial landmarks like the tip of the nose, the pupil of an eye,
or the corners of the mouth. It is nevertheless also possible to use arbitrary
landmarks as has been demonstrated in (Lades et al., 1993; Loos, 2002).
Exemplary model graphs are given in fig. 2.1. In the following, model graphs
are supposed to be given in the form of eq. (2.1): a model graph GM that
represents the object in an example image M is specified by a set of V tuples,
i.e., a tuple specifies one node. For a node v they comprise the absolute node
position x

v

and the jet J
v

derived at that position. Although the edges can
be harnessed for shape preservation purposes they are deliberately ignored
in what follows.

GM =
n

(x
v

,J
v

)
�

�

�

1  v  V
o

(2.1)
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(a) (b) (c) (d)

Figure 2.1: Model Graph — In (a) a face graph is shown schematically.
For clarity, the model graph comprises only nine nodes while a typical face
graph consists of up to 60 nodes. In (c) a model graph for the object in (b) is
given. The reconstruction from the model graph in (d) demonstrates that the
model graph represents the object well. The model graph has been computed
by the graph dynamics proposed in chapter 3. Like all reconstructions in this
thesis, the reconstruction in (d) has been computed with the algorithm from
(Pötzsch et al., 1996).

2.1.1 Node Labels

Each node of a model graph is labeled with a feature vector that describes
the texture in the node’s surrounding. Features are the complex responses
of a set of Gabor filters. They constitute a so-called jet (Lades et al., 1993).
A Gabor function has the form of a plane wave restricted by a Gaussian
envelope (Eq. (2.2)). An example of a two-dimensional Gabor function is
given in fig. 2.2. Gabor functions are well-suited for image representation be-
cause of their properties regarding information theory (Linsker, 1988; Ol-
shausen and Field, 1996) and because of their biological relevance (Hubel
and Wiesel, 1962; Jones and Palmer, 1987). Fourier-transformed Gabor
functions take the form of Gaussians in the frequency domain.

 
k

(x) =
k2

�2

exp

✓

�k2x2

2�2

◆

exp
�

ik>x
�� exp

✓

��
2

2

◆�

(2.2)



12 Elastic Graph Matching

(a) (b)

Figure 2.2: Gabor Function — Gabor functions have the shape of a
plane wave restricted by a Gaussian envelope. (a) shows the real part, (b)
the imaginary part of a two-dimensional Gabor function.

A Gabor wavelet transform of an image I at a point x with respect to a wave
vector k is given by the convolution with the Gabor kernel (Eq. (2.3)). The
domain of integration is the image plane.

I
k

(x) =

Z

R2

I (x0) 
k

(x� x0) d2x0 (2.3)

For actual calculations a discrete and finite subset of wave vectors is nec-
essary. By rotating and scaling the wave vector k a whole family of Gabor
functions can be derived. Each of them is parameterized in terms of its
orientation �

l

and frequency k
m

(Eq. (2.4)).

k
m,l

= k
m

·
✓

cos�
l

sin�
l

◆

(2.4)

The finite set of filters is chosen such that the direction space is sampled
homogeneously (Eq. (2.5)) and the frequencies are sampled geometrically
(Eq. (2.6)).

�
l

=
⇡ · l
L

with l 2 {0, . . . , L� 1} (2.5)

k
m

=
k

max

(k
step

)m

with m 2 {0, . . . ,M � 1} (2.6)

The remaining parameters are chosen according to (Lades et al., 1993;
Wiskott, 1995). This parameterization is used in the entire thesis.

k
step

=
p

2 k
max

= ⇡

2

L = 8 M = 5 � = 2⇡ (2.7)
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Figure 2.3: Creation of Jets — The figure shows the calculation of a
jet for one position in the image with Gabor wavelets for L = 8 directions
and M = 5 frequencies resulting in a vector of M · L = 40 complex values.
This vector of filter responses is called jet. The wavelets are represented by
contour lines in the frequency domain.

The complex responses of this set of Gabor filters at a given location in
an image constitute a so-called jet (Lades et al., 1993). These jets are
vectors of M ·L complex numbers which are characterized by their associated
set of filters. The creation of a Gabor jet is illustrated in fig. 2.3. In the
following jets are supposed to be given in the form of eq. (2.8): the complex
filter responses are expressed in terms of amplitudes a

km,l
and phases �

km,l
.

Whenever possible we omit the position x and write J instead of J (x).

J (x) =
⇣

I
km,l

(x)
⌘

0m<M,0l<L

=:
⇣

a
km,l

· ei·�km,l

⌘

0m<M,0l<L

(2.8)
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2.1.2 Similarity Function

For the assessment whether two points from two di↵erent images actually
correspond to each other, a measure of similarity between local features is
needed. It is commonly introduced by so-called similarity functions that map
two jets into the interval [0, 1]. They are required to be invariant against im-
age changes irrelevant for solving the correspondence problem such as modi-
fication of the total brightness or image contrast. In order to ease the search
of correspondences, smooth changes of the similarity values for local trans-
formations such as translation, scaling, and rotation are required. Moreover,
similarity functions are expected to be symmetrical and their result has to
be 1 whenever the arguments are identical. A number of similarity func-
tions have meanwhile been proposed (Lades et al., 1993; Würtz, 1995;
Wiskott, 1995). In this thesis we exclusively use the measure of similarity
that is solely based on the amplitudes of the filter responses (Eq. (2.9)). This
measure of similarity allows for smooth similarity potentials with fairly wide
maxima. The similarity potentials are exemplarily given in fig. 2.4.

s
abs

(J ,J 0) =

P

m,l

a
km,l

· a0
km,l

q

P

m,l

a
km,l

2 ·
q

P

m,l

a0
km,l

2

(2.9)

2.2 Matching

In elastic graph matching recognition of an object in an input image is
achieved through optimal placement of a model graph that represents the
object to be recognized as a deformable template on the input image. To
this end a measure of similarity that is based on local similarities between
jets at corresponding points is maximized. The process of similarity max-
imization is called matching. It consists of several steps, so-called moves.
Each move modifies the placement of the model graph’s nodes in order to
maximize the measure of similarity. The order of moves and their param-
eterization is specified in a matching schedule, which is usually built up to
pursue a coarse-to-fine strategy. An overview of moves is given in fig. 2.5.

In this thesis the scan global move over the whole image plane on a coarse
grid is of particular interest. In the graph dynamics proposed in chapter 3 it
is used to assert that the features be in similar spatial arrangement for the
model to be selected while in elastic graph matching it is generally applied
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Figure 2.4: Similarity Potentials of the Jet Similarity Function —
The potentials of the jet similarity function s

abs

(Lades et al., 1993) for a
single jet taken from the center of the given image with respect to translation,
scale, and rotation are displayed. The image has arbitrarily been chosen from
the COIL-100 database (Nene et al., 1996). In the translation case (a) a
jet has been extracted and compared to jets derived at positions along a line
of increasing distance from the original position. The sensitivity to scaling
(b) has been tested by comparing the original jet to jets at corresponding
positions in scaled images. The original image is 128⇥128 pixels in size. For
the chosen image the measure of similarity does not yield a smooth similarity
potential in the case of scaled objects. Rotation (c) has been tested by rotating
the image around the point at which the original jet has been extracted. The
original jet has been compared to jets extracted at the same pixel position in
the rotated images.
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first in order to find the object in the input image. To this end the rigid
model graph is iteratively moved over the entire image plane on a coarse
grid. For each translation the similarity between the model graph and the
Gabor wavelet transformed input image is computed. In the process, the
model graph’s absolute node positions are transformed into relative ones by
subtracting a displacement vector t

0

from the positions of the model graph’s
nodes. That vector is chosen such that after subtraction the smallest x and
the smallest y coordinate become zero (Eq. (2.10)).

t
0

=

 

min
v

n

(x
v

)
x

o

, min
v

n

(x
v

)
y

o

!>

(2.10)

The total similarity between the model graph and the Gabor wavelet trans-
formed input image with respect to a given translation vector t is defined
as the average of local similarities at corresponding points (Eq. (2.11)). Let
s (·) denote some similarity function that compares two Gabor jets. This
similarity function may, for instance, be the one given in eq. (2.9).

s (I, M, t) =
�

�

�

GM

�

�

�

�1

·
X

(xv ,Jv)2GM

s
⇣

J I (x
v

� t
0

+ t) ,J
v

⌘

(2.11)

In order to find the object in the input image, the model graph is iteratively
translated about a displacement vector in the image plane so that the total
measure of similarity becomes maximal (Eq. (2.12)). The model graph thus
moves to the position in the input image where the object is most likely
located. Let s

best

(I, M) denote the similarity attained at that position. If
that similarity exceeds a given threshold the object is supposed to be found
and recognized. The displacement vectors t stem from the set G of the scan
global move’s grid points.

s
best

(I, M) = max
t2G

n

s (I, M, t)
o

(2.12)
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(a) (b)

(c)

(d)

Figure 2.5: Overview of Moves — The figure shows the di↵erent moves of
a model or bunch graph. (a) Scan Global Move: the graph is moved over the
entire image or over a specific region. The movement can be restricted to an
adjustable raster. The scan global move is used typically for the determination
of the first position of an object in the image. (b) Scan Local Move: for each
node of the graph an optimal position is looked up. This search can be limited
to a certain area around the node. Usually, the scan local move is performed
as the last step of the matching schedule. (c) Scan Scale Move: the graph is
scaled either as a whole or independent horizontally and/or vertically. (d)
Disp Scale Move: a displacement vector for each node is calculated. These
vectors are averaged to determine a displacement and scale vector for the
entire graph.
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preprocessing 
extracts a set of Gabor 
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image 

local image description 

model graph 

  
similarity function  
for the comparison  
of two jets 

  

jets 

(a) translation mapping 

(b) local mapping 

matching:  
mapping sets 

Figure 2.6: Overview of Elastic Graph Matching — In elastic graph
matching recognition of an object in an input image is achieved through op-
timal placement of a model graph that represents the object to be recognized
as a deformable template on the preprocessed input image. To this end a
measure of similarity that is based on the local similarities between jets at
corresponding points is maximized. The process of similarity maximization
is called matching. It consists of several steps, so-called moves. Each move
modifies the placement of the model graph’s nodes in order to maximize the
measure of similarity. The order of moves and their parameterization is
specified in a matching schedule which is usually built up to pursue a coarse-
to-fine strategy. The object is located at that position in the input image at
which the similarity becomes maximal. If the final similarity value exceeds a
given threshold the object is supposed to be recognized.
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+ · · · + =

Model Graph Model Graph Bunch Graph

Figure 2.7: Bunch Graph — A bunch graph is a stack-like structure com-
posed out of model graphs. The bunch graph in this figure is composed out
of six model graphs with the topology of the schematic face graph given in
fig. 2.1 (a). It is highly important that the model graphs’ nodes are exactly
positioned on the landmarks. While matching, the jet of a given bunch that
attains the highest similarity to the corresponding image jet is selected inde-
pendently from the selection of the most similar jet in the other bunches, here
illustrated by gray shading. This selection depends on the object the bunch
graph was matched with.

2.3 Bunch Graph

Model graphs have proven to perform well for recognition of objects, espe-
cially human faces. However, for categorization of objects, for instance to
distinguish faces from non-faces, they su↵er from the deficiency that they
encode only one identity and, hence, are not able to cover intra-category
variations, which can be considerable. For instance, human faces can have
glasses, beards, di↵erent expressions, di↵erent age, gender, or face form. To
this end a bunch graph provides a representation of a whole category of
objects. Fig. 2.8 illustrates this statement for the category of human faces
in frontal pose. The bunch graph combines model graphs of similar object
views in a stack-like structure. It is very important that all constituting
model graphs have the same topology and the nodes code the same local
features, i.e., they are positioned on the same landmarks. An illustration of
the bunch graph concept is given in fig. 2.7.

Elastic graph matching can easily be adapted to bunch graphs. Basically,
only the local similarity function needs to be modified. Like in elastic graph
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(a) (b) (c)

Figure 2.8: Reconstruction from a Bunch Graph — (a) shows a face
with its associated model graph. (b) shows the reconstruction of the image
from the model graph in (a). (c) shows the reconstruction of the jets of
a bunch graph, which fits best on the face in (a). The used bunch graph
contains approximately 100 di↵erent faces, however, not that in (a).

matching the similarity between the bunch graph and the Gabor wavelet
transformed input image is given by the average of local similarities at cor-
responding points. The local similarities are evaluated as nearest neighbor
similarities: the similarity between a bunch of jets and a jet at the corre-
sponding position in the Gabor wavelet transformed input image is given
by the maximum of all similarities between the image and bunch jets. The
selection of the most similar jet in a bunch is independent of the selection in
the other bunches.

2.4 Discussion

Elastic graph matching and elastic bunch graph matching have proven to
perform well for object recognition and categorization under the implicit
assumption that the variations of objects to be recognized or categorized can
be covered with a small ensemble of suited model or bunch graphs. These
are matched in succession to the input image and the graph that attains
the highest similarity is supposed to represent the object in the input image
best. Problems arise if that assumption is not applicable, for instance, if
arbitrary objects are to be recognized with full pose invariance. This is
illustrated in fig. 2.9. It is certainly not sensible, neither in a biological nor in
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Figure 2.9: Examples of Emerged Model Graphs — Even though the
object is always the same, the model graphs di↵er considerably with respect
both to shape and attributed features depending on the object’s pose. The
model graphs were computed by the graph dynamics proposed in chapter 3.

a computational sense, to store one model graph per learning image in order
to cope with the multitude of possible object variations.

Through the years, several approaches have been proposed to address this
problem. Peters (2001) suggests to store only the model graphs of so-
called canonical views. Others propose parameterized object models that
allow to describe object variations with few, low-dimensional parameters. For
instance, Wundrich (2004) proposes a model that allows to parameterize
illumination type and head pose while the flexible object model of Tewes
(2006) allows to parameterize facial gestures and head pose. These models
are, however, purposely tailored to the category of human faces; in their
current state they can hardly handle a variety of arbitrary objects. To this
end a graph dynamics is desirable that upon image presentation lets a model
graph rapidly emerge by binding together memorized subgraphs derived from
earlier learning examples. Such a graph dynamics will be proposed in the
following chapter.
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Chapter 3

Feature-Driven Emergence of
Model Graphs

When you have eliminated the impossible, whatever
remains, however improbable, must be the truth.

Sir Arthur Conan Doyle

In chapter 1 we motivated that compositionality, the ability to form mental
objects by rapidly binding together constituent parts (Biederman, 1987;
Bienenstock and Geman, 1995), is an important requirement for the ex-
pression of cognitive structures. In this sense, one may conceive the brain’s
data structure to have the form of graphs whose nodes are labeled with local
image features. These graphs are termed model graphs.

This data format has been used for visual object recognition (Shapiro and
Haralick, 1981; Bunke, 1983; Eshera and Fu, 1986; Messmer and
Bunke, 1998) and in the Dynamic Link Matching approach (von der
Malsburg, 1981, 1988, 2002; Lades et al., 1993; Wiskott et al., 1997). In
all these approaches the data structure of stored object views has the form
of model graphs. They provide a versatile data format with the capability to
render the structure of any object. Because of the multitude of possible ob-
ject variations like changes in identity, pose, or illumination, the graphs are
required to be dynamic with respect both to shape and attributed features.
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Upon presentation of an image a so-called model graph should rapidly emerge
by binding together memorized subgraphs derived from earlier learning ex-
amples driven by the image features. Emergence of model graphs is a la-
borious task which, in computer vision, has most often been disregarded in
favor of employing model graphs tailored to specific object categories like
faces in frontal pose (Lades et al., 1993; Würtz, 1997; Wiskott et al.,
1997). Recognition or categorization of arbitrary objects, however, demands
dynamic graphs, i.e., more emphasis must be laid on the question of how
model graphs are created from raw image data.

Relatively little work has been done on the dynamic creation of model graphs.
The object recognition system proposed in (von der Malsburg and Reiser,
1995) is based on Dynamic Link Matching supplied with object memory.
While learning novel objects a so-called fusion graph is created through it-
eratively matching image graphs with the fusion graph and grafting non-
matched parts of the image graphs into the fusion graph. When an object
is to be recognized, one or more image graphs are compared against model
memory via graph matching, implemented by dynamic links. The matching
parts of the fusion graph thus constitute the model graph for the object con-
tained in the input image. The system has proven to perform well for a small
number of object views. During both learning and recognition the objects
are required to be placed in front of a plain background.

A di↵erent approach is the creation of model graphs with minimal user-
assistance (Loos, 2002). In that method, a growing neural gas (Martinetz
and Schulten, 1991; Fritzke, 1997) is used to determine shape and topol-
ogy of a model graph. Binarized di↵erence images derived from two consec-
utive images of the same moving object are used as an input to a growing
neural gas whose nodes are attracted to super-threshold frame di↵erences.
Upon an user-initiated event, Gabor jets are extracted at the node positions
and the produced model graph is stored in a model database. During recog-
nition, model graphs are matched in succession with the input image. The
compositional aspect is thus prominent while learning novel objects but is
absent during recognition. A rudimentary version of model graph dynam-
ics is also present in (Würtz, 1997), where model graphs are adapted to
segmentation masks in order to ignore background influences.
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Weber et al. (2000) propose a system that creates an object model in a
probabilistic framework. The technique uses mixtures of collaborating proba-
bilistic object models, termed components. Highly textured regions, so-called
parts, are employed as local features. They are automatically extracted from
earlier learning images. Each component is an expert for a small ensemble of
object parts. In order to describe an object in an image several components
need to be active. Model parameters, the parameters of the incorporated
probability densities, are iteratively learned using expectation maximization
(EM). Categorization of an object is based on the maximum a posteriori
(MAP) decision rule: the object in the input image is supposed to belong to
the category whose object model attained maximal a posteriori probability.

Tang and Tao (2005) employ a graph dynamics for object tracking. It is for-
mulated in a maximum a posteriori framework using a hidden Markov model:
the tracker estimates the object’s state, expressed by a model graph, through
maximization of a posterior probability. New features are added to the model
graph if they can reliably be observed in the hidden Markov model’s time
window. Similarly, repeatedly non-matching features are removed from the
model graph.

Recognition methods relying on graph matching are correspondence-based in
the sense that image point correspondences are estimated before recognition
is attempted. This estimation is usually only possible on the basis of the spa-
tial arrangement of elementary features. There is also a class of recognition
algorithms which are purely feature-based and completely disregard feature
arrangement. A prominent example is SEEMORE (Mel, 1997). There it
is shown that a simple neural network can distinguish objects in a purely
feature-based way if enough feature types are employed. As a model for
recognition and categorization in the brain, feature-based methods can be
implemented as feedforward networks, which would account for the amazing
speed with which these processes can be carried out, relative to the slow pro-
cessing speed of the underlying neurons (Thorpe et al., 1996; Thorpe and
Thorpe, 2001). These methods, however, encounter problems in the case
of multiple objects and highly structured backgrounds. From the point of
view of pattern recognition, feature-based methods are discriminative while
graph matching is generative (Ulusoy and Bishop, 2005).

It is reasonable to assume that feedforward processing is applied as far as
it goes by excluding as many objects as possible and that only ambiguous
cases are subjected to correspondence-based processing, which is more time-
consuming.
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Figure 3.2: Selection of the Model — Given the input image in the
first column, the preselection network selects four model candidates (second
column). As has been illustrated in fig. 3.1, a model graph is dynamically
constructed for each model candidate by assembling matching model features
into larger graphs according to their spatial arrangement (third column). The
fourth column shows the reconstructions from the model graphs. Each model
candidate is verified using a rudimentary version of elastic graph matching.
Model graphs are optimally placed on the object contained in the input image
in terms of maximizing a measure of similarity (third column). The attained
similarities between the model candidates, represented by their model graphs,
and the input image are annotated to the reconstructions. The model can-
didate that attains the best similarity to the input image is chosen as the
recognized model (fifth column).
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In this chapter we propose a form of graph dynamics, which proceeds in
three steps. In the first step position-invariant feature detectors, which de-
cide whether a feature is present in an image, are set up from training images.
For processing arbitrary objects, features are small localized grid graphs, so-
called parquet graphs, whose nodes are attributed with Gabor amplitudes.
Through combination of these classifiers into a single layer perceptron that
conforms to Linsker’s infomax principle, the so-called preselection network,
a weighted majority voting scheme (Lam and Suen, 1997) is implemented.
The infomax principle implies that the synaptic weights in a multilayer net-
work with feedforward connections between layers develop, using a Hebbian-
style update rule (Hebb, 1949), such that the output of each cell preserves
maximum information (Shannon, 1948) about its input. The preselection
network allows for preselection of salient learning examples, so-called model
candidates, and likewise for preselection of salient categories the object in
the presented image supposedly belongs to. Each model candidate is veri-
fied in a third step using a rudimentary version of elastic graph matching.
To further di↵erentiate between model candidates with similar features it is
asserted that the features be in similar spatial arrangement for the model
to be selected. In the process model graphs are constructed dynamically by
assembling model features into larger graphs according to their spatial ar-
rangement (Fig. 3.1). Finally, the resulting model graphs are matched with
a rudimentary version of elastic graph matching. The model candidate that
attains the best similarity to the input image is chosen as the recognized
model (Fig. 3.2).

The description of the method is accompanied by a case study, which ex-
emplifies the various steps on an example, in which only two images of two
objects are learned and distinguished.

3.1 Learning Set, Partitionings, and
Categories

There are many di↵erent classifications that can be made on image data.
For object recognition, all instances of the same object under di↵erent pose
and/or illumination are to be put into the same class. An alternative learning
problem may be the classification of illumination or pose regardless of object
identity. A hallmark of human visual cognition is the classification into
categories: we group together images of cats, dogs, insects, and reptiles into
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Figure 3.3: Case Study: Learning Set — The learning set comprises two
images of di↵erent chewing gum packages in approximately the same pose.
The images are taken from the COIL-100 database (Nene et al., 1996). In
the following these images are referred to as I

1

and I
2

.

the category ‘animal’ and are able to di↵erentiate animals from non-animals
with impressive speed (Thorpe et al., 1996).

We start by considering some finite set of images I and a subset D of it,
which we call the learning set. In our case study the learning set comprises
two images of di↵erent chewing gum packages in approximately the same
pose (Fig. 3.3).

In order to accommodate the various learning tasks that can be imposed on
a single image set we consider that there exist K partitionings ⇧k of the
learning set (Eq. (3.1)). A partitioning ⇧k consists of Ck pairwise disjoint
partitions Ck

c

.

⇧k =
�

Ck

c

✓ D
�

� 1  c  Ck

 

with 8c 6= c0 : Ck

c

\ Ck

c

0 = ; and
C

k
S

c=1

Ck

c

= D
(3.1)

The objects in the images of a particular partition are supposed to share a
common semantic property, for instance, being images of animals, or having
the same illumination direction. Therefore, in the following partitions are
termed categories. Category labels c range between 1 and Ck; their range
implicitly depends on the number of categories in the underlying partitioning
⇧k. For simultaneous recognition of the object’s identity and the object’s
pose the learning set is subdivided into single-element categories while for
object categorization purposes it might be helpful to organize the learning
set in a hierarchy of categories. Fig. 3.4 shows the single partitioning of the
learning set in our case study.
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Figure 3.4: Case Study: Partitioning of the Learning Set — In
our case study there exists only K = 1 partitioning ⇧1 of the learning set
(Fig. 3.3). The partitioning consists of C1 = 2 single-element categories
C1

1

= {I
1

} and C1

2

= {I
2

}.

A hierarchical categorization task can be exemplified with the ETH-80 image
database (Leibe and Schiele, 2003). That database comprises images of
apples, pears, tomatoes, dogs, horses, cows, cups, and cars in varying poses
and identities and has been used for the categorization experiments in chapter
5. For those experiments we created K = 3 partitionings of the learning set
as shown in fig. 3.5.

3.2 Parquet Graphs

The feature-based part of the technique described in this thesis can work with
any convenient feature type. A successful application employing color and
multi-resolution image information is presented in (Westphal and Würtz,
2004). For the current combination of feature- and correspondence-based
methods, we chose small regular graphs labeled with Gabor features. We call
them parquet graphs, inspired by the look of ready-to-lay parquet tiles. These
can work as simple feature detectors for preselection and can be composed
to larger graph entities for correspondence-based processing.

Throughout this thesis, parquet graphs consist of V = 9 nodes. In the
following, a parquet graph f is described with a finite set of node attributes:
Each node v is labeled with a triple (x

v

,J
v

, b
v

) where J
v

is a Gabor jet derived
from an image at an absolute node position x

v

. Computation and parameters
of the Gabor features have been introduced in section 2.1.1. In order to make
use of segmentation information, it is convenient to mark nodes residing in
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Figure 3.5: Hierarchical Organization of Categories — A hierarchy of
categories on the ETH-80 image database (Leibe and Schiele, 2003), which
contains images of apples, pears, tomatoes, dogs, horses, cows, cups, and cars
in varying poses and identities, is given. We created K = 3 partitionings
⇧1, ⇧2, and ⇧3. Partitioning ⇧1 comprises C1 = 2 categories of natural (C1

1

)
and man-made objects (C1

2

). Partitioning ⇧2 comprises C2 = 4 categories of
fruits (C2

1

), animals (C2

2

), cups (C2

3

), and cars (C2

4

). Finally, partitioning ⇧3

comprises C3 = 8 categories of apples (C3

1

), pears (C3

2

), tomatoes (C3

3

), dogs
(C3

4

), horses (C3

5

), cows (C3

6

), cups (C3

7

), and cars (C3

8

).
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(a) (b) (c)

Figure 3.6: Example of a Parquet Graph — Figure (a) shows a parquet
graph that has been placed on the object in learning image I

1

. Each node of
a parquet graph is attributed with Gabor amplitudes derived from an image
at the node’s position. Figure (b) shows the reconstruction from the parquet
graph. Figure (c) is an enlarged version of figure (b).

the background as invalid and exclude them from further calculation in that
way. For this purpose the node attributes comprise a validity flag b

v

that
can take the values 0 and 1, meaning ‘invalid’ and ‘valid’. Throughout this
thesis, for the given parameterization of the Gabor features (Section 2.1.1),
the horizontal and vertical node distances �x and �y are set to 10 pixels.

f =
n

(x
v

,J
v

, b
v

)
�

� 1  v  V
o

(3.2)

Fig. 3.6 shows an example of a parquet graph that has been placed on the
object in learning image I

1

. Where appropriate, parquet graphs are more
generally termed features.

A parquet graph describes a patch of texture derived from an image regard-
less of its position in the image plane. Particularly, this means that the node
positions are irrelevant for the decision whether two images contain a similar
patch of texture. Later, for verification of the selected model candidates, i.e.,
learning images that may serve as models for the input image, larger graphs
are constructed dynamically by assembling parquet graphs derived from ear-
lier learning images according to their spatial arrangement. Thus, within the
correspondence-based part, the node positions will become important.
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3.2.1 Similarity Function

The measure of similarity between two parquet graphs f and f 0 is defined
as the normalized sum of the similarities between valid Gabor jets (Würtz,
1997; Shams, 1999) attached to nodes with the same index of the given
parquet graphs (Eq. (3.3)). The similarity between two Gabor jets is solely
based on the amplitudes of the filter responses (Eq. (2.9)). By definition, the
factors (b

v

b0
v

) are 1 if the respective jets J
v

and J 0
v

have both been marked
as valid, and 0 otherwise. These factors assert that only similarities between
jets that have both been marked as valid are taken into account. If all
products become 0, the similarity between the two parquet graphs yields 0.
The potentials of the parquet graph similarity function are given in fig. 3.7.

s
graph

(f, f 0) =

8

>

<

>

:

✓

V

P

v=1

b
v

b0
v

◆�1

·
V

P

v=1

(b
v

b0
v

) · s
abs

(J
v

,J 0
v

) if
V

P

v=1

b
v

b0
v

> 0

0 otherwise

(3.3)

From the viewpoint of the correspondence problem, two parquet graphs in
di↵erent images establish a local array of contiguous point-to-point corre-
spondences. The similarity measure assesses how well points in two images
specified by the given parquet graphs actually correspond to each other. It
is well worth noting that parquet graphs provide a means to protect from
accidentally establishing point-to-point correspondences in that contiguous,
topographically smooth arrays of good correspondences are favored over good
but topographically isolated ones.

3.2.2 Local Feature Detectors

For the assessment whether two parquet graphs f and f 0 convey similar
patches of texture with respect to a given sensitivity profile we introduce local
feature detectors that return 1 if the similarity between the given parquet
graphs is greater or equal than a given similarity threshold # with 0 < #  1,
and 0 otherwise (Eq. (3.4)). We say that two parquet graphs match with
respect to a given similarity threshold if the local feature detector returns 1.

" (f, f 0,#) =

⇢

1 if s
graph

(f, f 0) � #
0 otherwise

(3.4)

Matching features are one argument for point-to-point correspondences, which
needs to be backed up by the spatial arrangement of several matching fea-
tures.



34 Feature-Driven Emergence of Model Graphs

0,5

0,6

0,7

0,8

0,9

1,0

-20 -10 0 10 20
Translation in Pixels

Sim.

(a)

0,5

0,6

0,7

0,8

0,9

1,0

50 100 150 200 250

Sim.

Image Size in Pixels

(b)

0,5

0,6

0,7

0,8

0,9

1,0

-20 -10 0 10 20

Sim.

Rotation in Degrees

(c)

Figure 3.7: Potentials of the Parquet Graph Similarity Function
— The potentials of the parquet graph similarity function for a parquet graph
taken from the center of the same image as in fig. 2.4 are displayed. Through-
out, black lines give the similarity potentials of the parquet graph similarity
function while, for the sake of comparability, grey curves give the respec-
tive potentials of the jet similarity function (Eq. (2.9)); these are taken from
fig. 2.4. In the translation case (a) a parquet graph has been extracted with
its center node placed on the image center. It is compared to parquet graphs
derived at positions along a horizontal line of increasing distance from the
original position. The sensitivity to scaling (b) has been tested by compar-
ing the original parquet graph to parquet graphs at corresponding positions
in scaled images without scaling of parquet graphs. The original image is
128⇥ 128 pixels in size. Rotation (c) has been tested by comparing the orig-
inal parquet graph to parquet graphs located at the same position in rotated
images. In the (a) translation (b) scale cases the measure of similarity of
parquet graphs turned out to be more sensitive than the measure of similarity
of Gabor jets. Nevertheless, in the case of scaled images the parquet graph
similarity function performed very favorably compared to the jet similarity
function: its similarity potential has a distinct global maximum and far less
local maxima. The potentials di↵er only marginally in the (c) rotation case.
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3.3 Learning a Visual Dictionary

Our goal is to formulate a graph dynamics that, upon image presentation,
lets a model graph rapidly emerge by binding together memorized subgraphs
derived from earlier learning examples. To this end we need to compute a
repertoire of parquet graphs from learning examples in advance. These play
the role of a visual dictionary. Parquet graphs derived from an input image
during classification are looked up in the dictionary to find out which image
and model features match. Each coincidence of a matching feature in the
image and model domain may then be accounted as a piece of evidence that
the input image belongs to the same categories as the learning image which
contains the model feature as well.

3.3.1 Feature Calculators

In eq. (3.5) we define R functions f r, each of them capable of extracting a set
of features out of an image. In this thesis parquet graphs are exclusively used
as local image features. Let F denote the set of all possible features and let
} (F) denote the power set of F. In the following these functions will be called
feature calculators. The index r implicitly specifies the parameterization
of the parquet graphs returned from the respective feature calculator f r.
For instance, this applies to the similarity threshold #r, which is employed
in the local feature detectors (Eq. (3.4)). Generally, feature calculators are
not restricted to parquet graph features. Other feature types have been
used in (Westphal and Würtz, 2004; Schmidt and Westphal, 2004;
Westphal, 2004; Arentz, 2006).

f r : I! } (F) with r 2 {1, . . . , R} (3.5)

For extraction of parquet graphs, the inter-node distances �x and �y are also
used to specify a grid in the image plane. At each grid position allowing for
placement of a whole parquet graph, a parquet graph is extracted. Scanning
of the image starts in the upper left corner from left to right to the lower right
corner. If the image is known to be figure-ground segmented, parquet graphs
with the majority of nodes residing in the background will be disregarded,
the others have background points marked as invalid.

In the case study, we employ only R = 1 feature calculator f 1. The feature
calculator returns a set of parquet graphs with ten pixels distance between
two neighbored nodes in horizontal and in vertical direction, respectively.
Fig. 3.8 shows the result of applying this feature calculator to both learning
examples.
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Figure 3.8: Case Study: Application of the Feature Calculator to
the Learning Images — The thumbnail images in the returned sets on
the right hand side are reconstructions from the extracted parquet graphs.
Each reconstruction is uniquely labeled with a tuple. The first component
addresses the learning image the parquet graph stems from while the second
component is a sequential number. Application of the feature calculator to
learning images I

1

and I
2

resulted in a di↵erent number of extracted features,
even though the contained objects have approximately the same size. The
di↵erence is caused by a slight variation in pose.
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3.3.2 Feature Vectors

Looking at the number of parquet graphs that have been extracted from
just two images (Fig. 3.8), it is clear that for learning sets with thousands or
even ten thousands of images the total number of features would grow into
astronomical dimensions. Consequently, we have to limit the total number of
features to a tractable number. For this task we employ a simple variant of
vector quantization (Gray, 1984), which is given as pseudo code in fig. 3.9.
A vector quantizer maps data vectors in some vector space into a finite set of
codewords, which are supposed to represent the original set of input vectors
well. A collection of codewords that purposefully represents the set of input
vectors is termed codebook. The design of an optimal codebook is NP-hard.

Using the vector quantization given in fig. 3.9, each of the R feature calcu-
lators is used to compute a feature vector f r with r 2 {1, . . . , R}. In the
following T r denotes the number of features in feature vector f r. All R fea-
ture vectors constitute the visual dictionary. Let, as a shorthand, f r

t

address
the feature with index t in the feature vector with index r, throughout.

In our case study, application of the vector quantization algorithm using
feature calculator f 1 with a similarity threshold of #1 = 0.92 yields the
result presented in tab. 3.1. The final feature vector f 1 = (f 1

t

)
1t8

comprises
T 1 = 8 parquet graphs. The visual dictionary of our case study contains only
this single feature vector.

3.4 Preselection Network

In this section we will present the second step of the proposed form of graph
dynamics: a feedforward neural network that allows for preselection of salient
learning examples, so-called model candidates, and likewise for preselection
of salient categories the object in the presented image supposedly belongs to.
This network will be called the preselection network. Its design is motivated
by the well-established finding that individual object-selective neurons tend
to preferentially respond to particular object views (Perret et al., 1985;
Logothetis and Pauls, 1995). The preselection network’s output neurons
take the part of these view-tuned units.

The preselection network is a fully-connected single layer perceptron (Rosen-
blatt, 1958) that implements a weighted majority voting scheme (Lam and
Suen, 1997). In the network’s input layer position-invariant feature detec-
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Algorithm 1: vectorQuantization

Parameter: Learning Set: D
Parameter: Feature Calculator: f r : I! } (F)
Parameter: Similarity Threshold: #r; 0 < #r  1
Result : Feature Vector of Length T r: f r

Fr  ;1

T r  02

forall I 2 D do3

forall f 2 f r(I) do4

if 8f 0 2 Fr : " (f, f 0,#r) = 0 then5

Fr  Fr [ {f}6

T r  T r + 17

end8

end9

end10

f r =: (f r

t

)
1tT

r  (0)
1tT

r11

t 012

forall f 2 Fr do13

f r

t

 f14

t t + 115

end16

return f r

17

Figure 3.9: Vector Quantization Method — The algorithm computes
a codebook of codewords. In our case parquet graphs become employed as
codewords while the codebook is a set of these parquet graphs. The size of
the feature set depends considerably on the value of the similarity threshold
#r. For lower values of #r many features will be disregarded and the final
feature set will become rather small. Conversely, values of #r close to one
lead to low compression rates and large feature sets. We demand random
access to each particular feature in the computed codebooks. Therefore, we
translate the codebook into a feature vector f r of length T r, where T r terms
the number of codebook features. Let, as a shorthand, f r

t

address the feature
with index t in the feature vector with index r.
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Codewords Disregarded Features

f 1

1

=

(1,1)

0.96

(1,2)

0.93

(1,3)

0.97

(1,12)

0.95

(1,13)

0.92

(1,14)

0.93

(1,22)

0.95

(2,1)

0.93

(2,12)

f 1

2

=

(1,4)

0.97

(1,5)

0.97

(1,6)

0.96

(1,7)

0.94

(1,8)

0.95

(1,15)

0.93

(1,16)

0.93

(2,2)

0.94

(2,3)

0.94

(2,4)

0.93

(2,5)

0.93

(2,6)

0.93

(2,7)

0.92

(2,8)

0.92

(2,14)

0.93

(2,15)

0.93

(2,16)

0.92

(2,17)

0.92

(2,18)

f 1

3

=

(1,9)

0.95

(1,10)

0.94

(1,19)

0.96

(1,20)

0.96

(2,9)

0.94

(2,10)

0.94

(2,19)

0.95

(2,20)

f 1

4

=

(1,11)

0.94

(1,21)

0.94

(1,31)

0.97

(2,11)

f 1

5

=

(1,17)

0.97

(1,18)

0.94

(1,24)

0.93

(1,25)

0.93

(1,26)

0.95

(1,27)

0.93

(1,28)

f 1

6

=

(1,23)

0.93

(1,29)

0.92

(1,30)

0.93

(2,22)

0.94

(2,23)

f 1

7

=

(2,13)

0.93

(2,24)

f 1

8

=

(2,21)

0.96

(2,25)

Table 3.1: Case Study: Computation of the Feature Vector — The
table shows the result of applying the vector quantization algorithm given in
fig. 3.9 using feature calculator f 1 with a similarity threshold of #1 = 0.92.
The table’s left column comprises parquet graphs that have been chosen as
codewords. The column on the right shows the disregarded parquet graphs.
The lower labels have been introduced in fig. 3.8, the upper labels are the sim-
ilarities between the disregarded parquet graph and the respective codeword.
The final feature vector f 1 = (f 1

t

)
1t8

comprises T 1 = 8 parquet graphs.
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tors submit their assessments whether their reference feature is present in an
image to dedicated input neurons while the output layer comprises one neu-
ron for each predefined category. Synaptic weights are chosen such that the
network conforms to Linsker’s infomax principle (Linsker, 1988). That
principle implies that the synaptic weights in a multilayer network with feed-
forward connections between layers develop, using a Hebbian-style update
rule (Hebb, 1949), such that the output of each cell preserves maximum
information (Shannon, 1948) about its input. Subject to constraints, the
infomax principle thus allows to directly assign synaptic weights. The time-
consuming adaption of synaptic weights becomes unnecessary at the expense
of having to set up the preselection network in batch mode, i.e., the com-
plete learning set has to be presented. This network setup in conjunction
with the application of the winner-take-most or winner-take-all nonlinear-
ity as decision function (Riesenhuber and Poggio, 2000) implements a
weighted majority voting scheme that allows for the desired preselection of
salient categories and model candidates.

Here, the selection of salient categories and model candidates is only based
on feature coincidences in image and model domain. As their spatial arrange-
ment is disregarded, false positives are frequent among the selected model
candidates. To rule them out similar spatial arrangement of features will be
asserted for the model to be selected in the correspondence-based verification
part (Section 3.5).

3.4.1 Neural Model

In the preselection network we employ two types of generalized McCulloch
& Pitts neurons (McCulloch and Pitts, 1943), variant A with identity
and variant B with a Heaviside threshold function H(·) as output function.
The output of a neuron of type A is equal to the weighted sum of its inputs
P

N

n=1

x
n

w
n

with x
n

being the presynaptic neurons’ outputs and the w
n

being
synaptic weights. The output of a neuron of type B is 1 if the weighted sum
of its inputs is greater than 0, and 0 otherwise.

3.4.2 Position-Invariant Feature Detectors

To test the presence of a particular feature from the visual dictionary, in
the following called reference or model feature, in an image we construct
a position-invariant feature detector out of local feature detectors (Section
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3.2.2). For this task, we distribute instances of local feature detectors uni-
formly over the image plane. For a given reference feature, combining these
local feature detectors in a linear discriminant yields a position-invariant fea-
ture detector that returns 1 if the reference feature is observed at at least
one position in the image plane, and 0 otherwise. Position-invariance is thus
achieved with a logical OR. In the same fashion invariance to scale may
be implemented. Fig. 3.10 shows how a position-invariant feature detector is
constructed for a feature taken from the visual dictionary. For a given feature
f r

t

, the symbol ⌧ r

t

denotes the respective position-invariant feature detector
and ⌧ r

t

(I) (Eq. (3.6)) its result. We will say that a position-invariant fea-
ture detector ⌧ r

t

has found or observed its feature f r

t

in an input image I
if ⌧ r

t

(I) = 1. From now on, we use the term feature detector only for the
position-invariant version.

⌧ r

t

: I! {0, 1} ; ⌧ r

t

(I) = H

0

@

X

f2f

r
(I)

" (f, f r

t

,#r)

1

A (3.6)

For the sake of simplicity we regard the feature detectors as the perceptron’s
processing elements (Rosenblatt, 1958), rather than an additional layer.

Each time a feature detector has found its reference feature f r

t

in the input
image, we add a pair of matching features (f, f r

t

) to a table, where f stems
from the input image. That table is used for e�cient construction of image
and model graphs in the correspondence-based verification part (Section 3.5).
The table is cleared before each image presentation.

F
match

(I) F
match

(I) [
[

f2f

r
(I)

n

(f, f r

t

)
�

�

�

" (f, f r

t

,#r) = 1
o

(3.7)

3.4.3 Weighting of Feature Detectors

From the example in tab. 3.1 it becomes clear that the feature detectors have
varying relevance for the selection of salient categories. In the following the
contributions of the feature detectors to the decision about choosing salient
categories are described through measures of information. Shannon has
defined information as the decrease of uncertainty (Shannon, 1948). In
this sense, a natural definition of the measures of information is presented
in eq. (3.8). For a given feature detector ⌧ r

t

that has found its reference
feature f r

t

in the input image and for a given partitioning ⇧k, the infor-
mation ir,k

t

that feature detector contributes to the decision about choosing
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1

Figure 3.10: Position-Invariant Feature Detector — The position-
invariant feature detector returns 1 if a given feature f r

t

is present in image
I, and 0 otherwise. Position-invariance is thus achieved with a logical OR.
At each grid position allowing for placement of a whole parquet graph a lo-
cal feature detector is installed that compares the local parquet graph with
the reference feature f r

t

. Technically, this has been implemented by applying
feature calculator f r to the given image I. If the feature calculator returns
a set of N parquet graphs {f

n

| 1  n  N}, each local feature detector com-
pares its feature f

n

with the reference feature f r

t

with respect to similarity
threshold #r. Then, each local feature detector passes its result into a single
layer perceptron with N input units of type A, one output unit of type B, and
feedforward connections of strength 1 between each input unit and the output
neuron. The net’s output is 1 if at least one of the local feature detectors
has found its reference feature in the given image, and 0 otherwise. In this
fashion a position-invariant feature detector is instantiated for each feature
in the visual dictionary. In the same manner invariance to scale may be
achieved.



Feature-Driven Emergence of Model Graphs 43

categories of partitioning ⇧k is defined by the di↵erence between the largest
possible amount of uncertainty, ln Ck, and the feature detector’s amount of
uncertainty encoded by the Shannon entropy Hr,k

t

. P ⇥Ck

c

�

� f r

t

⇤

describes the
conditional probability that the genuine category is Ck

c

given that feature f r

t

has been observed. Probabilities equal zero are excluded from calculation.
In this fashion measures of information are calculated for all features in the
visual dictionary with respect to all partitionings of the learning set. Similar
approaches are proposed in (Ullman and Sali, 2000; Fritz et al., 2004).

ir,k
t

= ln Ck �Hr,k

t

= ln Ck +
C

k
X

c=1

P[Ck
c |fr

t ]6=0

⇣

P ⇥Ck

c

|f r

t

⇤ · lnP ⇥Ck

c

|f r

t

⇤

⌘

(3.8)

For a given partitioning ⇧k, the measures of information range between 0 and
ln Ck. If a feature occurs in all categories of that partitioning, the respective
feature detector cannot make a contribution and, accordingly, its measure
of information is 0. Conversely, if a feature occurs in only one category, the
respective feature detector contributes maximally; its measure of information
is ln Ck.

For the derivation of the conditional probabilities P ⇥Ck

c

�

� f r

t

⇤

we start with
the definition of a shorthand: let nr

t

(C) denote the total number of observa-
tions of feature f r

t

in the images of the parameterized category C (Eq. (3.9)).

nr

t

(C) =
X

I2C

X

f2f

r
(I)

" (f, f r

t

,#r) (3.9)

Assuming that all prior probabilities for choosing a category of a given par-
titioning ⇧k are the same, the conditional probabilities P ⇥Ck

c

�

� f r

t

⇤

are calcu-
lated through application of Bayes’ rule as given in eq. (3.10)). For a given
category Ck

c

and a given feature f r

t

we may interpret this probability as the
frequency of that feature across the categories of partitioning ⇧k. Tab. 3.2
demonstrates the calculation of the measures of information in our case study.

P ⇥Ck

c

�

� f r

t

⇤

=
nr

t

�

Ck

c

�

C

k
P

c

0
=1

nr

t

�

Ck

c

0

�

(3.10)
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Feature
Index (t)

Feature
(f 1

t

)
n1

t

(C1

1

) n1

t

(C1

2

) P [C1

1

| f 1

t

] P [C1

2

| f 1

t

] i1,1

t

1
(1, 1)

7 2 7

9

2

9

0.1634

2
(1,4)

7 12 7

19

12

19

0.035

3
(1,9)

4 4 1

2

1

2

0

4
(1,11)

3 1 3

4

1

4

0.1307

5
(1,17)

7 0 1 0 0.6931

6
(1,23)

3 2 3

5

2

5

0.0201

7
(2,13)

0 2 0 1 0.6931

8
(2,21)

0 2 0 1 0.6931

Table 3.2: Case Study: Calculation of Measures of Information —
The table demonstrates the calculation of the feature detectors’ measures of
information. The parquet graphs in the second column stem from the visual
dictionary and can be looked up in tab. 3.1. The number of feature occurrences
n1

t

(C1

1

) and n1

t

(C1

2

) in columns three and four can be verified by counting the
occurrences of the respective reference feature f 1

t

within categories C1

1

and
C1

2

(Tab. 3.1). The probabilities P [C1

1

| f 1

t

] and P [C1

2

| f 1

t

] in columns five
and six have been calculated using eq. (3.10), and, finally, the measures of
information i1,1

t

in column seven have been calculated using eq. (3.8). One
can easily verify that the measures of information scale proportionally with
the feature detectors’ contributions about choosing salient categories.
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3.4.4 Neurons, Connectivity, and Synaptic Weights

The preselection network is a single-layer perceptron comprising a layer of
input and a layer of output neurons. In the network’s input layer, we assign
neurons of type A to the feature detectors. Thus, the network comprises
V

in

=
P

R

r=1

T r input neurons. By definition, each input neuron passes the
result of its feature detector into the network. In the network’s output layer,
we assign neurons of type A to the predefined categories. Accordingly, the
network contains V

out

=
P

K

k=1

Ck output neurons.

For fulfillment of the infomax principle, we define the synaptic weight wr,k

t,c

between the presynaptic neuron assigned to a feature detector ⌧ r

t

and the
postsynaptic neuron assigned to a category Ck

c

as follows. Imagine that
feature f r

t

can both be observed in the input image and in at least one image
of that category. Then, this may be considered as a piece of evidence that
the object in the input image belongs to that category. Consequently, feature
detector ⌧ r

t

should contribute its quantitative amount of information ir,k
t

to
the output of the postsynaptic neuron assigned to category Ck

c

. Conversely,
if that category contains only images in which feature f r

t

cannot be observed,
the feature detector should never be allowed to make a contribution at all.

Using this construction rule, we define R · K matrices of synaptic weights
W r,k: one matrix per feature vector/partitioning combination. For a given

feature vector f r and a given partitioning ⇧k, weight matrix W r,k (Eq. (3.11))

is of dimensions (Ck ⇥ T r). It comprises the synaptic weights wr,k

t,c

of the
connections between the input neurons assigned to feature detectors ⌧ r

t

and
the output neurons assigned to categories Ck

c

. The indices t of presynaptic
neurons range between 1 and T r and indices c of the postsynaptic neurons
between 1 and Ck.

W r,k =

0

@H

0

@

X

I

02Ck
c

⌧ r

t

(I 0)

1

A · ir,k
t

1

A

1cC

k

1tT

r

=:
⇣

wr,k

t,c

⌘

1cC

k

1tT

r

(3.11)

In our case study, feature vector f 1 comprises eight features and the learning
set has been partitioned into two categories. Accordingly, weight matrix W 1,1

is of dimensions (2⇥ 8). The matrix is shown in fig. 3.11.

3.4.5 Saliencies

The output of the postsynaptic neuron dedicated to category Ck

c

will be called
the saliency of that category and is denoted by sk

c

(I). With respect to an
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W 1,1 =

0
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0
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X

I2C1
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⌧ 1
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1
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t

1

A

1c2

1t8

=

✓

0.1634 0.035 0 0.1307 0.6931 0.0201 0 0
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Figure 3.11: Case Study: Weight Matrix — In our case study, feature
vector f 1 comprises eight features and the learning set has been partitioned
into two categories. Accordingly, weight matrix W 1,1 is of dimensions (2⇥ 8).

The measures of information i1,1

t

of feature detectors ⌧ 1

t

can be looked up in
tab. 3.2.

input image I, that saliency is defined as the sum of the measures of infor-
mation ir,k

t

of those feature detectors ⌧ r

t

whose reference feature coincides in
the input image and in at least one image of category Ck

c

. Thus, a saliency
is the accumulated evidence contributed by activated feature detectors: the
more pieces of evidence have been collected, the more likely the input image
belongs to that category. For each partitioning of the learning set we can
calculate a saliency vector sk with Ck saliencies by summing up the matrix
vector products of the weight matrices W r,k with the vector of feature detec-
tor responses (⌧ r

t

(I))
1tT

r over all R feature vectors (Eq. (3.12)). Fig. 3.12
shows the complete preselection network.

sk : I! RC

k
; sk (I) =

R

X

r=1

W r,k ·
⇣

⌧ r

t

(I)
⌘

1tT

r
=:
⇣

sk

c

(I)
⌘

1cC

k
(3.12)

We exemplify the calculation of saliencies with our case study. First, the
only feature calculator f 1 is applied to input image I 0

2

which contains the
same object as learning image I

2

but in a slightly di↵erent pose. The result
of feature extraction is shown in fig. 3.13. Second, the visual dictionary is
traversed in search of matching model features. The outcome of this step, the
vector of feature detector responses, is given in tab. 3.3. Passing this vector to
the preselection network of our case study yields saliencies of s1

1

(I 0
2

) = 0.6931
for category C1

1

and s1

2

(I 0
2

) = 1.3862 for category C1

2

. Thus, the input image
belongs more likely to category C1

2

.
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Figure 3.12: Preselection Network — The preselection network is a
fully-connected single-layer perceptron. In its input layer neurons of type A
have been assigned to the feature detectors. Accordingly, the network com-
prises V

in

=
P

R

r=1

T r input neurons. Each input neuron passes the binary
result of its feature detector into the network. In the network’s output layer
neurons of type A have been assigned to the predefined categories. Accord-
ingly, the network contains V

out

=
P

K

k=1

Ck output neurons. The synaptic
weights wr,k

t,c

are chosen in a way such that the whole network conforms to
Linsker’s infomax principle. The output of the postsynaptic neuron that
has been assigned to a given category Ck

c

will be called the saliency of that
category and is denoted by sk

c

(I).
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Figure 3.13: Case Study: Application of Feature Calculator f 1 to
Image I 0

2

— The thumbnail images in the returned set on the right hand
side are reconstructions from the extracted parquet graphs and serve for visu-
alization purposes. Each reconstruction is uniquely labeled with a tuple. The
first component addresses the testing image while the second component is a
sequential number. The dash after each label indicates that the parquet graph
stems from the input image.
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Feature
Index (t)

Model
Feature

(f 1

t

)

Matching Image
Features

Feature
Detector
(⌧ 1

t

(I 0
2

))

1

(1, 1)

0

2

(1, 4)

0

3

(1, 9)

0.92

(2, 2)

0

0.92

(2, 8)

0

0.93

(2, 9)

0

0.92

(2, 17)

0

0.94

(2, 18)

0

0.94

(2, 19)

0

1

4

(1, 11)

0

5

(1, 17)

0.92

(2, 13)

0

0.92

(2, 16)

0

0.92

(2, 17)

0

1

6

(1, 23)

0

7

(2, 13)

0.95

(2, 2)

0

0.97

(2, 12)

0

1

8

(2, 21)

0.93

(2, 18)

0

0.95

(2, 19)

0

0.97

(2, 20)

0

0.93

(2, 25)

0

0.94

(2, 26)

0

0.94

(2, 27)

0

1

Table 3.3: Case Study: Matching Features — The table shows match-
ing model (second column) and image parquet graphs (third column) with
respect to similarity threshold #1 = 0.92. The upper labels of the reconstruc-
tions in the third column are the similarities between matching model and
image parquet graphs. For clarity, non-matching parquet graphs have been
disregarded. The feature detectors ⌧ 1

t

return 1 if they have observed their
reference feature f 1

t

in the input image, and 0 otherwise (column four).
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Figure 3.14: Case Study: Computation of Saliencies — The preselec-
tion network of our case study comprises eight input and two output neurons.
Synaptic weights are taken from weight matrix W 1,1 (Fig. 3.11). Connections
with an activated presynaptic neuron, i.e., input neurons whose feature detec-
tor has found its reference feature in the input image, are drawn as bold ar-
rows. Taking I 0

2

as an input image yields (⌧ 1

t

(I 0
2

))
1t8

= (0, 0, 1, 0, 1, 0, 1, 1)>

as the vector of feature detector responses (Tab. 3.3). This vector serves as
an input to the preselection network and yields saliencies of s1

1

(I 0
2

) = 0.6931
for category C1

1

and s1

2

(I 0
2

) = 1.3862 for category C1

2

. Thus, the input image
belongs more likely to category C1

2

.
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3.4.6 Synaptic Plasticity

Subject to constraints, the infomax principle allows to directly assign synap-
tic weights. However, in classical neural architectures learning is modeled by
synaptic plasticity: the change of synaptic weights under the control of neural
signals. In the following we briefly describe that the preselection network’s
synaptic weights can be learned in a Hebbian fashion (Hebb, 1949). Hebbian
synaptic plasticity states that connections between two simultaneously firing
neurons should be strengthened.

From the viewpoint of information theory Pfaffelhuber (1972) describes
learning as a process in which the system’s own uncertainty, its subjective
entropy, or, equivalently, its missing information decreases in time. In in-
formation theory the Shannon entropy is used as a measure of uncertainty.
It is based on so-called objective probabilities which are only known by an
ideal observer with full world knowledge but are unknown to the learning
biological system itself. That measure is thus unsuited to characterize the
system’s own uncertainty.

For the derivation of a Hebbian-style weight dynamics we focus on a given
synaptic weight wr,k

t,c

and follow Pfaffelhuber’s line of thought. The con-
tribution of feature detector ⌧ r

t

to the decision about choosing a category
of partitioning ⇧k is described through a measure of information ir,k

t

which
is based on the Shannon entropy Hr,k

t

(Eq. (3.8)). That entropy in turn
expresses the feature detector’s uncertainty about choosing categories of ⇧k.
Since it is exclusively based on objective probabilities P ⇥Ck

c

�

� f r

t

⇤

(Eq. (3.10))
it is termed the objective entropy.

In the same fashion we define the synaptic weight which is based on the
system’s own or subjective entropy H̃r,k

t

about choosing a category of parti-
tioning ⇧k. It is based on, yet unknown, subjective probabilities Q ⇥Ck

c

�

� f r

t

⇤

that the true category is Ck

c

given that feature f r

t

has been observed. Accord-
ing to Pfaffelhuber, the subjective entropy is defined as the expectation
value of subjective information contents (Belis and Guiasu, 1968), taken
with the objective probabilities (Eq. (3.13)). Subjective probabilities equal
zero are excluded from calculation.

H̃r,k

t

= �
C

k
X

c

0
=1

Q[Ck
c0|fr

t ] 6=0

⇣

P ⇥Ck

c

0

�

� f r

t

⇤ · lnQ ⇥Ck

c

0

�

� f r

t

⇤

⌘

(3.13)
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The connection strength w̃r,k

t,c

that is based on the system’s subjective entropy
is defined in eq. (3.14).

w̃r,k

t,c

= H

0

@

X

I

02Ck
c

⌧ r

t

(I 0)

1

A ·
⇣

ln Ck � H̃r,k

t

⌘

(3.14)

From the viewpoint of information theory Pfaffelhuber defines learning
as the process in which the system’s subjective entropies converge towards
the objective ones in time. This is equivalent to the convergence of the
missing information (Eq. (3.15)) about choosing a category of partitioning ⇧k

given that feature f r

t

has been observed towards zero in time. The missing
information is defined as the di↵erence between subjective and objective
entropy. Objective and subjective probabilities equal zero are excluded from
calculation.

H̃r,k

t

�Hr,k

t

=
C

k
X

c

0
=1

P[Ck
c0|fr

t ]·Q[Ck
c0|fr

t ] 6=0

 

P ⇥Ck

c

0

�

� f r

t

⇤ · ln P ⇥Ck

c

0

�

� f r

t

⇤

Q ⇥Ck

c

0

�

� f r

t

⇤

!

(3.15)

Through analysis of eq. (3.15) we learn that the missing information becomes
zero if all objective and subjective probabilities coincide: 8c0 2 �1, . . . , Ck

 

:
P ⇥Ck

c

0

�

� f r

t

⇤

= Q ⇥Ck

c

0

�

� f r

t

⇤

. Hence, in eq. (3.16) we introduce a fairly sim-
ple dynamics that lets a given subjective probability converge towards the
respective objective one with a learning velocity ↵ 2 ]0, 1]. Note that the
subjective probability is adapted only if both the pre- and the postsynaptic
neuron are active, i.e., if feature f r

t

can be observed both in the input image
I and in at least one image of category Ck

c

. Further note that the dynamics
in eq. (3.16) cannot describe a real learning process since it is still a func-
tion of the objective probability, which is, however, unknown to the system.
Thus, the learning system does not only have to learn its own subjective
probabilities but in addition has to compute estimates of the objective ones.
In eqs. (3.18) and (3.19) we give a method to compute these estimates.
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Since the dynamics in eq. (3.16) lets the subjective probabilities converge
to the objective ones in time, the missing information converges to 0 and,
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consequently, the synaptic weight w̃r,k

t,c

converges to wr,k

t,c

. From the viewpoint
of information theory, choosing the synaptic weights as in eq. (3.11) is thus
the best choice. The final dynamics of synaptic weights is given in eq. (3.17).
Note that it conforms to Hebbian synaptic plasticity.
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t,c

!

(3.17)

Estimates of the objective probabilities P̃ ⇥Ck

c

�

� f r

t

⇤

can, for instance, be iter-
atively computed as the frequencies of feature occurrences in the categories
of the learning set partitionings. They are updated each time a new input
image is presented (Eq. (3.18)). Let mr,k

t,c

denote the accumulated number of
coincidences of feature f r

t

in the presented images and in category Ck

c

and let
nr

t

({I}) denote the number of occurrences of feature f r

t

in the current image
(Eq. (3.9)). For evaluation purposes noise ⇢ may optionally be added. Note
that the input images are not necessarily taken from a predefined learning
set. We rather conceive that learning biological or technical systems receive
a continual stream of images while visually exploring objects.
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If we replace the objective probabilities, P ⇥Ck

c

�

� f r

t

⇤

, in eq. (3.16) by their

estimates, P̃ ⇥Ck

c

�

� f r

t

⇤

, we finally yield a learning system that is able to reduce
its missing information solely based upon its own beliefs.

Fig. 3.15 shows the development of a selection of synaptic weights in the
preselection network of our case study.

3.4.7 Selection of Salient Categories and Model
Candidates

For selection of salient categories for the input image I we apply a winner-
take-most nonlinearity as a decision rule (Riesenhuber and Poggio, 2000).
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Figure 3.15: Case Study: Synaptic Plasticity — The figure shows
the development of synaptic weights (a) w̃1,1

1,1

, (b) w̃1,1

5,1

, (c) w̃1,1

3,2

, and (d)

w̃1,1

8,2

in the preselection network of our case study. We parameterized the
dynamics in eq. (3.16) with a learning velocity of ↵ = 0.3. All objective
and subjective probabilities were initialized with random values taken from a
standard normal distribution. Each subfigure comprises six test runs: In five
test runs (grey curves) we periodically added noise ⇢ to the estimates of the
objective probabilities (Eq. (3.18)). Every 50 cycles we added random values
ranged between -10 and 10, after 200 cycles no more noise was added. In the
sixth test run (black curve) no noise at all was added. Through inspection
of the respective synaptic weights in fig. 3.11 we learn that the dynamics lets
the ‘subjective’ weights always converge to the ‘objective’ ones in time.
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For a given partitioning ⇧k, the set �k (I) comprises all categories of the
partitioning with super-threshold saliencies. The threshold is defined relative
to the maximal saliency with a factor ✓k with 0 < ✓k  1 (Eq. (3.20)), i.e.,
the ✓k are relative thresholds. For ✓k = 1 only the most salient category will
be selected, the decision rule becomes the winner-take-all nonlinearity.

�k (I) =

⇢

Ck

c

2 ⇧k

�

� sk

c

(I) � ✓k · max
1c

0C

k

�

sk

c

0 (I)
 

�

(3.20)

A set of model candidates M (I) for the input image I, i.e., learning images
of objects that reasonably may become models for the object in the input
image, are calculated by set intersection on salient categories (Eq. (3.21)).
The selected model candidates will be passed to the correspondence-based
verification part for further selection.

M (I) =
\

K

k=1

[

C2�

k
(I)

C (3.21)

Fig. 3.16 gives the average numbers of model candidates in dependence on
a relative threshold ✓1. The experiment was carried out with the object
recognition application proposed in the following chapter. The learning set
comprised 5600 images taken from the COIL-100 database (Nene et al.,
1996). From these images K = 1 partitioning ⇧1 with C1 = 5600 single-
element categories was created. We learn that, on average, the preselection
network favorably rules out most irrelevant matches, i.e., the average num-
bers of model candidates are small relative to the total number of learning
images, and that the average number of model candidates grows rapidly with
decreasing relative thresholds. The average numbers of model candidates are,
however, subjected to considerable mean variations, especially for small val-
ues of ✓1.

In our case study, choosing ✓1 = 1 yields �1 (I 0
2

) = {C1

2

} as the set of salient
categories of partitioning ⇧1 and M (I 0

2

) = {I
2

} as the set of model candi-
dates.

3.4.8 Accelerated Feature Search

In section 3.4.5 calculation of saliencies has been exemplified as a three-
step procedure: extraction of features, search of matching model features in
the visual dictionary, and computation of the saliencies. While steps one and
three are e�ciently executable on today’s powerful hardware, the second step
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Figure 3.16: Average Number of Model Candidates in Dependence
on a Relative Threshold — The average number of model candidates in
dependence on the relative threshold ✓1 is given. The experiment was carried
out with the object recognition application proposed in chapter 4. The learning
set comprised 5600 images taken from the COIL-100 database (Nene et al.,
1996). From these images one partitioning of single-element categories was
created. We learn that, on average, the preselection network favorably rules
out most irrelevant matches and that the average number of model candidates
grows rapidly with decreasing relative thresholds. The given averages are,
however, subjected to considerable mean variations, especially for small values
of ✓1. For clarity of presentation, we disregarded error bars.

turns out to be a bottleneck in terms of execution time. This step is conceived
to be performed in parallel for each feature of the visual dictionary (Section
3.4.2). However, on a general purpose computer this inherently parallel task
is sequentially executed. Facing the amount of experiments to be conducted,
an e�cient implementation is desirable.

We propose a method that draws its e�ciency from three sources. First,
the method employs a coarse-to-fine strategy with respect to the number
of features in the visual dictionary’s feature vectors: at the beginning, fea-
tures are searched in a feature vector with relatively few features. Based
on matching features that have been found in that feature vector, category
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labels of salient categories of a chosen partitioning ⇧
˜

k are collected in a set
C. That set is iteratively refined by searching for matching features in more
and more detailed feature vectors. The set of salient categories C is a global
variable shared with read/write access among the algorithms explained be-
low. Second, through application of dynamic thresholds on the measures of
information, the method significantly reduces the number of model features
to be compared with image features. Third, the method incorporates top-
down knowledge encoded in the preselection network to assess which further
model features appear in the salient categories and are thus considered worth
being matched with image features.

Computation of Saliencies

The computation of saliencies, given as pseudo code in algorithm 2 (Fig. 3.17),
is implemented as a forward pass through the preselection network. The algo-
rithm receives four parameters: the image I of an object to be recognized, an
index k̃ of a partitioning of the learning set, an integral value ✓

hyst

> 0, and
a factor ✓

max

, 0 < ✓
max

 1. The function returns K saliency vectors sk (I),
k 2 {1, . . . , K}, one for each partitioning of the learning set. Parameter k̃
specifies the partitioning of the learning set whose labels of salient categories
are collected in C, ✓

hyst

is an upper threshold of a hysteresis computed in
algorithm 3 (Fig. 3.18), and ✓

max

is an upper bound of the relative threshold
used in algorithm 4 (Fig. 3.19).

For e�cient computation of model graphs in the correspondence-based ver-
ification part (Section 3.5), pairs of matching image and model features are
collected in a table of matching features F

match

(I), which is also a global
variable with read/write access.

At the beginning, the set of salient categories C and the table of matching
features F

match

(I) are emptied, and all saliencies are reset to zero. The salien-
cies are computed in nested loops over all feature vectors, over all matching
model features, and over all categories: the current category’s saliency is in-
cremented by the connection strength of the synapse between the input neu-
ron assigned to the feature detector that employs the current model feature
as reference feature and the output neuron assigned to the current category.
If the entire visual directory has been traversed, the algorithm returns the
saliency vectors. Model candidates can be selected using eq. (3.21).
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Algorithm 2: computeSaliencies

Parameter: Input Image: I
Parameter: Index of Partitioning: k̃
Parameter: Threshold of Hysteresis: ✓

hyst

Parameter: Upper bound of relative threshold: ✓
max

Result : Vectors of Saliencies: s1 (I) , . . . , sK (I)

C ;1

F
match

(I) ;2

for k  1 to K do3

for c 1 to Ck do4

sk

c

(I) 05

end6

end7

for r  1 to R do8

F
Image

 f r(I)9

T
match

 searchMatchingFeatures(F
Image

, r, k̃, ✓
hyst

, ✓
max

)10

forall t 2 T
match

do11

for k  1 to K do12

for c 1 to Ck do13

sk

c

(I) sk

c

(I) + wr,k

t,c

14

end15

end16

end17

end18

return s1 (I) , . . . , sK (I)19

Figure 3.17: Computation of Saliencies — The computation of salien-
cies is implemented as a forward pass through the preselection network: the
saliency of the current category is incremented by the connection strength of
the synapse between the input neuron assigned to the feature detector that
employs the current model feature as reference feature and the output neu-
ron assigned to the current category. If the entire visual directory has been
traversed, the algorithm returns the saliency vectors. Parameters k̃ and ✓

hyst

are passed to algorithm 3 (Fig. 3.18).
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Search Matching Features

Algorithm 3 (Fig. 3.18) searches for matching model features in a so-called
search space T

search

, a set containing the indices of model features of the
current feature vector considered worth being matched with image features.
This set is computed by algorithm 4 (Fig. 3.19). The indices of matching
model features are collected in a set T

match

. The algorithm is further con-
cerned with the assessment whether calculation can be terminated without
having processed all image features in order to accelerate execution. For this
purpose, the algorithm computes a hysteresis hyst with respect to the set of
salient categories C of partitioning ⇧

˜

k. That set is expanded by the labels
c of those categories that comprise at least one image in which the current
model feature f r

t

can be observed. If that set does not change for the current
feature, hyst is incremented, and reset to 0 otherwise. If C has not changed
for ✓

hyst

iterations it is assumed that it will not change for the remaining
image features as well. In that case the algorithm returns the set of indices
of matching features without having processed all image features.

Definition of Search Spaces

Algorithm 4 (Fig. 3.19) computes the search space T
search

, a set contain-
ing the indices of model features of the current feature vector considered
worth being matched with image features. The computation is based on
the application of dynamic thresholds and on the incorporation of top-down
knowledge which model features can be observed in the images of salient
categories. That knowledge is encoded in the preselection network. If the
set of salient categories C is empty the search space comprises the indices of
all features of the current feature vector. Otherwise, a relative threshold ✓
is computed that ranges between 0 and ✓

max

; its value scales proportionally
with the current number of salient categories. Given that relative thresh-
old, all categories with a saliency below ✓ times the maximal saliency are
discarded from the set of salient categories. The search space contains the
indices of those model features that can be observed in at least one image
of a salient category and whose measure of information is greater or equal ✓
times the maximal measure of information.
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Algorithm 3: searchMatchingFeatures

Parameter: Set of Image Features: F
Image

Parameter: Index of the Current Feature Vector: r
Parameter: Index of Partitioning: k̃
Parameter: Threshold of Hysteresis: ✓

hyst

Parameter: Upper bound of relative threshold: ✓
max

Result : Set of Matching Features: T
match

T
match

 ;1

T
search

 defineSearchSpace(r, k̃, ✓
max

)2

hyst 03
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forall t 2 T
search
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return T
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end21
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22

Figure 3.18: Search Matching Features — The algorithm searches for
matching model features in the search space and returns a set of indices
of matching model features. Moreover, for e�cient construction of model
graphs, pairs of matching features are collected in a table. For the assess-
ment whether the algorithm may be terminated without having processed all
image features a hysteresis is computed.
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Algorithm 4: defineSearchSpace

Parameter: Index of the Current Feature Vector: r
Parameter: Index of Partitioning: k̃
Parameter: Upper bound of relative threshold: ✓

max

Result : Search Space: T
search
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Figure 3.19: Definition of Search Spaces — The algorithm computes
the search space, a set containing the indices of model features of the cur-
rent feature vector considered worth being matched with image features. The
computation is based on the application of dynamic thresholds on the mea-
sures of information and on the saliencies. The algorithm incorporates top-
down knowledge which model features can further be observed in the images
of salient categories. This knowledge is encoded in the preselection network.

Performance

We analyze the performance of the accelerated feature search in terms of
recognition rate and execution time with the object recognition applica-
tion proposed in the following chapter. The learning set comprised 5600
images drawn from the COIL-100 database (Nene et al., 1996). From
these images the same number of single-element categories have been built:
⇧1 = {C1

c

| 1  c  5600}. The only learning example in the most salient cat-
egory was chosen as the model for the input image. We considered an object
to be correctly recognized if test and model image contained the same object.
We analyze the performance for ✓

hyst

= 1, 3, 5, 10, and 15, for k̃ = 1, and
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✓
hyst

Recognition
Rate [%]

Execution
Time [s]

1 98.2 4.76

3 98.8 5.29

5 99.0 11.91

10 99.0 21.38

15 98.6 28.63

1 97.7 93.03

Table 3.4: Performance of the Accelerated Feature Search — The
table lists the recognition rates and execution times attained by the object
recognition application of the following chapter. We analyze the performance
of the accelerated feature search for ✓

hyst

= 1, 3, 5, 10, and 15, for k̃ = 1,
and for ✓

max

= 0.3. Moreover, in row ✓
hyst

= 1 the table lists the attained
recognition rate and execution time if the accelerated feature search was dis-
abled, i.e., all three feature vectors were fully traversed in search of matching
features. The false alarm rate of accidental feature matches depends propor-
tionally on the hysteresis threshold ✓

hyst

: for larger values of ✓
hyst

recognition
rates decrease and execution times increase while smaller values of ✓

hyst

allow
for faster execution at the expense of lower recognition rates. Since accidental
feature matches are frequent in the case of disabled accelerated feature search,
the worst recognition rate and the slowest execution time was attained for that
case.

for ✓
max

= 0.3. We designed the visual dictionary to contain three feature
vectors, sorted according to their length in ascending order: feature vector f 1

comprised 32,972, f 2 comprised 89,127, and f 3 comprised 210,189 parquet
graphs. They were computed using the procedure proposed in section 3.3
using similarity thresholds of #1 = 0.85, #2 = 0.9, and #3 = 0.95.

The method’s performance in terms of recognition rate and execution time
is given in tab. 3.4. The performance with respect to the number of model
candidates and to the sizes of search spaces is given in fig. 3.20. Generally,
recognition rates decrease and execution times increase for larger values of
✓

hyst

while smaller values of ✓
hyst

allow for faster execution at the expense of
lower recognition rates.
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Figure 3.20: Performance of the Accelerated Feature Search — The
figure shows the performance of the accelerated feature search with (a) re-
spect to the number of model candidates and with (b) respect to the size of
the search space. We give the results for ✓

hyst

= 5, 10, 15. In both subfigures
the results for ✓

hyst

= 5 are marked with circles, those for ✓
hyst

= 10 are
marked with triangles, and those for ✓

hyst

= 15 are marked with boxes. Fig-
ure (a) displays the number of salient categories each time a feature vector of
the visual dictionary has been processed. Since the learning set has been sub-
divided into one-element categories the current number of model candidates
is equal to the current number of salient categories. The method allows for
selection of a rather small number of model candidates relative to the total
number of learning examples. The recognition rates in tab. 3.4 prove that the
selection is sound. Figure (b) displays the sizes of search spaces versus the
size of the current feature vector. This is, informally speaking, the percentage
of the current feature vector to traverse in search of matching model features.
The search spaces are always much smaller than the current feature vectors
even though the mean variation is considerable. The number of salient cat-
egories and the sizes of search spaces are determined by dynamic thresholds
which keep them in manageable ranges in terms of execution time.
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3.5 Verification of Model Candidates

Up to here, model candidates have been selected by set intersection on salient
categories (Eq. (3.21)). The categories’ saliencies as computed by the prese-
lection network are solely based on the detection of coincidental features in
the model and image domain. The spatial arrangement of features, parquet
graphs in our case, has been fully ignored, which can be particularly harmful
in cases of multiple objects or structured backgrounds.

In the following model candidates are further verified through asserting that
the features be in similar spatial arrangement for the model to be selected.
More specifically, they are verified with a rudimentary version of elastic
graph matching (von der Malsburg, 1988; Lades et al., 1993; Wiskott
et al., 1997). For each model candidate an image and a model graph are dy-
namically constructed through assembling corresponding features into larger
graphs according to their spatial arrangement. For each model candidate the
similarity between its image and model graph is computed. The model can-
didate whose model graph attains the best similarity is chosen as the model
for the input image. Its model graph is the closest possible representation of
the object in the input image with respect to the learning set.

3.5.1 Construction of Graphs

Construction of graphs proceeds in three steps. First, from the table of
matching features (Eq. (3.7)) all feature pairs whose model feature stems
from the current model candidate are transferred to a table of corresponding
features. Second, templates of an image and of a model graph are instantiated
with unlabeled nodes. Number and positioning of nodes is determined by
the valid nodes of image and model parquet graphs. Third, at each node
position, separately for image and model graph, a bunch of Gabor jets is
assembled whose jets stem from node labels of valid-labeled parquet graph
nodes located at that position. The respective nodes of the image or model
graph become attributed with these bunches.

Table of Corresponding Features

During calculation of the categories’ saliencies pairs of matching features have
been collected in a table of matching features F

match

(I) (Eq. (3.7)). Given
a model candidate M 2 M (I) for the input image I (Eq. (3.21)), all feature
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pairs whose model feature stems from M are transferred to a table of cor-
responding features F

corr

(I, M), which will be used for e�cient aggregation
of parquet graphs into larger model and image graphs. We assume that the
table comprises N feature pairs, a number that depends implicitly on the
model candidate. Let f I

n

denote the image and fM

n

the model parquet graph
of the n-th feature pair. Note that from now on we speak of corresponding
rather than of matching parquet graphs and assume that those graphs estab-
lish local arrays of contiguous point-to-point correspondences between the
input image and the model candidate.

F
corr

(I,M) =

(

�

f I

n

, fM

n

� 2 F
match

(I)
�

�

�

1  n  N ^

H

 

R

P

r=1

P

f2f

r
(M)

"
�

f, fM

n

, 1
�

!

= 1

) (3.22)

Nodes of parquet graphs are attributed with a triple consisting of an absolute
image position, a Gabor jet derived from an image at that position, and a
validity flag (Section 3.2). For being able to globally address node label com-
ponents, the following notation is introduced: nodes of image parquet graphs
are attributed with triples

�

xI

n,v

,J I

n,v

, bI

n,v

�

where n specifies the feature pair
in the table of corresponding features and v specifies the node index. The
same notation is used for model parquet graphs, with a superscript M for
distinction.
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Graph Templates

First, templates of an image and of a model graph are instantiated with-
out node labels. Number and positioning of nodes are determined by the
valid-labeled nodes of image and model parquet graphs. Their positions are
collected in sets XI and XM , respectively. The creation of graph templates
is illustrated in fig. 3.21.
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(3.24)
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Node Labels

The nodes of model and image graphs become attributed with bunches of
Gabor jets: nodes of image graphs become labeled with bunches of Gabor jets
that stem from node labels of valid-labeled nodes of image parquet graphs
located at a given position x in the input image. The same applies to the
nodes of model graphs, in which, of course, the jets stem from model parquet
graphs. Let �I (x) denote a bunch assembled at an absolute position x in the
input image. The same notation is used for the model graph’s bunches, with
a superscript M for distinction. Whenever possible we omit the position
x and write �I and �M . The assembly of Gabor jets into bunches is also
illustrated in fig. 3.21.
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For the assessment whether a point in the image corresponds to a point in the
model candidate a measure of similarity between two bunches is needed. The
similarity between two bunches is defined as the maximal similarity between
the bunches’ jets, which is computed in a cross run. If one of the bunches is
empty the similarity between them yields 0. The jets are compared using the
similarity function given in eq. (2.9), which is based on the Gabor amplitudes.
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Graphs

Like parquet graphs, image and model graphs are specified by a set of node
labels. Node labels comprise an absolute position in the input or model image
drawn from the sets of node positions (Eq. (3.24)) and the bunch assembled
at that position (Eq. (3.25)). The image graph is decorated with a superscript
I while the model graph receives a superscript M .
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Model graphs of suited model candidates provide an approximation of the
object in the input image by features present in the visual dictionary. Fig. 3.2
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shows a number of model graphs (third column) that have been constructed
for the input image given in the first column. The reconstructions from the
model graphs of the first two model candidates in column four demonstrate
that the emerged model graphs describe the object in the input image well.

The constructed graphs are to some extent reminiscent of bunch graphs
(Wiskott, 1995; Wiskott et al., 1997). Nevertheless, since they represent
single model candidates, we rather speak of model instead of bunch graphs.
It is, however, worthwhile mentioning that the proposed procedure may as
well serve for the construction of bunch graphs. To this end the table of cor-
responding features has to provide feature pairs of model candidates picked
from a carefully chosen subset M̃ (I) of the set of model candidates M (I).
The alternative computation of the table of corresponding features is given
in eq. (3.28). The graph construction procedure is then as well applicable to
the construction of bunch graphs.

F bunch

corr

⇣

I, M̃ (I)
⌘

=
[

M2 ˜M(I)

F
corr

(I, M) (3.28)

3.5.2 Matching

In order to assert that a constructed model graph represents the object in
the given image well, it is matched with the input image. It is moved as a
template over the entire image plane in terms of maximizing the similarity
between model and image graph. This action can be compared with the
scan global move which is usually performed as the first step of elastic graph
matching (Lades et al., 1993; Wiskott et al., 1997). It is also very similar
to multidimensional template matching (Würtz, 1997). For each transla-
tion of the model graph the similarity between model and image graph is
computed. The translation vector that yields the best similarity defines the
optimal placement of the model graph in the image plane. In the process, the
model graph’s absolute node positions are transformed into relative ones by
subtracting a displacement vector t

0

from the positions of the model graph’s
nodes. That vector is chosen such that after subtraction the smallest x and
the smallest y coordinate become zero. However, the y coordinate of the
leftmost node is not necessarily 0. The same is the case for the x coordinate
of the uppermost node.
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The similarity between model and image graph with respect to a given trans-
lation vector t is defined as the average similarity between image and model
bunches.
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In order to find the object in the input image the model graph is iteratively
translated about a displacement vector in the image plane so that the measure
of similarity between model and image graph becomes maximal. The model
graph of a suited model candidate moves to the object’s position in the input
image. Let s

best

(I, M) denote the similarity attained at that position. The
displacement vectors t stem from a set G = {(n�x, n�y)|n 2 N

0

} of all
grid points defined by the given distances �x and �y between neighbored
parquet graph nodes (Section 3.3).

s
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o

(3.31)

3.5.3 Model Selection

For selection of the model, the most similar learning image for the given
input image, an image and a model graph are constructed for each model
candidate. The model candidate that attains the best similarity between its
model and image graph is chosen as the model for the input image.

M
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M2M(I)

n

s
best

(I,M)
o

(3.32)

In fig. 3.2 four model candidates (column two) have been computed for the
given input image (column one). The similarities attained through match-
ing image against model graphs are annotated to the reconstructions from
the model graphs (column four). Since the first model candidate yields the
highest similarity, it is chosen as the model for the object in the input image.
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Model Candidate

(a)

Model Candidate

(b)

Figure 3.21: Construction of Model Graphs — Figure (a) provides a
side, figure (b) a top view of the same setup. For clarity, both figures show
only two overlapping model parquet graphs fM

1

and fM

2

drawn from the table
of corresponding features. For illustration of the overlap the graphs are drawn
in a stacked manner. Number and position of the model graph’s nodes are de-
termined by the valid-labeled model parquet graph nodes (green nodes). Nodes
that reside in the background have been marked as invalid (red nodes). In fig-
ure (b) the shape of the emerging model graph can be predicted. Compilation
of bunches is demonstrated with two bunches only. Like stringing pearls, all
valid Gabor jets at position xM

1

are collected into bunch �M

�

xM

1

�

and those
at positions xM

2

become assembled into bunch �M

�

xM

2

�

. From figure (a) we
learn that bunch �M

�

xM

1

�

comprises two jets while bunch �M

�

xM

2

�

contains
only one jet. Image graphs are constructed in the very same fashion.
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Input Image

Model Candidate

Figure 3.22: Matching Setup — The setup consists of the input image,
the model candidate, and the graphs constructed using the proposed method.
For clarity, only two pairs of corresponding parquet graphs have been taken
from the table of corresponding features. Parquet graph f I

1

corresponds to
fM

1

and f I

2

corresponds to fM

2

. Like in fig. 3.21, green nodes represent nodes
that have been marked as valid and red nodes represent nodes that have been
marked as invalid for residing in the background. Since only learning images
provide figure-ground information, invalid nodes appear only in the model
parquet graphs. The compilation of bunches is illustrated for two positions xI

1

and xI

2

in the input image and xM

1

and xM

2

in the model candidate. In order
to find the object in the input image the model graph is iteratively moved over
the entire image plane and matched with the image graph.
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3.6 Parameterization

Except where mentioned otherwise, the following parameters are used through-
out this thesis.

3.6.1 Gabor Features

The parameterization of Gabor features as given below is the same as in
(Lades et al., 1993; Wiskott, 1995).

L = 8 number of directions

M = 5 number of frequencies

k
step

=
p

2 factor used for the sampling of frequencies

k
max

= ⇡

2

maximal frequency

� = 2⇡ ratio of the width of the Gaussian window to wavelength, i.e.,
this parameter specifies the number of oscillations under the
Gaussian envelope

3.6.2 Parquet Graphs

For the given parameterization of the Gabor features, the parameterization
of the parquet graph features (Section 3.2) is as follows.

V = 9 number of nodes

�x = 10 distance in pixels between two neighbored nodes in horizontal
direction

�y = 10 distance in pixels between two neighbored nodes in vertical
direction

3.6.3 Visual Dictionaries

Visual dictionaries (Section 3.3) comprise R = 2 feature vectors f 1 and f 2.
These are computed by the vector quantization method given in algorithm 1
(Fig. 3.9) using two feature calculators f 1 and f 2 that return parquet graph
features, which are parameterized as given above.
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R = 2 number of feature calculators

#1 = 0.9 similarity threshold of feature calculator f 1

#2 = 0.95 similarity threshold of feature calculator f 2

3.6.4 Accelerated Feature Search

The accelerated feature search (Section 3.4.8) is parameterized as given be-
low. We consider that k̃ specifies a partitioning of the learning set with
single-element categories. If not explicitly given, we consider that such a
partitioning is implicitly defined. The given parameterization allows for high
recognition or categorization rates at the expense of relatively slow execution
(Tab. 3.4).

✓
hyst

= 10 threshold of hysteresis (Algorithm 3, Fig. 3.18)

✓
max

= 0.3 upper bound of relative threshold (Algorithm 4, Fig. 3.19)



Chapter 4

Object Recognition

How can I qualify my faith in the inviolability of
the design principles? Their virtue is demonstrated.
They work.

Edgar A. Whitney

In this chapter we apply the graph dynamics proposed in the previous chapter
to the task of invariant object recognition. Following Palmeri and Gau-
thier (2004) the term recognition refers to a decision about an object’s
unique identity. Visual recognition thus requires to discriminate between
similar objects and involves generalization across some object variations as
well as translation, scale, pose, occlusion, illumination, and noise. Because of
the multitude of possible object variations, recognition of objects is a di�cult
task.

4.1 Review of Literature

Theories of human object recognition come in two main types: viewpoint-
independent and view- or appearance-based ones. Viewpoint-independent
theories posit that objects are represented as an object-centered arrange-
ment of volumetric primitives like cylinders, cones etc., much like the solid
geometrical models used in computer-aided design. These representations are
viewpoint-invariant in the sense that the same three-dimensional representa-
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tion is derived over a wide range of viewing orientations. Theories following
this paradigm have, for instance, been proposed in (Marr and Nishihara,
1978; Biederman, 1987). They state that recognition performance is in-
dependent of the particular viewpoint, which appears compatible with our
intuition as recognition of familiar objects from unfamiliar viewpoints seems
e↵ortless. However, psychophysical experiments (Bülthoff and Edelman,
1992; Tarr, 1995) suggest otherwise: observers that have learned to recog-
nize novel objects from specific viewpoints are both faster and more accurate
at recognizing these same objects from those familiar viewpoints relative
to unfamiliar viewpoints. Moreover, recognition performance at unfamiliar
viewpoints is related to familiar views: subjects progressively needed more
time and were less accurate if the distances between the familiar and unfamil-
iar views were gradually increased. These results suggest that human object
recognition relies on multiple views, where a view encodes the appearance of
an object under specific viewing conditions, such as pose, illumination and
so on. It is therefore reasonable to assume that the mental representation
of a given object is constituted by a collection of memorized views. The
assumption that the brain transforms unfamiliar views into familiar ones
through mental rotation has, however, been disproved in (Gauthier et al.,
2002). Bülthoff and Edelman (1992) rather suggested that the brain
interpolates between familiar views of a given object during recognition.

There exist two types of computational appearance-based models for invari-
ant visual object recognition: feature-based and correspondence-based. Both
start with the extraction of features. In feature-based recognition systems,
invariance to position, scale and so on is achieved feature-wise, with the help
of a logical OR: parameter-dependent feature detectors pass their assess-
ment whether their parameter-dependent reference feature is present in the
image to master units that become activated if at least one of its contributors
has observed its reference feature. Master units thus represent parameter-
invariant feature types. For instance, the feature detector given in section
3.4.2 is invariant to the reference feature’s position in the image plane. Ob-
ject recognition is achieved by comparing the list of activated master units to
stored lists for known objects and picking the best match. The characteristic
of this approach is that information on the original parameter values, such
as position, scale, and especially on the spatial arrangement of local features
is given up. Examples of feature-based systems include the Neocognitron
(Fukushima et al., 1983), Edelman (Edelman, 1995), Murase & Nayar
(Murase and Nayar, 1995), SEEMORE (Mel, 1997), VisNet (Elliffe
et al., 2002), and (Wersing and Körner, 2003). Since these methods do
not solve the binding problem (von der Malsburg, 1981, 1999), they en-
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counter problems when confronted with more sophisticated input images, for
instance, images with structured backgrounds, multiple objects, or occluded
objects. As especially the spatial arrangement of features is disregarded, they
leave the door open for the confusion of objects that agree in features but
di↵er in the features’ spatial arrangement, scale or orientation. It is, how-
ever, argued that non-ambiguous representations can be achieved through
introduction of combination-coding units, see, for instance, (Mel, 1997).

In correspondence-based model objects are represented as ordered arrays
of local features. For instance, in elastic graph matching memorized object
views are represented by model graphs (Chapter 2). Models are matched with
the image by solving the correspondence problem, i.e., through establishment
of an organized set of point-to-point correspondences between points in the
image and in the object model. Examples of correspondence-based systems
include (von der Malsburg, 1988; Ullman, 1989; Hummel and Bie-
derman, 1992; Lades et al., 1993; Olshausen et al., 1993; Würtz, 1995;
von der Malsburg and Reiser, 1995; Wiskott, 1995; Wiskott et al.,
1997; Messmer and Bunke, 1998). Correspondence-based methods usually
encounter problems when applied to larger repertoires of general objects. As
proposed and experimentally supported by Biederman (1987) objects have
to be represented as structured arrays of object parts, i.e., object models are
required to be dynamic with respect both to shape and features.

4.2 Experimental Setting

Experiments were conducted on two publicly available image databases for
object recognition: the well-known Columbia Object Image Library (COIL-
100) (Nene et al., 1996) and the more recent Amsterdam Library of Object
Images (ALOI) (Geusebroek et al., 2005). The COIL-100 database con-
tains images of 100 objects. Images were acquired by placing the physical
objects on a motorized turntable in front of a plain black background. In
order to vary object pose with respect to a fixed color camera, the turntable
was rotated through 360 degrees around the vertical axis, sampled in steps
of five degrees. This corresponds to 72 poses per object identity and 7200
images for the whole collection. All images are 128 ⇥ 128 pixels in size.
The images were normalized in size, i.e., the object always covers a max-
imal fraction of the image. The ALOI database contains images of 1000
objects with 72 poses per object identity. The mode of image acquisition
was the same as for the COIL-100 database. All images are 192 ⇥ 144 pix-
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(a) (b)

(c) (d)

Figure 4.1: Example Images of the COIL-100 and of the ALOI
Image Database — The figure gives example images drawn from the COIL-
100 (Nene et al., 1996) and from the ALOI image database (Geusebroek
et al., 2005). The images in (a) and (b) stem from the COIL-100, those in
(c) and (d) stem from the ALOI database. In contrast to the ALOI images,
the objects in the COIL-100 images are normalized in size.

els in size. As the employed procedure of feature extraction (Section 3.3)
failed to compute visual dictionaries with manageable numbers of features
in terms of execution time for more than 100 objects, we selected a subset
of 100 objects from the database’s object view collection. Since the images
of the first 200 objects were considered as too dark, we decided for objects
number 200-299. The chosen subset consists of 7200 images. Compared to
the COIL-100 database, less e↵ort was invested in image preprocessing in
the case of the ALOI database. Especially, the images are much darker, the
objects are not normalized in size, and cover a much smaller fraction of the
image. Therefore, experimental results attained with the ALOI database fall
short compared to the COIL-100 database. Especially, they are subject to
increased mean variations, as the forthcoming experiments will show. Some
example images of both databases are given in fig. 4.1.

Experimental results were obtained with fivefold cross-validation (Witten
and Frank, 2000). In N -fold cross-validation, the data is split into N parti-
tions of approximately the same size; we decided for N = 5 partitions. Each
of them is once used for testing while the remaining N � 1 partitions are
used for training. This procedure is repeated N times such that every ex-
ample has been used exactly once for testing. In this fashion we created five
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pairs of disjoint learning and testing sets for each database, except where
mentioned otherwise. The learning sets comprised 56, the testing sets 14
views per object, thus, 5600 or 1400 images in total, respectively. From each
learning set a visual dictionary with two feature vectors was calculated. We
used the default parameter set given in section 3.6. The learning images
were perfectly segmented, i.e., the objects were placed in front of a plain
black background. In some experiments we added structured backgrounds
to the test images before presentation. The object recognition application
was designed to simultaneously recognize the presented object’s identity and
pose. This was achieved by creating K = 1 partitioning of the learning set.
That partitioning consisted of C1 = 5600 single-element categories.

In the following, we present recognition results computed within the cross-
validation and their dependence on the relative weighting of the feature- and
correspondence-based parts. Each data point was averaged over 5 · 1400 =
7000 single measurements. Weighting of the feature- and correspondence-
based parts was controlled by the relative threshold ✓1 (Eq. (3.20)) that
ranged between 0.1 and 1, sampled in 0.1-steps. ✓1 determined the final
number of model candidates that were passed to the correspondence-based
verification part. For ✓1 = 1 only one model candidates was selected while
for low values the set of model candidates encompassed a large number of the
original training images. This parameter thus allowed to adjust the balance
between the feature- and correspondence-based parts.

4.3 Experiments

We present the results of seven experiments: The first experiment (Section
4.3.1) was concerned with the recognition of single objects with respect to
object identity and pose. The second experiment (Section 4.3.2) was sup-
posed to demonstrate the usefulness of the correspondence-based verification
of model candidates in that recognition rates obtained using that method
were compared with recognition rates achieved with an alternative method,
in which a majority vote was implemented. The third experiment (Section
4.3.3) dealt with the recognition of single scaled objects. The fourth exper-
iment (Section 4.3.4) determined the system’s recognition performance if it
was trained on sparse learning sets, i.e., the learning sets contained fewer
training examples per object identity. The fifth experiment (Section 4.3.5)
was concerned with the recognition of single objects in the case of sparse
visual dictionaries, i.e., the number of features per learning example was



78 Object Recognition

(a) (b)

Figure 4.2: Input Images of a Single Object — The figure shows an
object from the COIL-100 database (Nene et al., 1996) as (a) segmented
and (b) unsegmented image. Since the images of that database are perfectly
segmented, unsegmented test images were manually created before presenta-
tion by pasting the object in the segmented image into a cluttered background
consisting of arbitrarily chosen image patches of random size derived from
the images of the current testing set.

reduced. In the sixth experiment (Section 4.3.6) recognition performance
was evaluated in the case of input images that contained multiple, non-
overlapping objects. Finally, the seventh experiment (Section 4.3.7) dealt
with the recognition of partially occluded objects.

4.3.1 Recognition of Single Objects

In this experiment we presented images containing a single object and eval-
uated the recognition performance with respect to object identity and pose.
We analyzed the system’s performance for each of the combinations seg-
mented/unsegmented images and preselection network conforming/non-con-
forming to the infomax principle (Section 3.4). The experiment was subdi-
vided into eight test cases per database. In the first four test cases, recogni-
tion performance with respect to object identity was evaluated for each of the
mentioned combinations while the system’s ability to recognize the objects’
poses was investigated in the remaining four test cases. Since the images
of both databases were perfectly segmented, unsegmented test images were
manually created by pasting the object into a cluttered background before
presentation. Backgrounds consisted of arbitrarily chosen image patches of
random size derived from images of the current testing set. This is the worst
possible background for feature-based systems. Fig. 4.2 shows an example of
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a segmented and of an unsegmented test image. In order to assess the useful-
ness of the choice of synaptic weights according to eq. (3.11), the preselection
networks were made incompatible to the infomax principle by putting their
weights out of tune according to eq. (4.1). Choosing the synaptic weights
in this fashion let the categories’ saliencies become simple counters of fea-
ture coincidences, the weighted majority voting scheme degenerated to a
non-weighted one.
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The recognition performance with respect to object identity is shown in
fig. 4.3. We considered the object in the test image to be correctly recognized
if test and model image showed the same object identity regardless of the ob-
ject’s pose. Throughout, better recognition rates were attained if segmented
images were presented. Moreover, the infomax principle always slightly
improved performance. That improvement, however, decreased when the
correspondence-based part was emphasized, i.e., the achieved improvement
was continually used up while moving from the left to the right hand side of
fig. 4.3. Most interestingly, a well-balanced combination of the feature- and
correspondence-based parts led to optimal performance, throughout. Only
for such well-balanced combinations the selection of model candidates was
optimally carried out in the sense that neither too few nor too many learning
images became chosen as model candidates. If the number of model candi-
dates was too small, the spectrum of alternatives the correspondence-based
part could choose the final model from became too limited. This is especially
harmful, if false positives were frequent among model candidates. Conversely,
the number of false positives among model candidates unavoidably increased
with overemphasis of the correspondence-based part: for too low values of the
relative threshold even learning images of weakly salient categories became
selected as model candidates. Accordingly, the mere probability of choosing
a false positive as the final model increased and, consequently, the average
recognition rate decreased. The same findings apply for the performance
with respect to object pose given in fig. 4.4. The average pose errors were
calculated over the absolute values of angle di↵erences of correctly recog-
nized, non-rotation-symmetric objects. Note that two consecutive learning
images of the same object were at least five degrees apart. The same applies
for the objects in the test images. The pose errors contain all errors due
to pose ambiguity, which are negligible in practice. For example, for robot
grasping, see, for instance, (Schmidt and Westphal, 2004), the number of
misclassified poses is more relevant than the mean pose error.
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Figure 4.3: Recognition of Single Objects (Identity) — The figure
shows the recognition performance with respect to object identity. The re-
sults in (a) were attained with the COIL-100, those in (b) were attained with
the ALOI database. The recognition performance is shown in dependence
on the relative weighting of the feature- and correspondence-based parts con-
trolled by ✓1. This parameter determined the final number of model candi-
dates that were passed to the correspondence-based verification part. The best
results are annotated to the respective data points. The results were better
for segmented images. Optimal performance was attained by satisfying the
infomax principle and with a well-balanced combination of the feature- and
correspondence-based parts.
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Figure 4.4: Recognition of Single Objects (Pose) — The figure shows
the recognition performance with respect to object pose. The results in (a)
were attained with the COIL-100, those in (b) were attained with the ALOI
database. Again, the results were better for segmented images and optimal
performance, like in the identity case (Fig. 4.3), was attained by satisfying
the infomax principle and with a well-balanced combination of the feature-
and correspondence-based parts.
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4.3.2 Recognition of Single Objects using Majority
Vote as Verification Method

This experiment was supposed to demonstrate the usefulness of correspon-
dence-based verification of model candidates. The recognition rates with
respect to object identity achieved with that method were compared to recog-
nition rates attained using an alternative method, in which a majority vote
was implemented. In the alternative method, the set of model candidates
(Eq. (3.21)) was partitioned into subsets of model candidates with the same
object identity after each image presentation. The largest of these subsets
was assumed to specify the identity of the object in the input image. The
experiment was organized into four test cases per database: in the first two
test cases the input images contained a single object, placed in front of a
homogeneous and in front of a cluttered background, model candidates were
verified with the correspondence-based method. In the remaining test cases,
the input images contained a single object, with and without background,
but model candidates were verified with the alternative method.

The result of this experiment is given in fig. 4.5. Experimental results achieved
with correspondence-based verification were taken from the first experiment
(Fig. 4.3). Only in the case of unsegmented input images created from the
original ALOI images (Fig. 4.5 (b)), majority vote was slightly better than its
correspondence-based counterpart for optimal weighting of the feature- and
correspondence-based parts. In all remaining test cases the correspondence-
based verification clearly outperformed the alternative method. As back-
grounds were randomly created and as the system was more sensitive when
confronted with unsegmented ALOI images relative to unsegmented COIL-
100 images (Fig. 4.3), the start points of curves di↵ered in the case of unseg-
mented ALOI images (Fig. 4.5 (b)).

4.3.3 Recognition of Scaled Single Objects

This experiment was concerned with the recognition of single scaled objects
with respect to object identity. It was organized into four test cases per
database. The object in the input images was placed in front of a homo-
geneous black background and scaled to 100%, 95%, 90%, and 85% of its
original size before presentation; fig. 4.6 gives examples.

The result of this experiment is given in fig. 4.7. Recognition performance
depended considerably on object size. The recognition performance in the
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Figure 4.5: Recognition of Single Objects using Majority Vote as
Verification Method — The figure gives the recognition performance with
respect to object identity attained with correspondence-based and alternative
verification of model candidates, which is a simple majority vote. The results
were attained (a) with the COIL-100 and (b) with the ALOI database. In-
put images contained a single object with and without structured background.
Only (b) in the case of unsegmented ALOI images, majority vote performed
slightly better than its correspondence-based counterpart for optimal weight-
ing of the feature- and correspondence-based parts. In all remaining test
cases the correspondence-based verification clearly outperformed the alterna-
tive method.
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Figure 4.6: Input Images of Scaled Objects — The figure shows exam-
ple input images of scaled objects. From left to right the object in the input
image is scaled to 100%, 95%, 90%, and 85% of its original size.

first three test cases, in which the object in the input images was scaled
to 100%, 95%, and 90% of its original size, was respectable: for these scale
factors recognition rates were above 93% for the COIL-100 and above 87% for
the ALOI database. If the object in the test images was scaled to 85% of its
original size, test case four, recognition performance dropped considerably.
The main reason for this behavior is the design of the feature detectors,
which are position- but not size-invariant (Section 3.4.2). Moreover, the
parquet graph features were in no way adapted to changes in object size:
the horizontal and vertical distances between neighbored nodes (Section 3.2)
and the attributed Gabor features remained unchanged. As the objects in
the ALOI images covered a much smaller fraction of the image, the system
was more sensitive to changes in object size relative to images taken from
the COIL-100 database.

4.3.4 Recognition of Single Objects with
Sparse Learning Sets

This experiment was concerned with the assessment to what extent the sys-
tem was able to interpolate between learning examples. To this end, the
system was trained on sparse learning sets, i.e., learning sets with fewer train-
ing examples per object identity. Input images showed the object in front
of a plain black background. The experiment was subdivided into N = 9
test cases per database. For each test case, five pairs of learning/testing
sets were created. In a learning set the distance between two consecutive
learning images was sampled homogeneously while the initial pose angle was
chosen randomly. In the n-th test case, n 2 {1, . . . , N}, two consecutive
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Figure 4.7: Recognition of Scaled Single Objects — The figure shows
the recognition performance with respect to object identity in the case of scaled
single objects. The results in (a) were attained with the COIL-100, those in
(b) with the ALOI database. The experiment was organized into four test
cases per database in which the object in the input images was placed in
front of a homogeneous background and scaled to 100%, 95%, 90%, and 85%
of its original size before presentation. Recognition performance depended
considerably on object size. In the first three test cases it was respectable. In
the fourth test case the recognition performance dropped considerably.
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learning images of an object were 10 ·n degrees apart. The learning sets thus
comprised 36, 18, 12, 9, 8, 6, 6, 5, and 4 learning images per object iden-
tity, respectively. After construction of a learning set, all remaining images
of the database were assigned to the respective testing set, i.e., testing sets
comprised 3600, 5400, 6000, 6300, 6400, 6600, 6600, 6700, and 6800 images.
Thus, smaller learning sets implied larger testing sets.

The result of this experiment is given in fig. 4.8. Like in the first experiment,
optimal recognition performance was achieved for a well-balanced combina-
tion of the feature- and the correspondence-based parts. Recognition perfor-
mance degraded smoothly with increasing angles between consecutive learn-
ing images. The system interpolated well between learning example not too
far apart from each other. For instance, if learning images were 30 degrees
apart the average recognition rate was still above 90% for both databases.
The results achieved in the ninth test case, in which learning images were 90
degrees apart, were still respectable. Due to the regular sampling of object
pose, results for the first test case, in which learning images were ten degrees
apart, were better relative to the first experiment (Section 4.3.1).

4.3.5 Recognition of Single Objects with
Sparse Visual Dictionaries

This experiment was concerned with the recognition of single objects in the
case of sparse visual dictionaries, i.e., they contained fewer features per learn-
ing example. Since, upon image presentation, less model features have to be
compared to image features in the case of sparse visual dictionaries the av-
erage execution time per recognition could benefit. We analyzed the impact
of di↵erent degrees of sparseness on the recognition performance. The input
images showed the object in front of a plain black background. The exper-
iment was organized in five test cases per database. In each test case the
fivefold cross-validation (Section 4.2) was repeated with thinned-out visual
dictionaries created from the original ones. The sparse dictionaries comprised
a single feature vector with 1, 2, 4, 10, and 20 features per learning example,
respectively. Only the respective number of the most informative features
were transferred from the original visual dictionary’s second feature vector
(Section 3.3), the more detailed one, to the new sparse one.

The recognition performance with respect to object identity is given in fig. 4.9.
It degraded smoothly with increasing sparseness, i.e., with decreasing num-
bers of features per learning example. The poorer quality of ALOI relative to
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Figure 4.8: Recognition of Single Objects with Sparse Learning
Sets — The figure shows the recognition performance with respect to object
identity if the system was trained on sparse learning sets, i.e., learning sets
with fewer training examples per object identity. The results in (a) were at-
tained with the COIL-100, those in (b) were attained with the ALOI database.
The experiment was subdivided into N = 9 test cases. In the n-th test case,
n 2 {1, . . . , N}, two consecutive learning images of an object were 10 · n de-
grees apart. The system interpolated well between learning examples not too
far apart from each other. Recognition performance degraded smoothly with
increasing angles between two consecutive learning images.
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COIL-100 images was especially harmful in this experiment: the mean varia-
tion of the results attained with the ALOI database was always considerably
larger relative to the results achieved with COIL-100 database.

The average execution times are given in fig. 4.10. For the sake of compa-
rability, the average execution time measured in the first experiment (Sec-
tion 4.3.1) is given here as well. For both databases the average execution
times were almost independent of the relative weighting of the feature- and
correspondence-based parts controlled by the relative threshold ✓1. They
scaled proportionally with the number of features per learning example in
the visual dictionaries. The average execution time measured in the first
experiment was below that measured in the fifth test case, 20 features per
learning example, since in the first experiment the accelerated feature search
(Section 3.4.8) was able to fully exploit all of its three sources of e�ciency
as the visual dictionary comprised two feature vectors. In contrast, in the
current experiment visual dictionaries contained only a single feature vector
which was traversed in a linear fashion (Algorithm 3, Fig. 3.18) in search of
matching model features for the given image features.

4.3.6 Recognition of Multiple Objects

This experiment was concerned with the recognition of multiple, simulta-
neously presented, non-overlapping objects, i.e., input images showed sim-
ple visual scenes. Only the recognition performance with respect to ob-
ject identity was evaluated. The experiment was subdivided into six test
cases per database. In the first three test cases we simultaneously presented
N 2 {2, 3, 4} objects placed in front of a plain black background while in
the last three test cases cluttered background was manually added. The pro-
cedure of background construction was the same as in the first experiment.
Fig. 4.11 shows two images containing four objects with and without back-
ground. Objects were randomly picked, a test image contained only di↵erent
ones, and each object appeared at least once. In a test case 1400 input im-
ages were presented. The system returned the N most similar models. Each
coincidence with one of the presented objects was accounted as a successful
recognition response. The average recognition rates were calculated over all
responses.

The result of this experiment is given in figs. 4.12 and 4.13. We learn that,
compared to the single-object experiments (Section 4.3.1), the point of opti-
mal recognition performance considerably moved to the right: putting more
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Figure 4.9: Recognition of Single Objects with Sparse Visual Dic-
tionaries (Identity) — The figure shows the recognition performance with
respect to object identity in the case of sparse visual dictionaries. The results
in (a) were attained with the COIL-100, those in (b) were attained with the
ALOI database. The sparse visual dictionaries comprised only one feature
vector with 1, 2, 4, 10, and 20 features per learning image, respectively. For
the sake of comparability, the result of the first experiment (Section 4.3.1) is
repeated here. The recognition performance degraded smoothly with increasing
sparseness, i.e., with decreasing numbers of features per learning example.
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Figure 4.10: Recognition of Single Objects with Sparse Visual Dic-
tionaries (Execution Time) — The figure shows the recognition perfor-
mance with respect to execution time in the case of sparse visual dictionar-
ies. The results in (a) were attained with the COIL-100, those in (b) were
attained with the ALOI database. The sparse visual dictionaries comprised
only one feature vector with 1, 2, 4, 10, and 20 features per learning image,
respectively. The average execution time measured in the first experiment
(Section 4.3.1) is given here as well. For both databases average execution
times were almost independent of the relative weighting of the feature- and
correspondence-based parts. They scaled proportionally with the number of
features per learning example in the visual dictionaries.
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(a)

(b)

Figure 4.11: Input Images of Multiple Objects — The figure shows
an example of (a) a segmented and (b) an unsegmented input image con-
taining four objects drawn from the COIL-100 database. Backgrounds were
constructed in the same fashion as in the first experiment.

emphasis on the correspondence-based verification part thus improved recog-
nition performance in this experiment. This finding can be explained with the
assumption that a solution of the binding problem (von der Malsburg,
1981, 1999) is required in the case of multiple objects. More specifically,
model graphs provide a means to purposefully navigate in the image, which
seems to be crucial in the case of input images with multiple objects. Pre-
sentation of segmented images yielded better results. For both segmented
and unsegmented images the system’s performance degraded smoothly with
the number of simultaneously presented objects. Especially in the test cases
conducted on the ALOI database, one can expect that recognition rates could
have further been improved by putting more emphasis on the correspondence-
based part by choosing ✓1 < 0.1. For performance reasons this was, however,
not carried out.
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Figure 4.12: Recognition of Multiple Objects (Segmented Images)
— The figure shows the recognition performance with respect to object iden-
tity in the case of multiple non-overlapping objects where the objects in the
input images were placed in front of a plain black background. The results
in (a) were attained with the COIL-100, those in (b) were attained with
the ALOI database. Compared to the first experiment (Section 4.3.1), the
point of optimal recognition performance considerably moved to the right:
correspondence-based verification is more important in the case of multiple
objects. Performance degraded smoothly with the number of simultaneously
presented objects.
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Figure 4.13: Recognition of Multiple Objects (Unsegmented Im-
ages) — The figure shows the recognition performance with respect to object
identity in the case of multiple non-overlapping objects where the objects in
the input images were placed in front of a structured background. The re-
sults in (a) were attained with the COIL-100, those in (b) were attained with
the ALOI database. Like in the case of segmented input images (Fig. 4.12),
recognition performance degraded smoothly with the number of simultaneously
presented objects.
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4.3.7 Recognition of Partially Occluded Objects

While in the previous experiment (Section 4.3.6) the objects were presented
in a non-overlapping manner, this final object recognition experiment was
concerned with the recognition of partially occluded objects. Only the recog-
nition performance with respect to object identity was evaluated. The exper-
iment was organized into twelve test cases per database. In the first six test
cases we simultaneously presented two objects where 0-50% of the object on
the left was occluded by the object on the right. The amount of occlusion
was sampled in 10%-steps. Occluded and occluding objects were di↵erent
and randomly picked, each object appeared at least once as occluded. In a
test case 1400 images were presented. In the remaining six test cases clut-
tered background was added. The procedure of background construction was
the same as in the first experiment. Accounting of recognition responses was
the same as in the experiments with multiple objects. Fig. 4.14 shows ex-
ample input images of a partially occluded object with and without added
background.

The result of this experiment is given in figs. 4.15 and 4.16. In fig. 4.15 the
objects in the input images were placed in front of a plain black background
while the result given in fig. 4.16 was attained with unsegmented images.
Like in the previous experiment, emphasis of the correspondence-based part
improved recognition performance: solution of the binding problem is also
demanded in the case of partially occluded objects as well. Moreover, presen-
tation of segmented images yielded better results. For both segmented and
unsegmented images the system’s performance degraded smoothly with the
amount of occlusion. Experimental results for the test cases with no occlusion
were taken from the first test case of the previous experiment, in which the
input images contained two non-overlapping objects. Like in the experiment
with multiple objects, one can expect that recognition rates could have fur-
ther been improved by putting more emphasis on the correspondence-based
part by choosing ✓1 < 0.1.

4.4 Discussion

We presented a method for invariant visual recognition of objects that em-
ploys a combination of rapid feature-based preselection with self-organized
model graph creation and subsequent correspondence-based verification of
model candidates. Throughout, a well-balanced combination of the feature-
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(a) (b)

Figure 4.14: Input Images of a Partially Occluded Object — The
figure shows (a) a segmented and (b) an unsegmented input image of a par-
tially occluded object. In this example, the occluding object covers about fifty
percent of the occluded object.

based and correspondence-based parts produced optimal results in terms
of recognition rate and pose error. Unlike many other methods, the pre-
sented technique was able to cope with varying background, multiple objects,
and partial occlusion. In all test cases the system’s performance degraded
smoothly with the increasing complexity of the recognition tasks and with
increasing sparseness of learning sets and visual dictionaries. The system
turned out to be quite sensitive to changes in object size. To this end the
feature detectors presented in section 3.4.2 should be made position- and
size-invariant, i.e., they should be realized as logical disjunctions of position-
and size-variant feature detectors. In a qualitative sense the results attained
with the COIL-100 database are comparable with those attained with the
ALOI database. Because of the poorer quality of the ALOI images relative
to the COIL-100 images, which was especially harmful in the case of struc-
tured backgrounds and occlusion, the results achieved with that database are
subject to an increased mean variation relative to those attained with the
COIL-100 database.

Our system performed favorably compared with other techniques. The origi-
nal system of Murase and Nayar (1995), that performs a nearest neighbor
classification to a manifold representing a collection of objects or class views,
attained a recognition rate of 100% for segmented images of single unscaled
objects drawn from the COIL-100 database. Our system attained a recog-
nition rate of 99.13% in the same test case (Section 4.3.1). The recognition
performance of the Murase and Nayar system is, however, unclear if it
would be confronted with more sophisticated recognition task, for instance,
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Figure 4.15: Recognition of Partially Occluded Objects (Seg-
mented Images) — The figure shows the recognition performance with
respect to object identity in the case of partially occluded objects that were
placed in front of a plain black background. The results in (a) were at-
tained with the COIL-100 database, those in (b) were attained with the ALOI
database. Like in the case of multiple objects (Section 4.3.6), emphasis of the
correspondence-based verification of model candidates considerably improved
recognition performance. Performance degraded smoothly with the number of
simultaneously presented objects.
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Figure 4.16: Recognition of Partially Occluded Objects (Unseg-
mented Images) — The figure shows the recognition performance with re-
spect to object identity in the case of partially occluded objects that were placed
in front of a structured background. The results in (a) were attained with the
COIL-100 database, those in (b) were attained with the ALOI database. Like
in the case of segmented input images (Fig. 4.15), recognition performance
degraded smoothly with the amount of occlusion.
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images with structured backgrounds, with multiple objects, or with occluded
objects.

In (Wersing and Körner, 2003) the performance of the Murase and
Nayar system is compared with their method of setting up the feature ex-
traction layers in an evolutionary fashion. The authors conducted their ex-
periments on the COIL-100 database. In the case of segmented images and
on sparse learning sets their system and ours performed about equally well,
see fig.4 (b) and tab.1 in (Wersing and Körner, 2003) and figs. 4.4 (a)
and 4.8 (a). Provided that the learning sets contained enough training views
per object, both systems achieved recognition rates above 99%. The system
of Wersing and Körner performed, however, better than ours if the num-
ber of training views was reduced below 18 views per object. For instance,
their system achieved recognition rates of 79.0% and approximately 95% if
the learning sets contained four and twelve training views per object, respec-
tively, while, in the corresponding test cases, our system peaked at 65.63%
and 92.93%. Wersing and Körner report that the system of Murase
and Nayar (1995) achieved a recognition rate of 77.0% in the case of four
training views per object.

The system of Wersing and Körner (2003) performed slightly better in
the case of scaled objects, see fig. 4 (c) in (Wersing and Körner, 2003)
and fig. 4.7. A systematic comparison, however, cannot be carried out since
in their experiment images of objects were randomly scaled about +/- 10%
before presentation while in our experiment the scale factors were constant.
The system of Wersing and Körner achieved recognition rates between
approximately 95% and 98% for 36 training examples per object, depending
on the mode of feature selection. Our system attained recognition rates of
93.63% and 97.87% if the objects were scaled to 90% and 95% of their original
size, respectively.

In the case of unsegmented images our system outperformed the system of
Wersing and Körner, see fig. 6 (a) in (Wersing and Körner, 2003) and
fig. 4.4 (a): with 36 training views per object identity our system attained
a recognition rate of 92.25% while the system of Wersing and Körner
achieved a recognition rate slightly below 90%. It is, however, worth men-
tioning that the experimental setting di↵ers considerably in the compared
experiments. Wersing and Körner performed their experiment on the
first 50 objects of the COIL-100 database and constructed structured back-
grounds out of fairly big patches of the remaining 50 objects. In contrast,
we conducted the experiment on all objects and pasted them into a cluttered
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background consisting of arbitrarily chosen image patches of random size
derived from the other test images.

As an intermediate result our system produces model graphs, which are the
closest possible representations of a presented object in terms of memorized
features. A variety of further processing can build on these graphs. The sim-
ple graph matching in the correspondence-based verification part can be re-
placed by the more sophisticated methods of Lades et al. (1993); Wiskott
et al. (1997); Würtz (1997); Tewes (2006), which should lead to an in-
creased robustness under shape and pose variations.
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Chapter 5

Object Categorization

Success is the ability to go from one failure to another
with no loss of enthusiasm.

Sir Winston Churchill

In this chapter we apply the graph dynamics to the task of categorizing ob-
jects. According to Palmeri and Gauthier (2004) categorization refers to
a decision about an object’s kind. Categorization thus requires generaliza-
tion across members of a class of objects with di↵erent shapes. Especially,
generalization over object identity is required. Categorization of objects is
more di�cult than recognition of objects, since in addition to the multitude
of possible object variations such as translation, scale, pose, occlusion, illu-
mination, noise and so forth, intra-category variations among the captured
objects must be accounted for. These can be considerable. For instance,
human faces can have glasses, beards, di↵erent expressions, di↵erent age,
gender, or face form.

We conducted experiments on the ETH-80 database (Leibe and Schiele,
2003), which contains images of objects from eight categories. The task is to
categorize unknown objects into these categories.
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5.1 Review of Literature

Computational models for object categorization, like models for visual recog-
nition of objects (Chapter 4), can be subdivided into feature-based and
correspondence-based approaches. These are a✏icted with the same con-
ceptual advantages and disadvantages.

In feature-based models, invariance to position, size and so on is achieved in
the same fashion as in feature-based models of object recognition (Chapter 4).
Categorization is achieved by comparing activated master units to stored lists
of activated master units for objects with known memberships to predefined
categories; recognition thus precedes categorization. Examples of feature-
based categorization systems include (Schneiderman and Kanade, 2000;
Ullman and Sali, 2000; Leibe and Schiele, 2003; Viola and Jones,
2001, 2004).

In correspondence-based models of object categorization, categories are rep-
resented as ordered arrays of local features and categorization is performed
by solving the correspondence problem. In (Wiskott et al., 1997) a model
for the category of human faces in frontal pose, a so-called bunch graph, is
proposed. That method has been outlined in section 2.3. This approach fo-
cuses on the integration of intra-category variations in the object model but
ignores global object variations such as changes in pose, illumination and so
on. Weber et al. (2000) propose a system that is able to categorize objects
in a probabilistic framework. A summary of that method has been given in
the introduction of chapter 3. Fei-Fei et al. (2003) propose a probabilistic
method, similar to that of Weber et al. (2000), which is able to categorize
objects from few learning examples.

5.2 Experimental Setting

The ETH-80 database (Leibe and Schiele, 2003) contains images of eight
categories namely apples, pears, tomatoes, dogs, horses, cows, cups, and cars
of ten identities per category and 41 images in di↵erent poses per identity.
The whole collection consists of 3280 images.

Experimental results were attained with leave-one-object-out cross-validation
(Witten and Frank, 2000). This means that the system was trained with
the images of 79 objects and tested with the images of one unknown object.
We thus created 80 pairs of disjoint learning and testing sets. The learning
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sets contained 3239, the testing sets 41 images. From each learning set
a visual dictionary with two feature vectors was calculated. We used the
default parameter set given in section 3.6.

5.3 Experiments

An interesting question related to object categorization is whether category
information imposed on the learnings sets can be harnessed to improve cate-
gorization performance. We conducted two experiments: First, we evaluated
categorization performance if the decision about the final category relied on a
given hierarchical organization of predefined categories. Second, we evaluated
categorization performance without hierarchical organization of categories.

5.3.1 Categorization Using Hierarchically Organized
Categories

In the first experiment we hierarchically organized the images into categories
of K = 3 partitionings as given in fig. 3.5. The relative thresholds ✓k for
selection of salient categories of partitionings ⇧k, k 2 {1, 2, 3}, were all set
to 0.4 (Eq. (3.20)). For partitionings ⇧1 and ⇧2 we considered an object to
be correctly categorized if exactly one category out of these was selected as
salient and the presented object belonged to that category. For partitioning
⇧3 a set of model candidates was calculated by intersection of salient cat-
egories (Eq. (3.21)). The model candidates of that set were passed to the
correspondence-based verification part. We considered the presented object
to be finally correctly categorized if it belonged to the same of the original
eight categories as the object in the model image.

Fig. 5.1 displays the averaged categorization rates computed with the leave-
one-object-out cross-validation for each of the original eight categories of
apples, pears, tomatoes, dogs, horses, cows, cups, and cars. Each data point
was averaged over 10 · 41 = 410 single measurements. Three types of curves
can be observed. First, for the fruit categories the categorization curves
have a clear minimum at partitioning ⇧2. The system perfectly categorized
input images of fruits into the categories of partitioning ⇧1 (natural and
man-made) but experienced di�culties with the categories of partitioning
⇧2 (fruit, animal, cup, car), especially for pears. Since the intra-category
variations of fruits were well-sampled, the correspondence-based verification
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of model candidates was able to compensate for this shortcoming such that
input images of fruits were well categorized into the categories of partitioning
⇧3 (apple, pear, tomato, dog, horse, cow, cup, car). Second, for the animal
categories the categorization curves are strictly monotonically decreasing.
The system fairly categorized input images of animals into the categories of
partitionings ⇧1 and ⇧2, albeit categorization performance for partitioning
⇧2 always fell short relative to partitioning ⇧1, but experienced extreme
di�culties for the categories of partitioning ⇧3. This behavior is founded in
the poor sampling of the animal categories; the learning data is much too
sparse to make the fine distinctions between the categories of partitioning
⇧3. Third, for the categories of cars and cups the categorization curves are
monotonically increasing. Due to the imbalance between natural and man-
made objects in the database, six categories of natural vs. two categories of
man-made objects, the system failed to unambiguously assign input images
of cars and cups to the correct categories of partitionings ⇧1 and ⇧2. Again,
the correspondence-based verification of model candidates was to some extent
able to compensate for this shortcoming as the considerable increases in
categorization rates for the categories of partitioning ⇧3 demonstrate.

Generally, categorization performance depended considerably on the sam-
pling of categories. In this respect the system was able to categorize apples,
pears, and tomatoes well but experienced di�culties with cows, dogs, horses,
cars, and cups; in the latter cases the intra-category variations among cat-
egory members are too large. It is thus reasonable to assume that catego-
rization performance can be improved by adding more learning examples to
those categories.

5.3.2 Categorization Using Single-Element Categories

For evaluation of the system’s performance without predefined hierarchical
organization of categories we arranged the learning set into K = 1 parti-
tioning of single-element categories. We considered the object in the input
image to be correctly categorized if it belonged to the same category as the
object in the model image. The attained results depending on ✓1 are given
in fig. 5.2. For clarity, the curves are spread over two subfigures. All other
parameters were the same as in the previous experiment.

As in the object recognition experiments (Section 4.3), a well-balanced com-
bination of the feature- and the correspondence-based parts allowed for opti-
mal categorization performance. The expectation that categorization perfor-
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Figure 5.1: Categorization of General Objects Using Hierarchi-
cally Organized Categories — The averaged categorization rates com-
puted within the leave-one-object-out cross-validation are displayed. Each
data point was averaged over 410 single measurements. Categorization per-
formance depended considerably on the sampling of categories. The feature-
based part’s ability to unambiguously assign the object in the input image
to the categories of partitionings ⇧1 and ⇧2 is obviously limited. For most
cases, the correspondence-based verification part was able to compensate for
this shortcoming, but not for the shortage of learning examples, especially in
the animal categories.
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mance would benefit from hierarchical organization of categories could not be
substantiated. In the case of apples, tomatoes, cows, horses, cars, and cups
average categorization performance was considerably better without the hi-
erarchy. Only for pears and dogs categorization could slightly benefit. The
optimal weightings of the feature- and correspondence-based parts turned out
to be category-specific. The attained categorization rates are below or close
to those of Leibe and Schiele (2003). Their object categorization system,
however, integrates color, texture, and shape features while our system only
relies on local texture information. At least the feature-based part of the
technique described in this paper can work with any convenient feature type
(Westphal and Würtz, 2004). One can thus expect to further improve
categorization performance if more feature types become incorporated.

Fig. 5.3 gives a confusion matrix of the categorization performance in the
case of single-element categories and optimal weightings of the feature- and
correspondence-based parts. The optimal weightings were category-specific
(Fig. 5.2). Categorization performance depended considerably on the de-
gree of intra-category variations: for categories with relatively small intra-
category variations, for instance, fruits, cups, and cars, the system performed
well while the system’s performance degraded in a remarkable fashion when
confronted with images of categories with larger variations among category
members. This is especially prominent for the animal categories. The system
performed particularly poorly for the category of dogs. However, in 75.12%
(10.00%+29.27%+35.85%) of all cases the system assigned an input image of
a dog to the category of animals vs. 80.00% in the hierarchical case (Fig. 5.1).
Images of horses and cows were assigned to that category in 84.87% and
86.10% of all cases in the non-hierarchical case vs. 80.98% and 79.02% in the
hierarchical case, respectively. In sum, 82.03% of all cases input images of ani-
mals were correctly assigned to the category of animals in the non-hierarchical
case while that number was 80.00% = (79.02% + 80.00% + 80.98%) /3 with
hierarchical organization of categories. These results once more confirm our
original statement that the data is much too sparse to make the fine distinc-
tions between the categories of partitioning ⇧3.
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Figure 5.2: Categorization of General Objects Using Single-
Element Categories — The averaged categorization rates in the case of
single-element categories attained in the leave-one-object-out cross-validation
are displayed. For clarity, the curves are spread over two subfigures. Each
data point was averaged over 410 single measurements. Optimal categoriza-
tion performance was achieved for well-balanced combinations of the feature-
and correspondence-based parts. In most cases categorization performance
was clearly better relative to the hierarchical case. The optimal weightings of
the feature- and correspondence-based parts turned out to be category-specific.
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Figure 5.3: Confusion Matrix of Categorization Performance —
A confusion matrix of the categorization performance in the case of single-
element categories and optimal weightings of the feature- and correspondence-
based parts is given. The optimal weightings were category-specific (Fig. 5.2).
The axes are labeled with the categories of the ETH-80 database (Leibe and
Schiele, 2003), symbolized by images of arbitrarily chosen representants.
The horizontal axis codes the categories of the object in the input images
while the vertical axis codes the categories of the object in the model images.
The given categorization rates are relative to the categories of the object in
the input images. In each column they sum up to 100%. In order to improve
readability, blobs were assigned to the categorization rates whose surface areas
scale proportionally with the amount of their associated categorization rates.
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5.4 Discussion

Much work remains to be done on the categorization capabilities. In our
experiment we have seen that the categories employed by human cognition
were not helpful to improve the categorization capability when employed to
structure the recognition process. This finding is, however, compatible with
experimental results, which find that in human perception recognition of
a single object instance precedes categorization (Palmeri and Gauthier,
2004).

Another reason for the relatively poor performance is that in some cases the
data was much too sparse to really cover the intra-category variations: if
the variations across category members were poorly sampled, categorization
failed frequently for input images supposed to be assigned to these categories.
For instance, the system performed poorly for the animal categories, but cat-
egorized input images of fruits well. Categorization can always be improved
by using additional cues like color and global shape. This hypothesis is sub-
stantiated by the experimental results of Leibe and Schiele (2003). This
would, however, also require larger databases, because much more feature
combinations would need to be tested. Nevertheless, the method presented
here is well suited to accommodate hierarchical categories. Their impact on
categorization quality as well as methods to learn the proper organization of
categories from image data are subject to future studies.

As model graphs only represent a single object view they cannot possibly
cover larger spectra of individual variations among category members. In
this respect bunch graphs provide a more promising concept. As briefly
mentioned in section 3.5, the graph dynamics is able to construct bunch
graphs provided that the model features stem from carefully chosen model
candidates. It is reasonable to assume that categorization performance can
further be improved by using bunch graphs instead of model graphs.
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Chapter 6

Estimation of Pose and
Illumination of Human Faces

Human beings, for all their pretentions, have a re-
markable propensity for lending themselves to classi-
fication somewhere within neatly labelled categories.
Even the outrageous exceptions may be classified as
outrageous exceptions.

W.J. Reichmann

In this chapter we apply the proposed form of graph dynamics to the task
of estimating head pose and illumination type of human faces. These are
so-called extrinsic object parameters. The estimation task is set up in terms
of a categorization task in which faces of unknown individuals are subject to
be assigned to predefined categories according to head pose and illumination
type, i.e., generalization over identity is required. Our experiments were con-
ducted on the CMU-PIE database (Sim et al., 2002, 2003). Even though the
proposed method does not allow for estimation of fine pose and illumination
changes, it may serve for the purposeful initialization of more sophisticated
but slow estimation techniques or of face recognition applications.
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Figure 6.1: Preprocessed Images of Human Heads with Variation in
Pose and Illumination — The preprocessed images of one individual with
the chosen variations in pose and illumination are given. The unprocessed
images were taken from the PIE database (Sim et al., 2002, 2003). We
selected 15 example images per individual: five head poses (lines) and three
illuminations per pose (columns). The original images have been preprocessed
in two steps. First, as, unfortunately, the backgrounds of the unpreprocessed
images point to the actual head poses, backgrounds were manually replaced
by homogeneous black ones. Second, the square region in the original image
where the head is located was automatically selected and scaled to 128⇥ 128
pixels. The annotated identifiers of pose (P) and illumination (I) are the
same as in (Sim et al., 2002).

6.1 Experimental Setting

The PIE database (Sim et al., 2002, 2003) provides images of human faces in
varying poses, illuminations, and facial expressions. For our experiments we
decided for the subcollection of faces that are illuminated by flashes only. It
contains images of 68 individuals. We selected 15 images per individual: five
head poses, three illuminations per pose, all with neutral facial expression.
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We selected poses 34 and 22 (full profile left/right), 11 and 37 (half-profile
left/right), 27 (frontal pose) and illuminations 17 (illumination from the left),
02 (illumination from the right), and 11 (frontal illumination). The original
images have been preprocessed in two steps. Unfortunately, the backgrounds
of the original PIE images point to the actual head poses. Therefore, back-
grounds were manually replaced by homogeneous black ones. This made
the categorization task much more di�cult, as will be demonstrated in one
of the forthcoming experiments. Second, the square region in the original
image where the head is located was automatically selected and scaled to
128⇥ 128 pixels. This failed for six individuals. Preprocessing of the whole
image set thus resulted in a collection of (68� 6) · 15 = 930 images. Fig. 6.1
gives the preprocessed images of one individual with all variations in pose
and illumination.

Experimental results were, like the results of the object recognition exper-
iments (Section 4.3), achieved with fivefold cross-validation (Witten and
Frank, 2000). We thus created five pairs of disjoint learning and testing
sets. The learning sets comprised preprocessed images of 48, the testing sets
of 12 individuals with all variations in pose and illumination, thus 720 and
180 images in total, respectively. From each learning set a visual dictionary
with two feature vectors was calculated. We used the default parameter set
given in section 3.6.

6.2 Experiments

Like in the object categorization experiments (Section 5.3), we conducted
two experiments. In the first experiment the learning sets were partitioned
into predefined categories while in the second experiment no categories were
defined beforehand.

6.2.1 Estimation of Pose and Illumination Type Using
Predefined Categories

In the first experiment we created K = 3 partitionings of the learning sets:
Partitioning ⇧1 consisted of C1 = 5 categories, one category for each of
the five head poses. Partitioning ⇧2 consisted of C2 = 3 categories, one
category for each illumination type. Finally, partitioning ⇧3 consisted of
C3 = 15 categories, one category for each combination of head pose and
illumination type. We organized the experiment into N = 3 test cases: in
the n-th test case, n 2 {1, 2, 3}, the set of model candidates was calculated
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Figure 6.2: Estimation of Pose and Illumination Type Using Pre-
defined Categories — The system’s performance in categorizing human
faces according to pose and illumination type using predefined categories is
given. For optimal weightings of the feature- and correspondence-based parts,
controlled by the respective relative threshold ✓n, where n 2 {1, 2, 3} codes the
test case, the system performed best using partitioning ⇧3 for optimal weight-
ing of the feature- and correspondence-based parts relative to partitionings ⇧1

and ⇧2.

by intersection of salient categories of partitioning ⇧n, depending on the
corresponding relative threshold ✓n (Eq. (3.20)). Throughout, these ranged
between 0.1 and 1, sampled in 0.1-steps. The selected model candidates were
passed to the correspondence-based verification part. We considered the face
in the input image to be correctly categorized if its pose and illumination
type matched with the face in the model image.

The result of this experiment is given in fig. 6.2. For optimal weightings
of the feature- and correspondence-based parts, controlled by the respective
relative threshold ✓n, where n 2 {1, 2, 3} codes the test case, the system
performed best using partitioning ⇧3 for optimal weighting of feature- and
correspondence-based parts relative to partitionings ⇧1 and ⇧2.
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Figure 6.3: Estimation of Pose and Illumination Type Using Single-
Element Categories — The system’s performance in categorizing human
faces according to pose and illumination type using single-element categories
is given. The system performed better than in the previous experiment. For
the sake of comparison, the categorization performance in the case of unseg-
mented images is given here as well. A feature-based system would su�ce
to almost perfectly solve the categorization task in the case of unsegmented
test images. In case of the PIE database, figure-ground segmentation thus
complicates the categorization task.

6.2.2 Estimation of Pose and Illumination Type Using
Single-Element Categories

For evaluation of the system’s performance without predefined categories we
arranged the learning set into K = 1 partitioning of single-element categories.
We considered the face in the input image to be correctly categorized if its
pose and illumination type matched with the face in the model image.

The attained results depending on the relative threshold ✓1 (Eq. (3.20)) are
given in fig. 6.3. Like in the object categorization experiments (Chapter 5),
disregarding predefined category information imposed on the learning sets
improved categorization performance: the system performed better in the
case of single-element categories relative to the previous experiment. In or-
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der to prove our original statement that, ironically, figure-ground segmen-
tation of the original PIE images complicates the categorization task, we
give the system’s performance for that case as well. A feature-based system
would su�ce to almost perfectly solve the categorization task in the case of
unsegmented test images. This proves our original statement.

Fig. 6.4 gives a confusion matrix of the categorization performance in the case
of single-element categories. In general the system was able to categorize hu-
man faces according to head pose and illumination type. As bunch graphs
provide a means to integrate individual variations into the object representa-
tion, it is reasonable to assume that categorization performance can further
be improved by using bunch instead of model graphs. As briefly mentioned
in section 3.5, the graph dynamics is able to construct bunch graphs provided
that the model features stem from well-chosen model candidates.

6.3 Discussion

In contrast to the categorization of general objects the system was in the
majority of cases able to categorize unknown human faces according to head
pose and illumination type, especially in view of the quality of the employed
image data. Like in the categorization experiments with general objects,
partitioning of the learning sets into categories employed by human cognition
were not helpful to improve categorization capability. As model graphs only
represent a single object view they cannot cover the whole spectrum of intra-
category variations. It is therefore reasonable to assume that the system’s
performance can further be improved by using bunch graphs instead of model
graphs. Moreover, application of more sophisticated correspondence-based
techniques in the correspondence-based verification part, for instance (Lades
et al., 1993; Wiskott et al., 1997; Würtz, 1997; Tewes, 2006), should
allow for the same e↵ect.
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Figure 6.4: Confusion Matrix of Categorization Performance —
A confusion matrix of the categorization performance in the case of single-
element categories and optimal weighting of the feature- and correspondence-
based parts is given, which was the case for ✓1 = 0.7 (Fig. 6.3). The axes
are annotated with the captured head poses and illumination types, symbol-
ized by images of an arbitrarily chosen individual. The horizontal axis codes
head poses and illumination types of the face in the input images while the
vertical axis codes head poses and illumination types of the face in the model
images. For clarity of presentation, categorization rates less than 3% have
been disregarded. In general, the system was able to categorize human faces
according to head pose and illumination type.
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Chapter 7

Summary and Future Work

‘And what about you, Mr Stevens? What does the
future hold for you back at Darlington Hall?’

‘Well, whatever awaits me, Mrs Benn, I know I’m
not awaited by emptiness. If only I were. But oh no,
there’s work, work and more work.’

Kazuo Ishiguro — The Remains of the Day

We presented a form of graph dynamics that, upon image presentation, lets
a model graph rapidly emerge by binding together memorized subgraphs de-
rived from earlier learning examples driven by the image features. From the
viewpoint of pattern recognition, the proposed technique is a combination
of feature- and correspondence-based methods. The preselection network,
implemented in the method’s feature-based part, is well suited to quickly
rule out most irrelevant matches and only leaves the ambiguous cases, so-
called model candidates, to be processed in the correspondence-based ver-
ification part, which is a rudimentary version of elastic graph matching.
In the course of this model graphs emerge that describe the analyzed ob-
ject well. This hybrid method outperformed both purely feature-based and
purely correspondence-based approaches, especially when confronted with
more sophisticated recognition tasks.

The proposed graph dynamics was applied to the tasks of visual object recog-
nition, visual object categorization, and to the task of estimating pose and
illumination type of human faces, which was set up as a categorization task.
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In the object recognition experiments, the method was, unlike many other
object recognition systems, not only very good at solving simple recognition
tasks but also performed well when confronted with more sophisticated tasks,
such as the recognition of objects in images with structured backgrounds,
simultaneous recognition of multiple objects in simple visual scenes, and
recognition of partially occluded objects. Moreover, it performed well in the
case of sparse learning sets and visual dictionaries. In all experiments, the
system’s performance degraded smoothly with the complexity of the recogni-
tion task. The categorization experiments were, however, not that successful.
The system’s performance depended considerably on the amount of training
data available for the categories. If the variations across category members
were poorly sampled, categorization of objects from these categories failed
frequently. Categories employed by human cognition were not helpful to
improve the categorization capability, a finding which is compatible with
published experimental results. The system performed, however, better for
the categorization of unknown human faces according to head pose and il-
lumination type. Partitioning of the learning sets into predefined categories
employed by human cognition were again not helpful to improve the system’s
categorization capability.

What is left to do? Although the system performed favorably in the ob-
ject recognition experiments, much work needs to be done to improve the
categorization capabilities. In the medium term, these can be improved in
three ways. First, one can expect that better databases and the integration
of additional feature types, such as shape, color and so on, should allow for
an improved categorization performance. Second, as bunch graphs provide
a means to cover individual variations across category members, it is rea-
sonable to assume that categorization performance would benefit from using
bunch instead of model graphs. The correspondence-based part of the graph
dynamics is prepared to construct bunch graphs provided that the model
features stem from carefully chosen model candidates. The selection of ap-
propriate model candidates is, however, subject to further studies. Third,
the rudimentary version of elastic graph matching implemented in the sys-
tem’s correspondence-based part should be replaced by more sophisticated
methods, which should lead to increased robustness under shape and pose
variations. In our experiments we have seen that imposed predefined cate-
gory information on the learning sets employed by human cognition were not
helpful to improve categorization performance. In this thesis it has not been
clarified if this is generally the case or only for the partitionings we used in
our experiments. In order to address this question a method to retrieve cat-
egories from raw image data is required. Another problem is the amount of
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features in the visual dictionary, see, for instance, the number of features in
the feature vectors given in section 3.4.8: it appears biologically implausible
that the system requires more than 300,000 features for the pose invariant
recognition of only 100 objects, i.e., the simple variant of vector quantiza-
tion employed in this thesis is not su�cient to reduce the total number of
features to a manageable number. For this task far more powerful clustering
techniques are demanded. A growing neural gas (Martinetz and Schul-
ten, 1991; Fritzke, 1997) might be a good candidate. Finally, the system
has shown to be quite sensitive towards changes in object scale. In order to
achieve scale-invariance scale-dependent feature detectors have to be inserted
in the feature detectors’ input layers (Section 3.4.2), which to date are only
position-invariant.

To conclude, we proposed a system that conforms to the principle of compo-
sitionality. The presented results, especially the system’s object recognition
capabilities, demonstrate that the principle is fundamental for the expression
of cognitive structures. It provides a straightforward approach to handle vi-
sual scenes of multiple, possibly occluded objects.
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Appendix A

Anhang in deutscher Sprache

I have a prejudice against people who print things in
a foreign language and add no translation. When I
am the reader, and the other considers me able to do
the translating myself, he pays me the quite a nice
compliment — but if he would do the translating for
me I would try to get along without the compliment.

Mark Twain — A Tramp Abroad

A.1 Zusammenfassung der Dissertation

Dieses Kapitel beinhaltet eine kurze Zusammenfassung der englischsprachi-
gen Dissertation. Wo immer geeignete deutsche Fachbegri↵e fehlen, werden
die englischen Bezeichnungen beibehalten. Um das Au�nden von Details
im Text zu erleichtern, entspricht die Einteilung in Unterkapitel der Kapi-
teleinteilung der Arbeit. Dem Dekan der Technisch-Naturwissenschaftlichen
Fakultät der Universität zu Lübeck, Herrn Prof. Dr. Enno Hartmann, gilt
mein Dank für die Erlaubnis, diese Arbeit in englischer Sprache einreichen
zu dürfen.
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A.1.1 Einleitung

Eine wichtige Voraussetzung für die Beschreibung kognitiver Funktionen,
zum Beispiel die visuelle Erkennung von Objekten, ist die Fähigkeit zur Kon-
struktion mentaler Objektrepräsentationen aus gespeicherten Teilen, soge-
nannten Konstituenten. In dieser Hinsicht ist die Datenstruktur des Gehirns
als Graph vorstellbar, dessen Knoten mit elementaren Bildmerkmalen attri-
butiert sind, und dessen Kanten Relationen zwischen diesen Bildmerkmalen
beschreiben.

Kognition wird also als aktiver Konstruktionsprozess aufgefasst, eine Not-
wendigkeit, die sich aus der Beschränktheit der immensen, aber dennoch be-
grenzten Ressourcen des Gehirns ergibt. Diese Grundannahme, die in frühen
Modellen zur Beschreibung der Hirnfunktion völlig fehlt, wurde in psycho-
physikalischen Experimenten bestätigt. Die Lösung des Bindungsproblems,
die Fähigkeit, Konstituenten in korrekter Weise miteinander zu assoziieren,
d.h. aneinander zu binden, ist grundlegende Voraussetzung für den Wahrneh-
mungsprozess.

A.1.2 Elastische Graphenanpassung

Eine sehr erfolgreiche Methode zur Erkennung bekannter Objektansichten
unter leichten Variationen ist die elastische Graphenanpassung. Die zugrun-
deliegende Idee ist hier, dass das so genannte Korrespondenzproblem gelöst
werden muss, bevor zwei Ansichten miteinander verglichen werden können.
Das Korrespondenzproblem umfasst die Frage, welche Punkte in den Bildern
zweier Objektansichten von einem gemeinsamen Punkt auf dem physika-
lischen Objekt stammen. Zu diesem Zweck werden Objektansichten durch
einen Graphen beschrieben, dessen Knoten mit lokalen Bildmerkmalen at-
tributiert sind und dessen Kanten Relationen zwischen lokalen Merkmalen
beschreiben. Die lokalen Bildmerkmale werden aus einer Gaborwavelettrans-
formation gewonnen; die Antworten eines definierten Satzes von Gaborfil-
tern, angewandt auf ein Bild an einer bestimmten Position, werden in einem
Merkmalsvektor, einem sogenannten Jet zusammengefasst. Das Korrespon-
denzproblem wird durch optimale Platzierung des Modellgraphen im Einga-
bebild durch Maximierung eines globalen Ähnlichkeitsmaßes gelöst, das auf
den lokalen Jetähnlichkeiten an den korrespondierenden Punkten basiert.
Der Prozess der Ähnlichkeitsmaximierung wird als Matching bezeichnet. Er
besteht aus mehreren Schritten, sogenannten Moves , wobei jeder Move die
Position der Modellgraphknoten im Eingabebild unter der Prämisse der Ähn-
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lichkeitsmaximierung in spezifischer Weise variiert. Reihenfolge und Parame-
trierung der Moves ist in einer a priori festgelegten Liste, dem sogenannten
Matching Schedule, festgelegt. Dort ist das Matching typischerweise als Grob-
zu-Fein-Suche organisiert.

Unter der impliziten Annahme, dass die Ansichten des Modellobjekts und
des zu erkennenden Objekts nur leicht variieren, hat sich die elastische Gra-
phenanpassung als korrespondenzbasierte Methode zur visuellen Erkennung
von Objekten, insbesondere von menschlichen Gesichtern, bewährt. Es kommt
allerdings zu Problemen, wenn diese Annahme nicht mehr zutre↵end ist. Dies
ist zum Beispiel der Fall, wenn eine größere Anzahl beliebiger Objekte mit
voller Poseninvarianz zu erkennen ist. Die triviale Lösung, jede Objektansicht
durch einen Modellgraphen zu beschreiben und diese der Reihe nach mit dem
Eingabebild zu vergleichen, stellt sich schnell als nicht praktikabel und zu-
dem biologisch unplausibel dar. Vielmehr ist eine Modellgraphendynamik
wünschenswert, die, initiiert durch Präsentation eines Bilds, einen Modell-
graphen aus Teilgraphen konstruiert, die zuvor aus Trainingsbildern der zu
erkennenden Objekte gewonnen wurden.

A.1.3 Emergenz von Modellgraphen

In diesem Abschnitt wird eine dreischrittige Modellgraphendynamik vorge-
stellt. Im ersten Schritt werden positionsinvariante Merkmalsdetektoren an-
hand von Trainingsbildern der zu erkennenden Objekte gelernt. Als Bild-
merkmale werden durchweg kleine lokale Gridgraphen, sogenannte Parkett-
graphen verwendet, deren Knoten mit den Amplituden der Gaborwavelettrans-
formierten attributiert sind. Parkettgraphen eignen sich sowohl als lokale
Bildmerkmale als auch als Konstituenten für Modellgraphen. Die Menge der
aus den Trainingsbildern extrahierten Parkettgraphen wird mittels einer Vek-
torquantisierung begrenzt. Die nach der Vektorquantisierung verbleibenden
Merkmale werden in einem Vektor abgespeichert. Für jedes dieser Merkmale
wird ein positionsinvarianter Merkmalsdetektor mittels Disjunktion lokaler
Merkmalsdetektoren konstruiert. Das einem lokalen oder positionsinvarian-
ten Merkmalsdetektor zugeordnete Merkmal wird als Modell- oder Referenz-
merkmal bezeichnet. Die lokalen Detektoren signalisieren die Existenz eines
ausreichend ähnlichen Bildmerkmals an einer definierten Position im Ein-
gabebild, während die positionsinvariante Merkmalsdetektoren die Existenz
eines oder mehrerer solcher Bildmerkmale bezogen auf die gesamte Bildebene
anzeigen.



126 Anhang in deutscher Sprache

Die positionsinvarianten Merkmalsdetektoren werden in paralleler Weise kom-
biniert. Jedem Merkmalsdetektor wird ein verallgemeinertes McCulloch &
Pitts-Neuron aus der Eingabeschicht eines Einschichtenperzeptrons zugeord-
net. Die Ausgabeschicht dieses Netzwerks enthält je ein verallgemeinertes
McCulloch & Pitts-Neuron für a priori festgelegte Kategorien von Trainings-
bildern, d.h. Mengen von Beispielbildern mit einer gemeinsamen semanti-
schen Eigenschaft. Das Netzwerk ist vollvernetzt, alle Eingabe- sind mit allen
Ausgabeneuronen über vorwärtsgerichtete Synapsen verbunden. Die Ausga-
be eines Ausgabeneurons, in dieser Arbeit Saliency genannt, skaliert mit der
Wahrscheinlichkeit, dass das Objekt im Eingabebild zur Kategorie gehört,
die dem Ausgabeneuron zugeordnet wurde. Dieses Netzwerk wird fortan als
Preselection Network bezeichnet. Das Preselection Network erfüllt Linsker’s
Infomax-Prinzip. Dieses Prinzip besagt, dass sich die synaptischen Gewichte
eines Mehrschichtennetzwerks mit ausschließlich vorwärtsgerichteten Verbin-
dungen zwischen benachbarten Schichten mittels Hebb’scher synaptischer
Plastizität derart entwickeln, dass die Ausgabe eines jeden Neurons maximal
informationserhaltend bezüglich seiner Eingaben ist. Unter Berücksichtigung
dieser Randbedingungen und unter der Annahme, dass sich das System in
einer stationären Umgebung befindet, können die synaptischen Gewichte di-
rekt zugewiesen werden. Das zeitraubende iterative Einstellen der Gewichte
entfällt. Den synaptischen Gewichten werden Informationsmaße zugewiesen,
die auf der Shannon-Entropie basieren. Diese sind charakterisiert durch den
Beitrag des Merkmalsdetektors, der dem präsynaptischen Neuron zugewiesen
wurde, zur Entscheidung über die Zugehörigkeit des präsentierten Objekts
zur Kategorie, die dem postsynaptischen Neuron zugewiesen wurde. Durch
Definition eines Schwellenwertes auf den Saliencies lassen sich nach Präsen-
tation eines Eingabebildes nun leicht Kategorien ermitteln, zu denen das
Objekt im Eingabebild vermutlich gehört. Diese werden als salient, die darin
enthaltenen Trainingsbeispiele als Modellkandidaten bezeichnet. Die Anzahl
der Modellkandidaten ist üblicherweise erheblich kleiner als die Gesamtzahl
der Trainingsbeispiele.

Jeder Modellkandidat wird mit einer rudimentären Version der elastischen
Graphenanpassung verifiziert, die nur den sogenannten Scan Global Move
umfasst. Es wird überprüft, ob die räumliche Anordnung der Bild- und Mo-
dellmerkmale übereinstimmt. Hierzu wird jeweils ein Bild- und ein Modell-
graph aus den im zweiten Schritt der Modellgraphendynamik gesammelten
matchenden Bild- und Modellparkettgraphen konstruiert. Bild- und Modell-
graph werden miteinander verglichen. Der Modellkandidat, dessen Modell-
graph die höchste Ähnlichkeit mit dem Eingabebild erzielt, wird als Modell
für das Eingabebild angenommen.
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A.1.4 Objekterkennung

Die Modellgraphendynamik wurde auf das Problem der visuellen Erkennung
von Objekten angewandt. Objekterkennung bedeutet eine Entscheidung über
Identität und erfordert Diskriminierung zwischen Identitäten und Verallge-
meinerung über Objektvariationen wie Verschiebung, Skalierung, Tiefenrota-
tion, Verdeckung, Beleuchtung, Rauschen und so weiter. Wegen der Vielzahl
möglicher Variationen, die auch in Kombination auftreten können, ist die
Erkennung von Objekten ein schwieriges Problem.

Es wurden Experimente mit zwei Datenbanken durchgeführt. Die Experimen-
te umfassten die Erkennung einzelner Objekte, mit und ohne Hintergrund,
mit Größenvariation, mit wenigen Trainingsbeispielen und mit wenigen Merk-
malen, sowie die gleichzeitige Erkennung mehrerer Objekte, mit und ohne
Hintergrund und mit und ohne Verdeckung.

Die erzielten Ergebnisse stimmten qualitativ für beide Datenbanken überein.
Generell wurden mit dem getesteten System gute, teils sehr gute Ergebnisse
erzielt. In allen Experimenten nahm die Leistung des Systems gleichmäßig
mit der Komplexität der Erkennungsaufgabe ab.

A.1.5 Objektkategorisierung

Die Modellgraphendynamik wurde ebenfalls auf das Problem der Kategori-
sierung von Objekten angewandt. Objektkategorisierung bedeutet eine Ent-
scheidung über die Art eines Objekts, die Entscheidung über eine bestimmte
semantische Eigenschaft. Das System muss also zusätzlich zu Objektvariatio-
nen wie Pose, Beleuchtung etc. über die Identität des Objekts generalisieren,
obwohl die individuellen Unterschiede unter den Kategorieelementen erheb-
lich sein können. Daher ist die Kategorisierung von Objekten eine wesentlich
anspruchsvollere Aufgabe als das Erkennen von Objekten.

Die für die Experimente verwendete Datenbank enthielt Bilder allgemeiner
Objekte, unterteilt in acht Kategorien. Die Kategorisierungsaufgabe bestand
darin, das Objekt im Eingabebild einer dieser acht Kategorien zuzuordnen.

Wie zu erwarten, sank die Leistung des Systems im Vergleich zu den Er-
gebnissen der Objekterkennung teilweise erheblich. Die Kategorisierungslei-
stung hing stark von der Variation unter den Kategorieelementen ab. So
konnten zum Beispiel Bilder von Früchten recht gut kategorisiert werden,
das System versagte aber weitestgehend bei die Kategorisierung von Tieren.



128 Anhang in deutscher Sprache

Die Vermutung, dass sich die Kategorisierungsaufgabe durch vorgegebene
Partitionierungen der Trainingsmengen vereinfachen ließe, wurde in unse-
ren Experimenten eindeutig widerlegt. Dieser Befund stimmt mit der bisher
vorliegenden Literatur überein. Die Kategorisierungsleistung könnte durch
größere Datenbanken, durch Integration weiterer Merkmalstypen und durch
die Verwendung von Bunch- anstelle von Modellgraphen vermutlich noch er-
heblich gesteigert werden. Diese Erweiterung wird in der vorliegenden Arbeit
allerdings nicht mehr realisiert.

A.1.6 Schätzung von Pose und Beleuchtung menschli-
cher Gesichter

In einem weiteren Experiment wurde die Modellgraphendynamik auf das Pro-
blem der Posen- und Beleuchtungsschätzung abhand von Bildern menschli-
cher Gesichter angewandt. Pose und Beleuchtung sind sogenannte extrinsi-
sche Objektparameter.

Die Schätzaufgabe wurde als Kategorisierungsaufgabe formuliert. Die ver-
wendete Datenbank, die Bilder menschlicher Gesichter in unterschiedlichen
Kopfposen und unter verschiedenen Beleuchtungen enthielt, wurde in Ka-
tegorien von Gesichtern mit jeweils gleichen zugrundeliegenden Posen- und
Beleuchtungsparametern aufgeteilt. Die Aufgabe bestand darin, das Gesicht
im Eingabebild einer dieser Kategorien zuzuordnen.

Insgesamt war das System gut in der Lage, insbesondere im Hinblick auf
die Qualität der Eingabedaten, Gesichter hinsichtlich Pose und Beleuchtung
zu kategorisieren und damit die Schätzaufgabe zu lösen. Wie bei der Kate-
gorisierung allgemeiner Objekte, konnte die Kategorisierungsaufgabe mittels
vorgegebener Partitionierungen der Trainingsmengen nicht vereinfacht wer-
den. Die Leistungsfähigkeit des Systems ließe sich mit den in Abschnitt A.1.5
aufgeführten Mitteln vermutlich noch weiter steigern.

A.1.7 Zusammenfassung und Ausblick

In dieser Arbeit wurde eine Modellgraphendynamik vorgestellt, die nach
Präsentation eines Eingabebildes, einen Modellgraphen durch Aggregation
von Teilgraphen konstruiert, die aus Trainingsbildern extrahiert wurden.
Dieser repräsentiert das Objekt im Eingabebild in geeigneter Weise. Aus
Sicht der Mustererkennung ist das vorgestellte Verfahren eine Kombinati-
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on von merkmals- und korrespondenzbasierten Methoden. Das Preselecti-
on Network, implementiert im merkmalsbasierten Teil des Systems, sortiert
diejenigen Trainingsbeispiele aus, die als Modell für das präsentierte Bild
nicht in Frage kommen. Die verbleibenden Trainingsbeispiele, Modellkandi-
daten genannt, werden im korrespondenzbasierten Teil mittels einer rudi-
mentäre Graphenanpassung verifiziert. Im Zuge dieser Verifikation entstehen
Modellgraphen. Dieser hybride Ansatz war ausschließlich merkmals- und kor-
respondenzbasierten Verfahren überlegen, insbesondere wenn das System mit
schwierigeren Erkennungsaufgaben konfrontiert wurde.

Die Modellgraphendynamik wurde auf das Problem der visuellen Erkennung
und Kategorisierung von Objekten, sowie auf die Schätzung von Posen- und
Beleuchtungsparametern in Bildern menschlicher Gesichter angewandt, wo-
bei die Parameterschätzung als Kategorisierungsaufgabe formuliert wurde.
In den Objekterkennungsexperimenten erzielte die Methode gute, teils sehr
gute Ergebnisse, die Ergebnisse in den Kategorierungsexperimenten konn-
ten insgesamt zufriedenstellen. In den Objekterkennungsexperimenten konn-
te die Methode, im Gegensatz zu vielen anderen Objekterkennungssystemen,
nicht nur einfache, sondern auch kompliziertere Erkennungsaufgaben, wie
die Erkennung mehrerer bekannter Objekte in einfachen Szenen oder die Er-
kennung teilverdeckter Objekte bewältigen. In allen Experimenten nahm die
Leistung des Systems gleichmäßig mit der Komplexität der Erkennungsauf-
gabe ab. Die Kategorisierungsexperimente waren hingegen nicht sehr erfolg-
reich, ein Umstand, der sich aus der Komplexität der Aufgabenstellung aber
auch aus zukünftig abzustellenden Schwächen des Systems ergibt. In un-
seren Experimenten hing die Kategorisierungsleistung erheblich vom Grad
der Abdeckung individueller Variationen unter den Kategorieelementen mit
Trainingsbeispielen ab. Die Kategorisierungsaufgabe ließ sich in keinem der
durchgeführten Experimente durch vorgegebene Partitionierungen der Trai-
ningsmengen vereinfachen, ein Befund, der mit der bisher vorliegenden Lite-
ratur übereinstimmt. Etwas erfolgreicher, insbesondere im Hinblick auf die
Qualität der verwendeten Bilder, waren die Experimente zur Schätzung von
Posen- und Beleuchtungsparametern. Auch hier waren vorgegebene Partitio-
nierungen der Trainingsmengen nicht hilfreich, um die Leistung des Systems
zu verbessern.

Die Kategorisierungsleistung des Systems ließe sich durch die Integration
weiterer Bildmerkmale, wie zum Beispiel Farbe oder Form, durch die Ver-
wendung von Bunch- anstelle von Modellgraphen und durch die Verwendung
besserer korrespondenzbasierter Verfahren im Verifikationsteil sicherlich noch
deutlich steigern. Da in keinem dieser Experimente die Kategorisierungslei-
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stung durch vorgegebene Partitionierungen der Trainingsmengen verbessert
wurde, ergibt sich die Frage, ob dies generell oder nur für die in unseren
Experimenten verwendeten Kategorien der Fall ist. Zur Beantwortung dieser
Frage ist ein Verfahren erforderlich, mit dem Kategorien aus Beispielbildern
unüberwacht gelernt werden können. Ein weiteres Problem ist die biologisch
unplausible Anzahl von Merkmalen im merkmalsbasierten Teil. Es ist o↵en-
sichtlich, dass die in dieser Arbeit verwendete einfache Variante der Vek-
torquantisierung die Merkmalsflut nur unzureichend einzudämmen vermag.
Zudem wäre die größeninvariante Erkennung von Objekten wünschenswert.
Hierzu müssen skaleninvariante Merkmalsdetektoren in die Eingabeschichten
der bis dato nur positionsinvarianten Merkmalsdetektoren eingefügt werden
(Section 3.4.2).

Abschließend bleibt festzustellen, dass ein System realisiert wurde, das, nach
Präsentation eines Eingabebildes, Objektrepräsentationen in Form von Mo-
dellgraphen aus gespeicherten Konstituenten zu konstruieren vermag. Die
erzielten Ergebnisse, insbesondere die der Objekterkennungsexperimente, de-
monstrieren, dass dieses Prinzip grundlegend für die Beschreibung kogniti-
ver Strukturen ist. Es ermöglicht in direkter Weise die Erkennung mehrerer,
möglicherweise teilverdeckter Objekte in Szenen.
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Würtz, R.P. Multilayer Dynamic Link Networks for Establishing Im-
age Point Correspondences and Visual Object Recognition. Verlag Harri
Deutsch, Thun, Frankfurt am Main, 1995.
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