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Abstract

Our brain’s capacities to process visual information are limited, and we

therefore make two to four eye movements per second to direct the only high-

resolution area of the retina, the fovea, to a few relevant, so-called salient

locations in the visual input. The mechanism that permits the selection

of behaviourally relevant parts of the visual field is called visual attention.

Apart from its importance in biological vision, attention is a fundamental

tool also for artificial vision systems. Several biologically-inspired machine

vision systems rely already on the selective processing of visual information

to achieve higher efficiency. Recently, the redirection of visual attention

to certain goal-relevant areas in the visual field has been recognized as a

promising new strategy to integrate into future visual and communication

systems.

This dissertation explores techniques and algorithms that allow to “guide”

the human gaze, by embedding subtle image-based changes in the visual

stimulus that result in an alteration of the gaze patterns. The aim of gaze

guidance is to augment human vision with computer vision technology in a

least-obtrusive way. Gaze guidance is realized by gaze-contingent interac-

tive displays that use an eye tracker to monitor the viewer’s gaze. Based

on the visual input and the gaze position of the viewer, first, a limited

set of salient, candidate locations is predicted that would attract the user’s

gaze. Then, based on the desired scanpath, one candidate is selected and

its saliency is increased, while all other candidates are simultaneously de-

creased in saliency. With respect to the outlined strategy, the contribution

of this thesis is threefold. In a gaze guiding scenario, the right timing of the

so-called gaze-capturing events is critical for achieving the desired guiding

effect. Therefore, first, we characterize various visual stimuli with respect

to the typical saccadic response lags to salient events. Second, we develop

a powerful saliency model to predict potential salient candidates in videos.

Finally, we put forth a generic saliency modification framework to alter the

saliency distribution of the scene.

In particular, we start by quantifying the typical response time of at-

tention shifts in truly natural movies, which is revealed to differ signifi-

cantly from that in quasi-realistic scenes such as videos games and TV clips

with cuts and camera motion. To this end, we temporally align analytical

spatiotemporal saliency maps (encoding salient events in the videos) with
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ABSTRACT

an “empirical” saliency measure encoding saccadic reaction to the salient

events. To determine the attentional response lag, analytical and empir-

ical saliency are cross-correlated when shifted against each other in time.

The time lag at which the cross-correlation function reaches its maximum

denotes the average saccadic response delay. The near-zero average lag mea-

sured in truly natural scenes is attributable to an adaptation of the human

visual system to the (often predictable) dynamics of the environment.

In the main part of this thesis, a novel and generic model of bottom-up

saliency is put forth derived from the simple assumption that the degree of

local signal variation is related to informativeness (and thus, salience) of an

image or video region. The concept of intrinsic dimensionality measures this

degree and yields a basic description of how a multidimensional signal may

change. Machine learning techniques act on simple image representations of

videos derived from efficient coding principles to distill the properties that

distinguish “interesting” video regions. Thanks to its generic nature, our

model offers a unified framework for incorporating space-, time-, and colour

information, which usually are treated separately. The proposed model pre-

dicts eye movements on a diverse collection of videos with high accuracy, and

because it does not suffer from overfitting as many more complex models

do, it also outperforms several existing models in the prediction of saccade

landing points.

Finally, a generic saliency modification scheme is proposed, in which,

first, the structural differences between attended and non-attended video

locations are learnt. The information on the class boundary that separates

the two classes is then used to derive the desired image transformations that

lead to an alteration in saliency. Transformations performed in the low-

dimensional space of the spectral energy are implemented as local contrast

manipulation rules on a spatiotemporal Laplacian pyramid. We show with

empirical measurements that this scheme is successful in both changing the

saliency distribution of scenes and in guiding the eyes, whereby we deliver

a proof of concept for gaze-guiding systems.
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Zusammenfassung

Die Bandbreite und Informationsverarbeitungskapazität des menschlichen

visuellen Systems sind begrenzt. Aus diesem Grund bewegen wir unsere Au-

gen typischerweise drei- bis viermal pro Sekunde, um das hochaufgelöste

Zentrum der Netzhaut, die Fovea, auf wenige wichtige, sogenannte saliente

Regionen der visuellen Szene zu lenken. Die Auswahl dieser verhaltensrele-

vanten Regionen geschieht dabei durch den Prozess der visuellen Aufmerk-

samkeit, der nicht nur für biologische Systeme wichtig ist, sondern auch in

technischen Systemen Anwendung findet. Zum einen gibt es bereits biologie-

inspirierte Algorithmen, die eine Bandbreitenreduktion durch Beschränkung

auf nur saliente Bildteile erreichen, zum anderen können zukünftige Informa-

tions- und Kommunikationssysteme davon profitieren, ein Modell der Auf-

merksamkeit des Benutzers zu erstellen.

In dieser Arbeit entwickeln wir Methoden, um den Blickpfad und damit

die Aufmerksamkeit eines Betrachters zu lenken. Ein Ziel ist dabei, menschli-

ches und technisches Sehen möglichst effizient zu kombinieren. Blicksteuerung

wird mithilfe von Systemen zur Blickrichtungsmessung und durch blick-

richtungsabhängige Displays realisiert: Auf Grundlage der jeweils aktuel-

len Blickposition und des Stimulus wird in einem ersten Schritt eine Li-

ste von Kandidatenpunkten vorhergesagt, die wahrscheinlich als nächstes

fixiert werden. Dann wird das Video in Echtzeit so verändert, dass der

der gewünschten Blickrichtung nächste Kandidatenpunkt in seiner Salienz

verstärkt wird, wohingegen die übrigen, ablenkenden Kandidatenpunkte ab-

geschwächt werden. Zur Verwirklichung dieser Strategie trägt die vorliegende

Arbeit drei wesentliche Elemente bei. Ein Element ist dabei die optima-

le zeitliche Platzierung der Videomodifikationen zur Blicklenkung. Hierzu

analysieren wir verschiedene Kategorien visueller Stimuli im Hinblick auf

den typischen zeitlichen Versatz zwischen dynamischen salienten Ereignis-

sen und den darauffolgenden Augenbewegungen. Ein weiterer Aspekt ist die

Entwicklung eines leistungsfähigen Salienzmodells, um mit Methoden des

maschinellen Lernens Augenbewegungen auf natürlichen Videos vorherzusa-

gen.

Schließlich resultiert diese Arbeit in einem generischen neuartigen Ansatz,

um Transformationen der Salienzverteilung für natürliche Szenen abzuleiten.

Im Einzelnen beginnen wir mit der Untersuchung der typischen Latenzen

von Aufmerksamkeitssprüngen in natürlichen Videos, wobei sich zeigt, dass
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ZUSAMMENFASSUNG

sich das Blickverhalten auf solchen Videos qualitativ von dem auf weniger

natürlichen Szenen wie Computerspielen oder TV-Clips mit Kamerabewe-

gungen unterscheidet. Für diese Untersuchung berechnen wir die Kreuzkor-

relation von analytischen Salienzkarten, die orts-zeitlich saliente Ereignisse

kodieren, mit “empirischen” Salienzkarten, die aus Augenbewegungsdaten

gewonnen wurden. Das Maximum der Kreuzkorrelationsfunktion bezeichnet

dabei die mittlere Latenz von Sakkaden und liegt für natürliche Videos un-

gefähr bei 0 Millisekunden. Dieses überraschende Ergebnis lässt sich damit

erklären, dass die Dynamik der natürlichen Umgebung für das (evolutionär

optimal angepasste) visuelle System oftmals vorhersagbar ist.

Den Hauptteil der vorliegenden Arbeit macht die Entwicklung und Ana-

lyse eines neuen und generischen Modells zur Salienz aus. Die Grundannah-

me ist dabei, dass das Ausmaß an lokaler Signalveränderung den lokalen In-

formationsgehalt und damit auch die Salienz bestimmt. Die intrinsische Di-

mensionalität kann zur Berechnung dieses Maßes herangezogen werden und

beschreibt ein Alphabet möglicher Veränderungen für multidimensionale Si-

gnale. Auf diesen relativ einfachen Signalrepräsentationen, die natürliche

Videos effizient kodieren, extrahieren wir mithilfe von Methoden des maschi-

nellen Lernens diejenigen Strukturen, die saliente Bildregionen auszeichnen.

In diesem generischen Ansatz können wir Information über Ort, Zeit und

verschiedene spektrale Kanäle sowie Skalen integriert verarbeiten, was in

konkurrierenden Modellen nur getrennt passiert. Bei einer Auswertung auf

einem großen Datensatz von über 50 Probanden und 18 Videos kann unser

Modell Augenbewegungen mit hoher Genauigkeit und besser als existierende

Modelle aus der Literatur vorhersagen.

Schließlich erarbeiten wir einen neuartigen Ansatz, um aus den gelernten

Unterschieden von salienten und nicht-salienten Bildregionen Transformatio-

nen abzuleiten, um Regionen algorithmisch von einer Klasse in die andere

zu verschieben. Punkte in hochdimensionalen Merkmalsräumen werden nach

bestimmten Regeln innerhalb der Mannigfaltigkeit natürlicher Bilder senk-

recht zu der separierenden Hyperebene verschoben. Für die praktische An-

wendung geeignet zeigen sich Modifikationen der lokalen spektralen Energie

auf einer orts-zeitlichen Laplace-Pyramide, die zu Veränderungen des orts-

zeitlichen Kontrasts führen. In Experimenten, bei denen die spektrale Ener-

gie in Echtzeit auf einem blickrichtungsabhängigen Display verändert wird,

können wir einen Effekt auf den Blickpfad von Betrachtern nachweisen.
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1
Introduction

1.1 Motivation

Of all the senses, vision is the most dominant, the most developed, and

the most complex. It is fundamental to our perception of the world and for

interaction with it. In many everyday tasks, such as driving, the eyes provide

much of the sensory input. Even though they may seem so natural to us,

our perceptual skills are remarkable. We recognize faces and objects with an

incredible ease even in highly cluttered scenes and are able to navigate busy

highways, find lost keys, and enjoy a pretty landscape. This may suggest

that we succeed in these ubiquitous tasks due to their simplicity. However,

artificial intelligence has shown that, apart from some highly domain-specific

scenarios, to this day, machines and robots have difficulties even remotely

approaching human perceptual abilities. The tremendous complexity of the

problem is well reflected in the functional organization of our brains. A

massive amount of the human brain power is devoted to visual processing

and visual perception involves neural computations in many brain areas.

Surprisingly, much of this processing focuses on information gathered from

only a tiny part of the visual scene that occurs at the centre of our gaze.

Only this small high-resolution spot on the retina, called the fovea, provides

sharp vision, and visual acuity decreases rapidly towards the periphery. This

non-uniform sampling of the visual scene drastically reduces the amount of

visual information that must be processed by high-level functions, such as

object recognition. Hence, to build up a coherent and detailed representation

of the world around us, we move our eyes at frequent intervals. Despite the

rapid succession of variable-resolution “still shots” of the visual scene, our

visual experience is nevertheless smooth and seamless.

1



CHAPTER 1. INTRODUCTION

What greatly contributes to this “illusion” is the rapid and appropriate

selection of the most relevant scene items to be sampled. To this end, our

brains make use of complex attentional mechanisms in deciding which parts

of the scene deserve further detailed — and hence more resource-consuming

— processing. The impressive performance of the human visual system

is partly due to such selective processing, and deciphering the underlying

mechanisms will help in understanding how the brain accomplishes vision.

In contrast, although the last decades have seen much progress towards

building robust and generic machine vision systems, existing computer vi-

sion approaches still fail to match human visual performance in uncon-

strained scenarios. Ultimately, the goal of artificial vision systems is to

mimic human vision, and thus, inspiration from the neurobiology and from

mechanisms involved in vision can prove beneficial not only for practical

computer vision, but also for understanding the neural mechanisms under-

lying perception. As such, the ability to rapidly sort out irrelevant infor-

mation and restrict the computationally expensive image processing to the

potentially relevant scene locations has already proven invaluable for many

computer vision applications.

In this dissertation, we shall attempt to unravel some of these visual mech-

anisms. It was written in the context of the European project “Gaze-based

Communication” (or simply GazeCom), which aims at developing state-of-

the-art algorithms that enable the unobtrusive guidance of human visual

attention. GazeCom is an interdisciplinary project on the border between

human and computer vision that seeks, on the one hand, to broaden the

theoretical understanding of attention and human oculomotor behaviour,

and, on the other hand, to augment human vision with computer vision

technology in a least-obtrusive way.

As argued above, visual attention is vital to our perception and inter-

action with the world. However, the way in which humans deploy their

attention, e.g. explore a new object or search for specific information, can

vary significantly from person to person and depending on the cognitive load

of the performed activity. One key factor for this variation is expertise, and

it is well accepted that in several domains the viewing behaviour of experts

differs considerably from that of novices. For example, experienced drivers’

and pilots’ gaze patterns are much better defined, and expert radiologists

2
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and geologists are more efficient in finding specific patterns in medical or

geological images. In other words, experts may possess a better “internal

model” of the often-performed activity that enables them to direct their

attention more efficiently.

The gaze-guidance systems [Barth, 2001, Barth et al., 2006] proposed

within the GazeCom project promise to aid the information search of the

viewer who does not yet possess such an internal model, by steering the ob-

server’s gaze through a new visual scene in order to enforce a predetermined,

optimal viewing pattern. Gaze guidance is realized by gaze-contingent inter-

active displays that use an eye tracker to continuously monitor the viewer’s

gaze. In order to achieve an alteration of the gaze patterns, the visual scene

is modified in real time by subtle local changes to the visual input. This

manipulation assumes the following three steps: i) based on the visual input

and the eye position of the viewer, first, a limited set of candidate points is

predicted that would attract the user’s attention; ii) using real-time video

processing, the probability of being attended is increased for one selected

candidate location, and iii) simultaneously decreased for all other candi-

dates. That such modifications are not perceived consciously is assured by

the fact that they are embedded gaze-contingently in the periphery.

While perhaps not readily apparent, a fully functional gaze-guidance

system cannot be expected as an end result of this thesis. Instead, one

must recognize the interdisciplinary dimensions and the complex nature of

the problem. Nevertheless, this dissertation will contribute significantly to

the realization of such systems by exploring techniques and algorithms that

allow the prediction and guidance of human gaze in naturalistic videos.

1.2 Contributions

With respect to the above outlined gaze-guiding strategy, the contributions

of this dissertation are threefold.

First, for step i), we shall develop a generic yet powerful computational

model of attention to predict potential candidate locations, so-called salient

points, in natural dynamic scenes. We here attempt to answer the ques-

tion: what is it about a certain scene area that it automatically draws

attention while others do not? Developing saliency models has been a long-

standing challenge for neuroscientists, although most work has focused on

3



CHAPTER 1. INTRODUCTION

static images. The neuroscience approach of representing biological pro-

cesses as faithfully as possible, however, has rendered these models highly

complex. We shall demonstrate that our model, which is much simpler, pre-

dicts eye movements on a diverse collection of naturalistic videos with high

accuracy, and because it does not suffer from overfitting as many more com-

plex models do, it also outperforms state-of-the-art models in the prediction

of salient candidates.

Second, concerning steps ii) and iii) of the outlined strategy, we shall ven-

ture into uncharted territory, by putting forth a generic saliency modifica-

tion framework to manipulate the interestingness of a visual scene. Efficacy

in altering the viewing behaviour through appropriate saliency transforma-

tions is demonstrated both conceptually and empirically in psychophysical

experiments.

Finally, in a gaze guiding scenario, the “right timing” of the embedded

image or video manipulations is critical for achieving the desired unconscious

guiding effect. Therefore, in this work we shall characterize various visual

stimuli with respect to the typical oculomotor response times to attention-

capturing scene events.

Apart from their importance for gaze guidance, insights into these ques-

tions will advance our theoretical understanding of the underpinnings of

human oculomotor behaviour.

1.3 Outline

The organization of the thesis is as follows. Chapter 2 is concerned with the

neurophysiological background of human visual perception, emphasizing the

selective nature of visual processing. The relevant concepts in the context

of visual attention are introduced, and a review of the state of the art in

computational modelling of attention is provided. We conclude this chapter

with a demonstration of the utility of such models in computer vision and

active vision scenarios.

In Chapter 3, we shall outline a few basics on the efficient representa-

tion of visual data in biological and artificial systems. In particular, we

shall review the concept of intrinsic dimension, which allows a geometric

characterization of typical image and video structures. Such an efficient

representation of natural stimuli will prove extremely useful throughout the

4



1.3. OUTLINE

thesis for eye movement modelling. The second part of this chapter is con-

cerned with multiresolution representations, which not only faithfully simu-

late the variable-resolution processing of early vision, but will also allow us

throughout this thesis to efficiently analyse and manipulate high-resolution

videos, operations that are indispensable for achieving the desired goals of

this thesis.

The following chapters each deal with one of the main contributions of

this thesis.

Chapter 4 quantifies the typical response time of attention shifts in truly

natural movies, which is revealed to differ significantly from that in quasi-

realistic scenes such as video games and TV clips with frequent cuts and

camera motion. The temporal component of gaze allocation in naturalistic

videos is a less-studied aspect of attentional orienting, and our findings will

shed light on the degree of anticipation observed during the free-viewing of

real-world videos. As a simple measure of spatiotemporal salient events we

shall employ the geometrical framework presented in Chapter 3.

Chapter 5 introduces the computational saliency model for the predic-

tion of eye movements in dynamic scenes. Particular emphasis is placed

on the simple and generic nature of the proposed model, and therefore, its

complexity is increased gradually. Machine learning techniques act on sim-

ple image representations of videos derived from efficient coding principles

reviewed in Chapter 3 to distill the properties that distinguish “interest-

ing” video regions. The model is evaluated against several state-of-the-art

approaches, and two extensions of the basic model, i) to predict eye move-

ments even on transparently overlaid videos, and ii) for a faster saliency

computation for resource-limited systems, are proposed.

Chapter 6 elaborates on the proposed generic saliency modification

scheme that is built upon the saliency-learning framework detailed in Chap-

ter 5. Once the structural differences between attention-capturing and non-

interesting video regions have been distilled, transformation rules can be

derived that manipulate some saliency-relevant properties of video regions.

The proposed generic scheme is implemented in practice by considering spa-

tiotemporal contrast manipulations, and is evaluated in terms of its effect

in influencing gaze patterns both conceptually and empirically, in a psy-

chophysical study.

Finally, Chapter 7 concludes the work presented in this dissertation and

5
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summarizes the contributions. Recommendations for future work are also

suggested here.

Some parts of this work are the result of a group effort. In particular,

Michael Dorr signs responsible for the efficient software implementation of

the pyramidal and geometric video representations reviewed in Chapter 3.

Eye movement collection on our natural videos was performed in the lab

of Karl Gegenfurtner at the Dept. of Psychology of Giessen University. In

Chapter 5, gaze data collection and analysis of eye movement predictability

on multiple transparent videos were run by Laura Pomârjanschi.
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2
Visual attention in natural and artificial

systems

Biological vision is a highly active process. Our brains continuously analyze

the visual environment, select relevant, so-called salient areas, and direct

our eyes accordingly. Such filtering of the sensory input is necessary be-

cause the brain’s capacities to process visual information are limited. The

mechanism that permits the selection of behaviourally relevant parts of the

visual field is called visual attention. Understanding and modelling atten-

tional mechanisms has been the topic of extensive research in neurology

and psychology, but apart from its importance in biological vision, atten-

tion is a fundamental tool also for artificial systems. Biologically-inspired

machine vision systems rely on the selective processing of visual information

to achieve more efficiency.

In the first part of this chapter, we shall review basic facts about hu-

man visual perception, with an emphasis on the selective nature of percep-

tion. After a short anatomical introduction to the eye, we shall discuss

relevant concepts in visual attention, such as the distinction between overt

and covert, as well as bottom-up and top-down attention. In the second

part, we shall turn to the computational modelling of visual attention and

review some of the most influential models that exist in the literature. We

conclude this chapter with a brief presentation of successful applications of

saliency models in computer vision and robotics.
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Figure 2.1: A cross-section of the human eye. As light enters the eye, it is
refracted by the cornea and the lens, which focus the light onto the retina.
Here, light-sensitive receptors convert the light into electrical signals that
are carried to the brain via the optic nerve. From [Kolb et al., 2010].

2.1 The human visual system

First, we will give a brief overview of the main components of the human

visual system. Far from being an exhaustive account, the aim of this sum-

mary is to convince the reader why selective visual attention is crucial in

our perception of the world. For a more detailed description of the physiol-

ogy and neurology of the visual system, we refer to e.g. [Palmer, 1999], [Itti

et al., 2005], and [Findlay and Gilchrist, 2003].

2.1.1 Anatomy of the eye

The human eye, depicted schematically in Figure 2.1, is a complex optical

system. The pupil, the eye’s black-looking aperture, allows light reflected

from an object to enter the eye through the cornea and the lens. The lens

refracts the incoming light, and focuses it to the back of the eye, projecting

an upside-down image onto the retina. A light-sensitive tissue, the retina

is composed of several different cell layers. The outer nuclear layer consists

of photoreceptors, i.e. photosensitive cells that convert light into electrical

signals. In the inner layer, nerve fibres from the photoreceptors are bundled

together at the back of the eye to form the optic nerve, which transmits
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Figure 2.2: Distribution of rods and cones on the retina. Cones, which
are distributed towards the centre of the visual field and almost exclu-
sively form the fovea, are used for colour and daylight vision, whereas
rods, which are more plentiful in the periphery, serve for brightness and
motion perception, and night vision. From Wikimedia Commons (http:
//commons.wikimedia.org/wiki/File:Density_rods_n_cones.png).

the electrical signals to the brain. Photoreceptor cells in the retina can be

of two types: rods and cones. Rods, whose number amounts to about 90

million [Curcio et al., 1990], are extremely sensitive to light, but because they

cannot distinguish between wavelengths, they are responsible for achromatic

low-light, e.g. nocturnal, vision. Cones, on the other hand, are less numerous

(about 5 million [Curcio et al., 1990]), much less sensitive to light, and they

provide the eye’s colour sensitivity. Cones come in three subtypes, which

respond to short (blue), medium (green), and long (red) wavelengths of light

and thus allow a distinction between colours. In addition, cones differ from

rods in that they can faithfully sample details, whereas rods have low spatial

acuity.

As Figure 2.2 shows, rods and cones are not evenly distributed across

the retina. Roughly at the centre of the retina lies a small circular region

of about two degrees diameter, called the fovea, that is densely packed with

cone cells and lacks rods almost completely. Despite its small size, it is here

that both spatial and colour vision are most accurate. Towards the periphery
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of the retina, cone cells gradually become sparser. Rods, on the other hand,

are concentrated in the outer parts of the retina. As a consequence of

this non-uniform cell layout, visual acuity also varies across the retina, i.e.

we do not perceive every part of the visual scene with equal sharpness.

Thus, the human visual field, which spans almost 200 degrees horizontally,

can be divided in three main regions. Foveal vision refers to the high-

resolution, detailed vision that occurs at the centre of the retina, the fovea.

This region constitutes less than one percent of the visual field, but about 50

percent of visual cortex are dedicated to the processing of foveal information.

Parafoveal vision starts outside the foveal region and spans about 10 degrees

of visual angle. Here, spatial resolution drops gradually: the farther away

from the fovea, the “blurrier” the scene gets. Beyond the parafovea, visual

acuity decreases sharply, i.e. we are sensitive only to coarse visual cues (e.g.

no object recognition is possible); however, peripheral vision is tuned to

detecting changes in the visual scene (e.g. sensing movement). Due to the

inhomogeneity of the retina (i.e. the fovea is the only small region of high

acuity), the eye must be frequently moving to place the fovea onto the

objects of interest and, if the target is moving, track it.

The point on the retina from where the optic nerve emerges is called the

optic disc. It is characterized by a complete lack of photoreceptors (i.e. it is

insensitive to light), therefore, it is also known as the blind spot.

2.1.2 Neural pathways

In the last processing layer of the retina, the long axons of the ganglion

cells form the optic nerve, which sends the visual signal (in form of action

potentials) towards the processing units of the brain. The optic nerves of

the two eyes come together at the optic chiasm, where the information from

the left half of the visual field is sent to the right half of the brain, while

the information from the right visual field is directed to the left side of the

brain. This crossed mapping is important for depth perception.

Behind the optic chiasm, the optic nerve is called the optic tract. The

optic tract carries the visual signal on two separate pathways into subcortical

areas. The smaller pathway goes to the superior colliculus, a brain area

involved in the control of eye movements. The principal projection pathway

leads through the lateral geniculate nucleus (or LGN) of the thalamus to the

higher brain areas, such as the primary visual cortex V1. Most of the high-
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level visual processing, such as object recognition and motion estimation,

takes place in the visual cortex.

There are multiple types of nerve cells in the visual pathways. The dis-

tinction between magnocellular (M) and parvocellular (P) cells is important

because of their functional differences in visual processing. M cells have a

fast response and high contrast gains; hence, they signal the existence of

a sudden change. P cells, on the other hand, with their small receptive

fields are more suited for signalling details of objects. In the LGN, the two

cell types separate in two distinct layers, and it is suggested that they re-

main separated as two processing streams within the cortex. The dorsal

stream (or magnocellular pathway) is also known as the “where” stream,

as it is involved in recognizing the spatial relationships of objects and in

guiding actions. The ventral stream (or parvocellular pathway) is concerned

with object recognition and form representation, hence the alternative name:

“what” pathway. Besides these two principal routes, there are multiple in-

terconnecting pathways between cortical areas in the brain.

With this very brief overview of some basic facts about the anatomy of

the human visual system, we will now proceed to a more detailed description

of eye movements and attention, which both are critical aspects to this thesis.

2.2 Eye movements and visual attention

2.2.1 Eye movements

As we have seen in the previous section, the parallel processing of visual

information in the brain gives rise to an immediate conscious perception.

However, this is, in itself, not enough to leave us with the subjective im-

pression of a fully detailed view of the world around us. This illusion is

created by our ability to effortlessly move our eyes about two to four times

per second to successively sample the scene with the high-resolution fovea,

and to integrate this transsaccadic information into one coherent percept.

To explore the environment by selectively processing information at lo-

cations of interest, the human visual system has at its disposal a set of

oculomotor control processes. The four main types of eye movements and

their properties are listed below.
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Saccade Saccades are rapid, abrupt movements of the eye that bring new

targets of interest to the fovea. Such ballistic movements take about 150–

200ms to plan (time referred to as saccadic latency), and have a duration

of only 20–80ms [Becker, 1991]. Depending on the amplitude, saccades

can reach speeds up to 900 deg per second. Orienting movements of more

than about 30 deg are achieved by a combination of both eye and head

movements. Saccades are said to be ballistic in that, once initiated, the

trajectory cannot be altered. This has to do with their short duration:

20–80ms is less than it takes an optical signal to reach the brain regions

where eye movements are evoked [Becker, 1991]. Saccades often under- or

overshoot an intended target, in which case short corrective saccades are

required. During a saccade, the image projected on the retina moves with

high velocities. Yet, we are unaware of the motion blur of the image, due

to a phenomenon called saccadic suppression [Matin, 1974]. To prevent us

from being aware of the blurred images, the update of visual information is

actively suppressed shortly before, during, and shortly after saccades.

Fixation Between saccades, the eye is held (almost) stationary: it fixates

the target of interest for about 150–600ms so that the visual information at

the particular location can be processed by the human visual system, and the

next saccade is planned Irwin [1992]. During fixation, the eyes are actually

still making small, involuntary movements, called microsaccades. They are

believed to exist in order to prevent the retinal image from fading, which is

provoked by neural adaptation in the retina [Ditchburn and Ginsborg, 1952,

Martinez-Conde et al., 2004].

Smooth pursuit The function of pursuit movements is to maintain a

moving target stabilized on the fovea, that is: track an object. Unlike

saccades, such movements are characterized by a smooth motion of the eye

with no abrupt on- and offsets. Pursuit movements are hard to be made

in the absence of a moving target. They can reach a maximum velocity of

100 deg per second, but have a low latency of about 100ms. Contrary to

saccadic suppression, visual sensitivity is actually increased during smooth

pursuit movements [Schütz et al., 2009].
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Vergence Vergence eye movements are used to align both eyes on the same

object. The eyes move in opposite directions, either towards or away from

each other, which allows viewing objects at different distances (or depth).

These are slow-velocity eye movements, rarely exceeding 10 deg per second.

The succession of saccades and fixations carried out while examining a

scene is called the scanpath [Noton and Stark, 1971]. Techniques for mea-

suring eye movements and recording scanpaths have existed for many years.

The first real eye tracking devices were built in 1935 by Buswell [Buswell,

1935], who used photographic gaze monitoring to measure where subjects

directed their eyes when viewing art. Later, [Yarbus, 1967] performed im-

portant eye tracking research (with the invasive scleral coil method), where

he demonstrated the strong influence of task on eye movements. Today’s

most commonly used eye trackers determine in real time the current focus

of the eye, e.g. by recording reflections of projected infrared light from the

cornea, and the pupil.

2.2.2 Visual attention

In our daily life, we are constantly faced with a vast amount of visual in-

formation that the human visual system cannot simultaneously process. As

argued above, despite the illusion that we perceive the entire visual field

in full detail, only a small fraction of this information — which falls on the

fovea — can be handled at any one time. The selected locations in the visual

field are brought to the fovea and processed by the succession of saccades

and fixations. The set of mechanisms through which relevant information is

selected is called visual attention. Attention is therefore an important com-

ponent of natural vision. It allows to allocate the brain’s limited cognitive

resources effectively to behaviourally relevant scene locations.

Covert versus overt attention

Although intensively researched, the neurophysiological aspects of attention

are still poorly understood. Several brain areas seem to take part in guiding

attention, but the exact role of each area is still an unsolved question. An

important misconception is that attentional deployment cannot occur with-

out an accompanying eye movement. The ability to direct attention to parts
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of the visual scene without moving the eyes is called covert attention [James

et al., 1981]. However, under natural viewing conditions, shifting attention is

usually associated with a gaze shift; this is referred to as overt attention [von

Helmholtz, 1866]. The relationship between these two attention types has

been the topic of extensive debate. Some physiological and behavioural evi-

dence suggests that covert selection is closely related to the overt fixational

orientation: fast covert attention shifts are made to subsequent scene tar-

gets prior to the saccade initiation [Deubel, 2008], and thus they play a key

role in the programming of eye movements. Others propose that the two

processes arise from the action of a single motor command: covert attention

is a “by-product” of the saccade generating mechanism [Rizzolatti et al.,

1987].

While eye movements (i.e. overt attention) can be easily measured with

eye trackers, investigating covert attention (especially under natural viewing

conditions) is difficult. Overt visual attention is also the focus of this thesis.

Visual attention is thus a mechanism used to focus the limited cognitive

capacities of the brain on selections of the visual input. But how do we

decide which particular locations to pay attention to? What guides our eyes

from one fixation to the next? Why are certain parts of a complex scene

attended and others not? Such questions were first addressed by the seminal

work of Yarbus [Yarbus, 1967], who provided evidence that the location and

sequence of eye movements is far from random. For example, during the

free inspection of a face, most saccades actually fall on the facial features,

such as eyes, nose, and mouth. Consequently, the patterns of fixations of

subjects viewing the same scene are highly similar. However, he also pointed

out that the sequence of saccades and fixations (i.e. the scanpath) cannot

always be predicted from the stimulus itself. This sequence changes by ask-

ing the viewers to report on different properties of the scene (e.g. the age or

financial situation of the scene characters). This suggests that also higher

cognitive processes determine how a scene is explored. His findings were

later corroborated by similar studies that examined eye movements during

everyday activities, such as tea- and sandwich-making, and driving [Land

and Hayhoe, 2001, Ballard and Hayhoe, 2009]. Their results reinforced the

idea that visual attention is a function of the continuous interaction be-

tween two different mechanisms: on the one hand, top-down or goal-driven,

14



2.2. EYE MOVEMENTS AND VISUAL ATTENTION

and bottom-up or stimulus-driven on the other [James, 1890, Treisman and

Gelade, 1980, Bergen and Julez, 1983]. In the following, we will shortly

explain the two processes.

2.2.3 Bottom-up versus top-down attention

Top-down attention (also called endogenous attention) [Desimone and Dun-

can, 1995, Yarbus, 1967] is a voluntary, conscious form of attention control,

where the task at hand and the observer’s intentions, motivations, and emo-

tions determine the locations to be fixated. As it involves the voluntary

intent to attend to some portion of the visual field, it is a rather slow pro-

cess.

Bottom-up attention, on the other hand, refers to a set of much faster

mechanisms by which eye movements are driven involuntarily, influenced by

low-level visual features, such as contrast, colour, and motion, i.e. stimulus

“salience” [Yarbus, 1967]. In this case, attention is grabbed involuntarily by

an external stimulation (e.g. a bee flying by), therefore this kind of attention

is also called exogenous or reflexive attention.

Due to the complexity of high-level cognitive functions, much research

has focused on bottom-up, so-called data-driven factors, investigating the

relationship between eye movements and low-level image features at fixa-

tions. This dissertation also focuses on the bottom-up aspects of attentional

selection. The characteristics of eye movement patterns have been studied

intensively in everyday activities, such as orienting, reading [Huey, 1898],

and visual search [Wolfe, 1998]. Although different situations, all three

pose constraints on the visual activity required, and stimulus-driven atten-

tion interferes with top-down mechanisms. Therefore, to examine what role

bottom-up factors play in attentional selection, it has been proposed to an-

alyze eye movements in a less constrained situation: during the scanning of

naturalistic images and image sequences. For instance, it has been found

that spatial contrast tends to be higher at the centre of fixation than at

random control locations [Reinagel and Zador, 1999, Tatler et al., 2005].

Also, there are regularities in the higher-order image statistics at fixations

as well [Zetzsche et al., 1998]. When viewing image sequences, eyes are often

directed at regions with temporal change.

Attentional selection has also been studied by looking at neuropatho-

logical diseases. For instance, some patients, following a right hemispheric
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stroke, show a unilateral neglect syndrome: unless stimuli are highly salient

in the impaired hemifield, they are ignored. Better knowledge of what low-

level stimulus properties are needed to guide these patients’ attention into

the neglected hemifield holds great potential for future therapeutic and as-

sistive interventions, and is currently under investigation by a group of Gaze-

Com researchers in collaboration with the Lübeck Neurology Department.

To exploit the accumulated knowledge on both the neurophysiology and

the psychophysical properties (see above) of attention, theoretical models

of attention have been proposed. They aim at a better understanding and

modelling of visual perception by means of simulating behavioural data, e.g.

predicting eye movements. Several competing psychological models have

been proposed in the literature but, due to the difficulties involved in mod-

elling higher mental states (motivation, emotions), only few have considered

top-down mechanisms. Some notable models of attention are the spotlight

model [Posner, 1980], the zoom lens model [Eriksen and James, 1986], the

Guided Search model of Wolfe [Wolfe, 1998], and the Feature Integration

Theory of Treisman [Treisman and Gelade, 1980]. A more recent approach,

called the triadic architecture and proposed by [Rensink, 2000] has shown

promising results in integrating higher scene knowledge (the so-called gist)

in the model.

Guided by such psychophysical theories, more recently, computational

models of attention have been proposed that aim not only at replicating

the physiological and psychophysical properties of attention, but also at

improving machine vision algorithms in computer vision and robotics. By

identifying so-called points of interest within a scene, computational models

of attention enable the often time- and resource-consuming image processing

to focus only on these potentially relevant scene locations. Therefore, the se-

lective processing of visual information has become an important component

of biologically-inspired machine vision systems. Note that these bio-inspired

models differ from the purely computational interest-point detectors [Harris

and Stephens, 1988] that are ubiquitous in the computer vision community

(for an overview see Schmid et al. [2000]). Although the latter are inspired

by the saliency mechanisms in natural vision, they do not strive to grant

biological plausibility or to simulate human gaze behaviour.

Computational saliency models centre on the concept of a saliency map,

which assigns to each pixel of an image or video a saliency value indicating
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how likely it is that the viewer of the image or video fixates that location

due to its (relative) conspicuity. Although the various models differ in their

underlying assumptions concerning the model architecture and the formal

definition of saliency, they share some properties that make them biologically

plausible. Numerous methods [Meur et al., 2006, Bruce and Tsotsos, 2006,

Gao and Vasconcelos, 2009, Gao et al., 2009], including the perhaps most

well-known models for bottom-up saliency of Itti and Koch [Itti et al., 1998,

2003, Navalpakkam and Itti, 2005], follow the Feature Integration Theory

introduced by Treisman [Treisman and Gelade, 1980], which we will now

describe briefly.

2.2.4 Feature Integration Theory

According to the Feature Integration Theory (depicted schematically in Fig-

ure 2.3), in the preattentive step of attention, basic visual features (orienta-

tion, colour, contrast, etc.) are extracted in parallel on multiple scales, and

stored in separate low-level feature maps. Normalized centre-surround dif-

ference maps are then computed for individual features and later combined

by a weighting scheme to form a master saliency map. In the next, sequen-

tial step, attention is guided to peaks (i.e. locations with highest salience)

in this map in a winner-take-all fashion. An inhibition-of-return mechanism

prevents attention from returning to an already attended location.

The first computational formulation of a model based on the Feature

Integration Theory was that of Koch and Ullman [Koch and Ullman, 1985].

Their model served as algorithmic foundation for subsequent implemen-

tations (e.g. Itti et al. [1998, 2003]), and other computational models of

saliency. Koch and Ullman’s initial model has undergone several modifica-

tions and extensions since the original description. It has been, for instance,

extended to the temporal domain [Itti et al., 2003], and also top-down pri-

ors have been incorporated to model phenomena beyond bottom-up atten-

tion [Navalpakkam and Itti, 2005]. In [Siagian and Itti, 2007], for example,

a low-dimensional signature vector, called the gist of the scene and acquired

at multiple scales from basic visual features, was used to perform scene

classification. In this thesis, the model of Itti et al. [1998, 2003] serves as

a baseline for comparison with our work, and hence, in Appendix B.2 we

briefly present the model architecture and the main computational steps.

17



CHAPTER 2. VISUAL ATTENTION IN HUMAN AND MACHINE
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Figure 2.3: The architecture of the Koch and Ullman saliency model (as
implemented by Itti et al. [1998, 2003]). Various low-level features (such as
colour, luminance, and orientation for static images, and additionally flicker
and motion features for videos) are extracted on multiple scales and stored
in separate feature maps. A unique saliency map is generated through the
combination of centre-surround feature maps (conspicuity maps). On this
map, biological mechanisms, such as winner-take-all (WTA) competition
and inhibition-of-return, are used to shift attention among the salient re-
gions, thus generating a scanpath for an input scene. For a more formal
description of the main computational steps see Appendix B.2.
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2.3 Computational modelling of visual attention

In the following, we shall review some of the most important computational

saliency models in the literature. Existing bottom-up saliency models, be

they purely computational or biologically inspired, differ in the underlying

computational principles they use to formally define the concept of saliency

and motivate the model architecture (i.e. the choice of optimal features and

major computational steps). A number of recent approaches turn to in-

formation theory to define “distinctiveness”, i.e. conspicuity. The model

of Bruce and Tsotsos [Bruce and Tsotsos, 2006] aims at maximizing Shan-

non’s self-information to find the most informative locations in the image.

Gao et al. [Gao and Vasconcelos, 2009, Gao et al., 2009] introduced the

concept of “discriminant saliency”, which based on the definition of the tar-

get and null hypotheses (e.g. centre vs. surround, object class of interest

vs. all other object classes) can act both as a bottom-up saliency predic-

tor or top-down object detector. In this context, salient locations are those

where the discrimination between target and non-target (in terms of some

selected optimal features) can be made with minimum probability of error.

Discrimination and classification confidence are here defined with respect to

a number of existing computational principles for perceptual organization

(e.g. infomax or Barlow’s inference by detection of suspicious coincidences).

The authors in [Avraham and Lindenbaum, 2010] present a region-based

bottom-up model for images, which uses roughly segmented regions as candi-

dates for salient objects. The most salient segment is found through graph-

ical model approximation. The proposed stochastic model here, too, quan-

tifies several intuitive observations, such as the likelihood of correspondence

between visually similar image regions, and the assumption that the number

of interesting objects in the scene is small.

Often, the problem of predicting eye movements on complex scenes is

formulated in a Bayesian framework. This kind of approach provides an

elegant way to, again, incorporate prior knowledge, e.g. about the statistics

of visual attributes in specific scene types or descriptions and layout of the

scene. Itti and Baldi [2009], for instance, proposed a Bayesian notion of

surprise measured in “wows”, by calculating the mismatch (or Kullback-

Leibler divergence) between expectations of the observer, i.e. priors, and

the perceived reality, i.e. posteriors. The models SUN (for static scenes)
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and SUNDAy (for videos) of [Zhang et al., 2008, 2009], also use a Bayesian

framework to analyze fixations. Similarly to [Bruce and Tsotsos, 2006],

novelty is defined as self-information of the visual features, but the feature

statistics used to detect outliers are learned from previous examples, and

are not based only on the current image or video. For comparison pur-

poses in the later chapters, in Appendix B.1 we formally describe the model

architecture of SUNDAy.

While most approaches described above strive to address biological plau-

sibility, the resulting models tend to be complex, having a large number of

free parameters that need to be tuned by hand. Learning techniques are

increasingly being employed as a practical solution to the parameter tuning

problem (e.g. as above in [Zhang et al., 2008]). Such models even allow to

infer the model structure from the data, without the need to quantify several

assumptions about perceptual processes. Still, the usefulness of learning in

visual saliency modelling has been recognized only recently. Kienzle et al.

were the first to derive saliency-based interest operators from human eye

movement data using machine learning techniques that operated directly on

the pixel intensities of static scenes [Kienzle et al., 2007b] and Hollywood

movies [Kienzle et al., 2007a]. They showed that the learned discriminative

features have a centre-surround pattern. Due to constraints imposed by the

reduced ability of learning algorithms to operate in high-dimensional (pixel)

spaces given a limited number of training samples, the algorithms in [Kien-

zle et al., 2007b,a] were limited to a single spatial scale. A data-driven

approach is used in [Judd et al., 2009], too, where optimal parameters are

learned (from fixation data on static scenes) for an attention model that is

based on low-, mid- and high-level features calculated by several existing

saliency methods. In [Liu et al., 2010], another supervised approach aims

at learning to detect salient objects from manually labelled examples. Here,

a set of novel features, such as multi-scale contrast, centre-surround his-

togram, and colour spatial distribution, are combined through conditional

random field learning.

While several models exist for saliency prediction on still images, only

recently has the number of studies dealing with scene sequences increased.

Although some of the static approaches have been generalized to videos

[Kienzle et al., 2007a, Itti and Baldi, 2009, Zhang et al., 2009], these mod-
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els often lack a unified framework for the static (spatial) and space-time

saliency domains. Traditional ways to incorporate temporal information

have often simply complemented the feature set with dynamic features, e.g.

the optical flow information. In [Liu et al., 2010], for instance, the same set

of novel features proposed for still images are defined on the motion field to

capture spatiotemporal cues. Mahadevan and Vasconcelos [2010] extended

the bottom-up discriminant centre surround saliency model of Gao and Vas-

concelos [2009] to background subtraction in highly dynamic scenes. In a

saliency prediction framework, background regions are those classified as

non-salient by comparison of centre and surround appearance and dynamics

(the video patches being modelled as dynamic textures).

As it has been shown in [Böhme et al., 2006], simple spatiotemporal

saliency measures based on intrinsic dimensionality can generate a small

set of salient locations that is likely to contain the next saccade target.

Throughout this thesis, we shall make extensive use of such geometrical

features (combined with machine learning) to investigate perceptual phe-

nomena and to predict gaze in natural dynamic scenes.

Incorporating temporal information is also not straightforward in a learn-

ing context, where the task of eye movement prediction is further compli-

cated by the increased number of (pixel-) dimensions.

Since most saliency models for videos are sensitive to dynamic content,

camera motion and film-editing (e.g. jump cuts and gradual transitions)

pose difficulties — even for the most advanced predictors — by causing

false alarms in the salient features. Such a shortcoming is typically cor-

rected with compensation of camera motion and shot boundary elimination.

Shot boundary detection, too, can be tackled with an attentional paradigm.

In Boccignone et al. [2005], for example, saliency maps of nearby frames

are compared for consistency and shot boundaries are detected when the

similarity is below a given threshold.

2.4 Applications in computer vision

Until recently, most computer vision algorithms performed an in-depth pro-

cessing of the input data, e.g. by scanning the image exhaustively to locate

objects of interest. However, the need to process — often in real-time and

with restricted computing resources, e.g. in the case of mobile robots — a
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vast amount of continuously inflowing high-resolution data, had turned such

brute-force approaches computationally intractable. Therefore, as a way to

control the combinatorial explosion, the ability to restrict the processing to

the salient, i.e. potentially relevant scene locations in the scene has proven

invaluable for computer vision applications. Saliency is therefore justified

as a preprocessing step for image analysis that not only saves computation

but can also improve performance.

The relevance of visual attention is probably the most evident in object

recognition, detection, and tracking, e.g. [Rutishauser et al., 2004, Serre

et al., 2007, Liu et al., 2010], tasks that assume a two-stage processing — (1)

attentional selection and (2) recognition through a classifier — that is often

adapted to human perception [Neisser, 1967]. The interest points detected in

the first, attentional filtering phase are utilized either for pattern matching

or to extract local descriptors that serve in later steps for object and scene

representation and discrimination. The HMAX system [Riesenhuber and

Poggio, 1999], one of the early biologically motivated object recognizers,

followed this architecture, and was capable of simulating processes (related

to object recognition) in the human cortex.

Other applications of saliency models include image and video compres-

sion [Geisler and Perry, 1998, Ouerhani et al., 2001, Itti, 2004b]. Here, a

saliency-based non-uniform compression algorithm allocates more bits for

salient regions, whereas the rest is encoded with lower quality. Thus, rele-

vant scene regions have a higher reconstruction quality as compared to the

rest of the image.

Attention-based algorithms have been proposed also for automatic image

cropping [Santella et al., 2006] (e.g. for centred display of images on small

portable screens), image and video quality assessment [Ninassi et al., 2007],

non-photorealisic rendering [DeCarlo and Santella, 2002], and video event

detection and summarization [Evangelopoulos et al., 2008].

In robotics, the field of active vision [Aloimonos et al., 1988], i.e. the

active redirection of a camera to semantically relevant scene regions, has

largely benefitted from the use of the visual attention paradigm. Here, too,

the aim is to focus the computationally expensive processing only on the

relevant scene locations. Active vision is an important component of solu-

tions in robotics. Thus, attention systems are used to guide the “gaze” (i.e.

cameras) of robots to aid navigation, self-localization, object manipulation,
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and human-robot interaction [Frintrop et al., 2006, Siagian and Itti, 2007].

To summarize this chapter, we have seen that the capabilities of the hu-

man visual system are highly space-variant. Tasks that require high visual

fidelity, such as object recognition or reading, can only be performed foveally,

and attention usually is deployed simultaneously at the centre of fixation.

In order to obtain detailed information from the whole visual field, humans

make several eye movements per second to bring the fovea onto different

parts of the scene, and the periphery then is mainly used for navigation and

to determine where to direct the fovea next.

Several models have been put forward to establish the exact mechanism

by which eye movements are controlled. A common approach is based on

the Feature Integration Theory and models the relevance of a location by

the statistical irregularity of a set of low-level image features, such as a local

deviation from surrounding orientation statistics. More recently, however,

attempts have also been made to automatically extract the relevant structure

of salient locations based on a set of human eye movements. In Chapter 5,

we will use this technique and show that our model outperforms other state-

of-the-art models on naturalistic videos. A successful predictor of relevance

in natural environments can also be useful in computer vision and active

vision scenarios, such as video compression and robotics.
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3
Efficient coding of natural image sequences

In the following chapter, we will discuss some basic aspects of the efficient

representation of visual data both in artificial and in biological systems.

3.1 Introduction

Digital images and image sequences are stored as numerical arrays of pixel

intensities. As Figure 3.1 illustrates, making sense of such numerical data

proves extremely difficult. Even though the photo-receptors of our retina

receive visual information in essentially the same manner, the human visual

system manages to effortlessly decipher information from this (seemingly

nonsensical) data, e.g. we recognize the position and identity of objects

in the scene in no time at all (see Figure 3.2). Understanding how the

human visual system solves this extremely difficult computational task is one

of the fundamental challenges in human vision and neuroscience. Beyond

its biological importance, the gained knowledge could also guide computer

vision research towards building efficient machine vision systems that mimic

human vision.

Some insight into the perceptual processes going on in our brain can

be obtained by considering the nature of the visual input the human visual

system needs to decipher. For this, let us consider images of a fixed size,

say 128 by 128 pixels. Each image can be represented as a sample (or point)

of an 128 × 128 = 16, 384 dimensional pixel intensity space, in which each

axis stands for the brightness value of one image pixel (for simplicity, we

will discuss grayscale images only). One important observation relates to

the fact that in this high-dimensional space “natural” images, i.e. the kind

of sensory input that biological visual systems got adapted to during evolu-
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Figure 3.1: A natural image displayed using pixel-intensity values. Numbers
correspond to intensity values ranging from 0 (black) to 255 (white).

tion, are not uniformly distributed. An arbitrary element of this space, e.g.

an image whose pixel intensities are chosen at random, will most certainly

be noise-like and will hardly ever resemble natural images. It actually turns

out that the distribution of natural images is not uniform; such images lie on

an unknown lower-dimensional manifold in the “space” of all possible image

patches. This equates to the fact that, in an information-theoretic sense,

natural images contain a significant amount of redundancies. The seminal

paper of Attneave [1954] was the first to demonstrate the redundant nature

of natural visual stimuli. Exploiting these redundancies, i.e. by recoding the

input signal in a more efficient way, is crucial for biological visual systems.

Furthermore, characterizing the statistical properties of natural images is es-

sential also for engineering applications, where images and image sequences

ought to be stored and transmitted in possibly the most compact digital for-

mat. The work of Attneave [1954] and Barlow [1961] has led to the “efficient

coding hypothesis”, according to which the brain uses efficient representa-

tions to encode the structural regularities observed in an organism’s natural

visual environment. In support of this theory, Olshausen and Field [1996,

1997] found filters resembling the receptive fields of simple-cells in cortical

area V1, when these filters — so-called overcomplete sparse codes/bases —

were optimized to encode natural stimuli.
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Figure 3.2: The image of Figure 3.1. It is now easy to recognize the content
of the image. If you still have difficulties, squint your eyes.

The concept of intrinsic dimensionality, which we shall introduce shortly,

provides a basic description of how a multidimensional (e.g. spatiotempo-

ral) signal may change. Within this framework, typical image and video

structures can be characterized and categorized. Those parts of the visual

input where the image/video does not change in a particular direction (or

set of directions) contain redundancies and may not need to be encoded in

an efficient representation. In this thesis, we shall provide evidence from

eye movement studies that the human visual system avoids such redundant

parts and therefore indeed employs efficient coding to sense the visual world.

In the second part of this chapter, we shall discuss coding schemes for

an efficient representation of images and image sequences at multiple scales.

Pyramidal multiresolution data structures encode each scale at optimal reso-

lution, i.e. with the fewest bits necessary, and therefore will allow us through-

out this thesis to efficiently analyse and manipulate high-resolution videos.

Again, we can make a strong link between efficient techniques from com-

puter vision and human vision because early visual processing also uses a

bandpass representation of the visual information [Marr, 1982].
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3.2 Geometry of time-varying images

We will start by looking at the geometry of time-varying images and ways to

characterize (and categorize) various types of video intensity changes. For

this, we will first introduce the concept of intrinsic dimension and discuss a

technique to estimate it, following [Mota et al., 2006].

3.2.1 Intrinsic dimension

The intrinsic dimension (iD) [Zetzsche and Barth, 1990] quantifies the in-

formation content of a signal. It describes the number of degrees of freedom

needed to locally represent the observed signal. Thus, static and homoge-

neous video locations are intrinsically zero dimensional (i0D); stationary

edges and uniform regions that change in time have an intrinsic dimension

of one (i1D); stationary corners and edges that change in time are i2D,

while transient corners and non-uniform motion are intrinsically three di-

mensional (i3D). For an illustration with a synthetic image see Figure 3.3.

An example of the intrinsic dimensionality of natural movies is shown in

Figure 3.4. Since, in natural scenes, regions with high intrinsic dimension

are less common than regions with low intrinsic dimension [Zetzsche et al.,

1993], the concept of intrinsic dimension is particularly relevant for image

and video coding. Moreover, it has been shown that an image or video can

be fully reconstructed from only those regions where the iD is greater than

one, i.e. i0D and i1D regions are redundant [Barth et al., 1993, Mota and

Barth, 2000].

We consider a grayscale video represented by the function f(p) : R3 →

R, p = (x, y, t). Following Mota et al. [2004b], to estimate the intrinsic

dimension of a given video region Ω, a linear subspace E ⊂ R3 of highest

dimension is chosen, such that

f(p+ v) = f(p) for all p,v such that p,p+ v ∈ Ω,v ∈ E.
✞

✝

☎

✆3.1

The intrinsic dimension of Ω is 3 − dim(E) for videos and n − dim(E) for

n-dimensional signals.

The intrinsic dimension can be estimated with different differential meth-

ods; here, we will use the method based on the structure tensor [Jähne et al.,

1999].
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i2D

i1D

i0D

Figure 3.3: Illustration of the intrinsic dimensionality of images. Using this
measure, one can distinguish between homogeneous (i0D), edge-like (i1D)
and junction-like structures (i2D). Spatiotemporal corners in videos are
i3D.

3.2.2 Invariants of the structure tensor

As shown in [Mota et al., 2004b], Equation 3.1 is equivalent to writing

∂f(p)

∂v
= 0 for all v ∈ E,p ∈ Ω .

✞

✝

☎

✆3.2

which, based on [Mota et al., 2004b], is in turn equivalent to minimizing

the energy function

ε(v) =

∫

Ω

∣
∣
∣
∂f

∂v

∣
∣
∣

2
dΩ = 0 .

✞

✝

☎

✆3.3

At any point p ∈ Ω, ∂f
∂v is in fact the directional derivative of f along v and

can be written as

∂f

∂v
= vxfx + vyfy + vzfz =

∑

i∈{x,y,t}

vifi ,
✞

✝

☎

✆3.4

where v = (vx, vy, vt) and fx, fy, and ft stand for the first-order partial

derivatives of f . Thus, Equation 3.2 is equivalent to writing

[

vx vy vt
]

·

⎡

⎢
⎣

fx

fy

ft

⎤

⎥
⎦ = 0

✞

✝

☎

✆3.5
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and

∣
∣
∣
∂f

∂v

∣
∣
∣

2
=

∑

i,j∈{x,y,t}

vifivjfj =
✞

✝

☎

✆3.6

=
[

vx vy vt
]

·

⎡

⎢
⎣

fx

fy

ft

⎤

⎥
⎦ ·
[

vx vy vt
]

·

⎡

⎢
⎣

fx

fy

ft

⎤

⎥
⎦ =

✞

✝

☎

✆3.7

=
[

vx vy vt
]

·

⎡

⎢
⎣

fx

fy

ft

⎤

⎥
⎦ ·
[

fx fy ft
]

︸ ︷︷ ︸

·

⎡

⎢
⎣

vx

vy

vt

⎤

⎥
⎦ =

✞

✝

☎

✆3.8

=
[

vx vy vt
]

·

⎡

⎢
⎣

f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t

⎤

⎥
⎦

︸ ︷︷ ︸

J′

·

⎡

⎢
⎣

vx

vy

vt

⎤

⎥
⎦ .

✞

✝

☎

✆3.9

Hence, within a spatiotemporal neighbourhood Ω, Equation 3.2 can be ex-

pressed as

ε(v) =

∫

Ω

∣
∣
∣
∂f

∂v

∣
∣
∣

2
dΩ = vTJv ,

✞

✝

☎

✆3.10

where J is the structure tensor [Jähne et al., 1999]:

J =

∫

Ω
J′ dΩ =

∫

Ω
∇f ⊗∇f dΩ =

∫

Ω

⎡

⎢
⎣

f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t

⎤

⎥
⎦ dΩ .

✞

✝

☎

✆3.11

In the above formula, ⊗ denotes the tensor product. In practice, the integral

over Ω is implemented as smoothing with a spatiotemporal Gaussian filter

function. The linear subspace E is estimated as the eigenspace associated

with the smallest eigenvalue of J [Mota et al., 2004b], and the intrinsic

dimension of f within the neighbourhood Ω corresponds to the rank of J.

Alternatively, the intrinsic dimension can be computed from J’s geometrical

invariants H, S, and K [Mota et al., 2001]:

H = 1/3 trace(J) = λ1 + λ2 + λ3

S = M11 +M22 +M33 = λ1λ2 + λ2λ3 + λ1λ3

K = |J| = λ1λ2λ3

✞

✝

☎

✆3.12
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Figure 3.4: Still shot from a video (top left quadrant) and the correspond-
ing geometrical invariants. For invariant K (bottom right quadrant), non-
white locations change in all three spatiotemporal directions, whereas for
S (bottom left), the video signal changes in at least two directions. Addi-
tionally, invariant H (top right) also responds to edges (i.e. one dimensional
changes). The (small) response even of K at the corners of the windows is
due to small camera vibrations and noise. For the invariants, the brightness
has been thresholded and inverted for better legibility.

where λi are eigenvalues and Mi,j are the minors of J (i.e. determinants of

submatrices of J obtained by removing row i and column j). The geometrical

invariants correspond to the minimum intrinsic dimension of a region, i.e. if

K ̸= 0, the intrinsic dimension is 3 (i3D); if S ̸= 0 it is at least i2D; and if

H ̸= 0 it is at least i1D. In Figure 3.4 an example image is shown for the

invariants on a natural image.

The structure tensor and its eigenvalue analysis are widely used in im-

age processing to estimate orientation and motion [Granlund and Knutsson,

1995, Jähne et al., 1999]. The method has later been extended to multispec-

tral images [Mota et al., 2006], and to multiple orientations and multiple

motions [Mota et al., 2001, 2004a], and we will briefly outline these exten-

sions in the following.
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3.2.3 Multispectral invariants

The above formalization may only be used to estimate the intrinsic dimen-

sion of grayscale videos. To investigate colour saliency, the concept of in-

trinsic dimension has been extended to multispectral signals [Mota et al.,

2006].

We consider a multispectral image sequence f with q colour channels

(f : R3 → Rq), and define the scalar product between two vectors y =

(y1, . . . , yq) and z = (z1, . . . , zq) as y · z =
∑q

k=1 akykzk. The weights ak > 0

are here meant to emphasize different colour channels, if needed.

As above, the intrinsic dimension of f within a small region Ω can be

estimated by minimizing the energy function

ε(v) =

∫

Ω

∥
∥
∥
∥

∂f

∂v

∥
∥
∥
∥

2

dΩ,
✞

✝

☎

✆3.13

where the directional derivative ∂f
∂v of f has a similar form, as above:

∂f

∂v
= vxfx + vyfy + vtft, v ∈ E,E ⊂ R

3.
✞

✝

☎

✆3.14

With a similar derivation, the energy function can be expressed as

ε(v) = vTJv,
✞

✝

☎

✆3.15

where J is the multispectral structure tensor :

J =

∫

Ω

⎡

⎢
⎣

∥fx∥2 fx · fy fx · ft
fx · fy ∥fy∥2 fy · ft
fx · ft fy · ft ∥ft∥2

⎤

⎥
⎦ dΩ .

✞

✝

☎

✆3.16

Note that the above formulation does not assume any particular colour

space. However, videos are often represented in the Y ′CbCr colour space

(instead of RGB, for instance) because the luma (Y ′) and the two chroma

(Cb, Cr) channels are less correlated and the chroma channels are subsam-

pled to take advantage of the lower colour sensitivity of the human visual

system. However, when using Y ′CbCr, the dynamic range of the luma chan-

nel is much greater than that of the chroma channels, so that the contribu-

tion of colour to JY ′CbCr is small. To compensate for this, one can compute

the standard deviation of each channel and use their inverse for the weights
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ay, au, and av.

3.2.4 Generalized structure tensor for multiple motions

In the following, we briefly touch on the extension of the structure tensor

to the generalized structure tensor [Mota et al., 2001], with which the char-

acterization of multiple superimposed motions becomes possible. In Chap-

ter 5, we will use such generic representations to predict eye movements on

multiple overlaid videos.

Let us consider the image sequence f that consists of the superposition

of two transparent image layers that are moving with different constant

velocities u = (ux, uy, 1) and v = (vx, vy, 1). The video signal f can thus be

written as

f(p, t) = g1(p− tu) + g2(p− tv),
✞

✝

☎

✆3.17

The generalized structure tensor of f

JG =

∫

Ω

⎡

⎢
⎢
⎢
⎢
⎣

f2
xx fxxfxy · · · fxxftt

fxxfxy f2
xy · · · fxyftt

...
...

...

fxxftt fxyftt · · · f2
tt

⎤

⎥
⎥
⎥
⎥
⎦

dΩ
✞

✝

☎

✆3.18

and its corresponding invariants are used to characterize (and categorize)

different combinations of multiple motions, such as transient dots, stationary

and moving gratings, etc. For a definition of the generalized structure tensor

for N (rather than only two) motions we refer to [Mota et al., 2001].

3.3 Multiscale representations

In the remainder of this chapter, we will review methods for an efficient

representation of image and video signals at multiple spatiotemporal scales.

Multiscale analysis is a well-established technique in signal and image pro-

cessing. Whereas Fourier analysis tells us about what frequencies are present

in the image, Fourier coefficients contain no spatial information. Multireso-

lution processing (e.g. pyramidal coding and wavelets [Mallat, 1989]), on the

other hand, provide information on both the frequency and spatial domain

simultaneously. Therefore, such an approach is able to model the function

of the human visual system, which has been shown to represent visual in-
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formation on several spatiotemporal scales [Marr, 1982]. To mimic this, in

image processing, efficient representations, so-called multiresolution image

pyramids have been developed. Pyramids correspond to a decomposition

of the image (or video) into spatial (and temporal) frequency bands. They

store information on each pyramid level in a compact format, with fewest

bits possible. Here, we will review two basic pyramidal structures: (1) the

Gaussian pyramid, which corresponds to a low-pass representation, and (2)

the Laplacian pyramid, which performs a bandpass decomposition of the

image.

3.3.1 Gaussian pyramid

The Gaussian multiresolution pyramid consists of a series of images or sig-

nals at different resolutions or sampling rates (for a review see [Jähne and

Haußecker, 2000]). The resolution of the original signal is reduced itera-

tively by a factor of two, and the size of the signal decreases correspond-

ingly; hence, the resulting low-pass filtered signal requires less storage space.

For this property, multiresolution pyramids are useful for data compression,

texture analysis, and scale-invariant pattern recognition (e.g. target track-

ing [Anderson et al., 1985]).

The Gaussian pyramid is constructed by progressively low-pass filtering

and downsampling the input (see Figure 3.5). When subsampling by a factor

of two, one must consider Shannon’s sampling theorem [Shannon, 1949], i.e.

the signal should not contain frequencies above the (halved) Nyquist rate of

the new sampling rate. Therefore, to avoid aliasing, the low-pass filtering of

the image is necessary before the downsampling.

More formally, we use I(x, y) to denote the original image, which has W

columns and H rows of pixels. By combining the two operations of filtering

and subsampling into one step, the Gaussian pyramid representation of I is

defined recursively as

G0(x, y) = I(x, y)

Gk+1(x, y) =
∑c

i=−cwi
∑c

j=−cwj ·Gk(2x+ i, 2y + j)
,

✞

✝

☎

✆3.19

where each pyramid level Gk has a resolution of W/2k by H/2k pixels. w is

a filtering kernel of length 2c+ 1 that has the following properties:

1. symmetric — so that no phase shift occurs during the filtering,
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upsample & lowpass

upsample & lowpass

upsample & lowpass

lowpass & downsample

lowpass & downsample

lowpass & downsample

-

-

-

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3 (DC)

Gaussian Pyramid Laplacian Pyramid

Figure 3.5: Construction of the Gaussian and Laplacian image pyramids.
Depicted are four spatial pyramid levels. The Gaussian pyramid is con-
structed by repeatedly convolving the image with a low-pass kernel and
downsampling the result (left). The Laplacian is then obtained by subtract-
ing every Gaussian level (after upsampling and low-pass filtering it) from
the next lower Gaussian level (right).
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2. separable — a non-separable kernel wi,j is also possible, but less effi-

cient,

3. the filter coefficients w−c, . . . , wc sum to one,

4. adheres to the equal contribution principle: each pixel should have

equal contribution in the low-resolution version (otherwise, artefacts

occur). A possible five-tap filter kernel with this property has the

coefficients w0 = p, w−1 = w1 = q, w−2 = w2 = r, where p+ 2r = 2q.

A common choice for such a kernel is the 5-tap binomial 1
16 [1 4 6 4 1].

Such a filter closely approximates the Gaussian function, hence the name of

the image pyramid. Note that while the lowest pyramid level contains the

original image, the highest possible level (with a size of one pixels) consists

of the DC, i.e. the mean luminance of the image.

The above recursive steps are equivalent to convolving I with a set of

smoothing filters where the filters double in size from level to level. However,

the effectiveness of the presented approach lies in the fact that the same

(small) kernel is applied (locally) to all levels of the pyramid. From level

to level, the band-limit is reduced by an octave, thus, for a finer-grained

partition, alternative methods must be considered.

Extending such a multiresolution representation to the temporal domain

is, in principle, straightforward. Instead of considering only every second

pixel during downsampling, in the case of a temporal Gaussian pyramid

every second frame must be discarded [Böhme et al., 2008]. Thus, from

level to level, the temporal resolution of the video is halved. For a spatial

Gaussian pyramid, the complete stack of pyramid levels (images of different

resolution) can fit into memory at the same time. This is, however, not

feasible for videos, so for an implementation an appropriate buffering of the

required pyramid levels is necessary [Böhme et al., 2008].

Also note that because the filter w used in the computation of the dif-

ferent pyramid levels is non-causal, the method, in the current formulation,

requires video frames (so-called lookahead frames) from the “future”.

If the image sequence is progressively filtered and subsampled both in

space and time, a spatiotemporal pyramid representation of the video is

created. As opposed to an isotropic pyramid, where space and time are

subsampled simultaneously, in case of an anisotropic spatiotemporal pyra-

mid each level of a spatial pyramid is decomposed further into its temporal
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bands. Such a pyramid has the advantage of providing a finer partition of

the spectrum, but is also computationally intensive.

3.3.2 Laplacian pyramid

The Laplacian multiresolution pyramid is an extension of the Gaussian pyra-

mid and consist of a sequence of bandpass-filtered signals or images. A com-

putationally efficient pyramid structure, similar to that seen above, makes

this representation suitable for a wide range of computer vision applications

from image fusion [Blum and Liu, 2005] and mosaicing [Burt and Adelson,

1983], to image enhancement [Trifas et al., 2006] and compression [Adelson

and Burt, 1981]. Since the image is dissected into distinct frequency bands,

the correlation of neighbouring pixels is reduced and the resulting images

consist mostly of zeros, i.e. can be encoded with fewer bits.

As shown schematically in Figure 3.5, the Laplacian pyramid computes

differences of successive levels of a Gaussian pyramid. Thus, each Laplacian

level corresponds to a bandpass filtered version of the original image. Be-

cause two adjacent Gaussian levels differ in sampling density, it is necessary

to upsample the lower level (before the subtraction), by inserting zeros be-

tween neighbouring pixels and interpolating with a Gaussian lowpass filter.

The filter is often the same 5-tap binomial used in the creation of the Gaus-

sian pyramid. This operation is often referred to as expansion as it doubles

the image size at each iteration.

The pyramid construction can be formally summarized as

LN (x, y) = GN (x, y)

Lk(x, y) = Gk(x, y)− Expand(Gk+1(x, y)), k = 0, . . . , N − 1
,

✞

✝

☎

✆3.20

where the Expand operation is defined as

Expand(Gk(x, y)) =
c
∑

i=−c

wi

c
∑

j=−c

wj ·Gk

(
x− i

2
,
y − j

2

)

.
✞

✝

☎

✆3.21

Here, (x − i)/2 and (y − j)/2 contribute to the sum only when they are

integers. Note that since the lowest Gaussian level GN has no lower pair

GN+1 anymore, LN is set to the lowest level of the Gaussian, i.e. the DC

component of the image.

Similarly to the Gaussian case, the pyramid construction is now equiv-
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alent to repetitively filtering the image with different kernels that are the

difference of two Gaussian kernels with varying width. Again, with such

a pyramid scheme, filtering operations also with large kernels can be per-

formed efficiently.

An important advantage of the approach is that the construction scheme

of the Laplacian pyramid can be easily inverted, which allows a perfect recon-

struction of the original image. To synthesize the image from its bandpass

decomposition, the Laplacian levels (starting with the lowest) are iteratively

upsampled and added to the next higher level:

GN (x, y) = LN (x, y)

Gk(x, y) = Lk(x, y) + Expand(Lk+1(x, y)), k = 0, . . . , N − 1
.

✞

✝

☎

✆3.22

The reconstructed image is contained in the highest resolution G0.

Since the distinct frequency bands can now be easily accessed, a mod-

ification (e.g. attenuation or amplification) of the frequency content of in-

dividual pyramid levels is achievable. In Chapter 6, we make use of this

property to manipulate high-resolution videos with the goal of guiding the

gaze, and implicitly the attention, of the viewer.

An extension to the temporal domain, in the same manner as for the

Gaussian pyramid, is conceptually straightforward but, technically, hides

a great amount of complexity (e.g. the buffering of intermediate results is

needed). Similarly, a generalization to the spatiotemporal domain is also

possible. Again, such a pyramid can either be isotropic, i.e. the spatial

and temporal frequences vary together (low spatial with low temporal, high

spatial with high temporal), or anisotropic, with which a finer-grained de-

composition of the spectrum is possible. For example, in such an image

pyramid high spatial and low temporal frequencies are also represented.

In this chapter, we have reviewed some basic aspects of image processing

and the efficient coding of natural image sequences. In the following chap-

ters, we will describe our own original research that will make use of such

techniques.
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4
Eye movements on naturalistic videos

In this chapter, we shall investigate a less-studied aspect of gaze alloca-

tion on naturalistic videos. Due to the highly predictive nature of salient

real-world events, eye movements are often anticipating such events rather

than just responding to them. Here we quantify the anticipatory nature of

eye movements during the free viewing of real-world videos, and compare

the degree of anticipation with that on other, less realistic stimuli, such as

edited TV-clips and video games. The work in this chapter is motivated

by our research on gaze guidance, where the optimal timing of so-called

gaze-capturing events is critical for obtaining the desired effect, i.e. to un-

obtrusively guide gaze in real time to relevant scene areas. There is also a

strong link to our work on the prediction of eye movements. We will here

employ methods from the previous chapter (namely, the geometric invari-

ants of the structure tensor) as simple means of identifying spatiotemporally

salient events. In the next chapter, we shall refine the procedure and propose

a generic approach for the prediction of eye movements on videos.

The work described here has previously been published in [Vig et al.,

2011b].

4.1 Introduction

Over the last decades, much research has explored the factors that drive

eye movements during the viewing of natural, real-world scenes. In the

classical studies by Buswell [1935] and Yarbus [1967], the human gaze was

primarily investigated using line drawings and static images. They noted

that, although individual differences exist, viewers tend to consistently fixate

the semantically informative regions when scanning a scene. Also, they
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found that fixation durations increase with increased viewing time and that

viewing patterns are sensitive to the specific task the observer is performing.

Surprisingly, colour has been shown to have little effect on viewing patterns.

When free-viewing images, the distributions of both saccade amplitude and

fixation duration are skewed, with an average amplitude around 2–4 deg and

fixations durations of 330ms on average with a mode at 230ms [Henderson

and Hollingworth, 1998].

While most work on gaze allocation in naturalistic scenes has dealt with

static stimuli, the study of Itti [2005] was among the first to confirm on real-

world complex videos that humans look at video regions of higher bottom-up

salience than would be expected by chance. The authors found that motion

and image transients are more predictive for eye movements than static

features, such as colour, intensity, or orientation. Moreover, Carmi and Itti

[2006] have shown on MTV-style video clips that dynamic visual cues can

play an important causal role in drawing attention. ’t Hart et al. [2009]

went further and used recordings of a mobile eye tracking setup to replay

the visual input (during in- and outdoor exploration) in the laboratory,

under head-fixed viewing conditions. The study showed that gaze recorded

in the lab can predict reasonably well eye positions in the real world, but

the temporal continuity of the scene is of importance. Tatler et al. [2005]

were among the first to draw attention to the tendency of human subjects

to fixate, in such eye-tracking experiments, more in the central part of the

display rather than in the periphery. Tseng et al. [2009] quantified this

phenomenon — the so-called central fixation bias — and linked it to the

bias of the photographer to place the subject of interest in the centre of the

image.

Eye movements have been collected and examined on a wide variety of

dynamic realistic stimulus types (i.e. video categories). Gaze allocation has

been studied while people watched Hollywood movies [Goldstein et al., 2007,

Smith and Henderson, 2008], video games, or even driving scenes [Crundall

et al., 2003, Underwood et al., 2005]. Dorr et al. [2010a] analyzed and

compared the variability of eye movements on a range of different dynamic

stimulus categories: natural videos, professionally-cut Hollywood trailers,

and so-called “stop-motion” stimuli. Scanpaths were particularly similar

across observers on Hollywood trailers, where, for example, frequent scene

cuts elicited temporally coherent reorienting eye movements towards the
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screen centre. Briefly presented static snapshots from natural videos that

were shown in their correct chronological order, however, proved not very

representative of natural human viewing behaviour. A different series of

studies, led by Michael Land, examined eye movements in a variety of ev-

eryday active tasks, such as driving [Land and Lee, 1994], food prepara-

tion [Land et al., 1999, Land and Hayhoe, 2001], and playing sports [Land

and McLeod, 2000, Chajka et al., 2006, Russo et al., 2003].

Contrary to the above studies, in the following we will not focus on the

spatial component of gaze allocation in dynamic real-world scenes. Instead,

we will investigate the average time lag of eye movements in responding to

dynamic attention-capturing events during the free viewing of natural or

realistic videos. Despite the vast amount of research on anticipatory gaze

behaviour in natural situations, such as action execution and observation,

little is known about the predictive nature of eye movements when viewing

different types of natural or realistic scene sequences. Here, we quantify this

degree of anticipation while subjects freely view dynamic natural scenes.

The cross-correlation analysis of image-based saliency maps with an empir-

ical saliency measure derived from eye movement data reveals the existence

of predictive mechanisms responsible for a near-zero average lag between

dynamic changes of the environment and the responding eye movements.

We shall also show that the degree of anticipation is reduced when moving

away from natural scenes by introducing camera motion, jump cuts, and

film-editing.

4.1.1 Anticipatory gaze behaviour

In Chapter 2, we argued that due to the anatomical structure of the eye,

a sophisticated oculomotor system is needed to direct the fovea, the small

high-resolution area of the retina, to regions of interest within the periph-

ery. This is achieved by saccades — the rapid eye movements by which we

shift our line of sight. However, the required neural processing introduces

a certain delay until the oculomotor system reacts to a visual stimulus. In

a typical laboratory setup, it takes about 200ms until a saccade is made

towards a spatially and temporally unpredictable target [Becker, 1991, Car-

penter, 1981]. This delay can, in principle, obstruct immediate reaction to

potentially critical events in everyday life. Yet, we are not hindered in our
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daily activities by this inherent lag in the visual feedback, most likely due

to anticipation of the course of future events.

Early studies have shown the existence of predictive mechanisms if the

target’s spatial and temporal characteristics, such as amplitude, direction,

and onset, are known a priori. For example, anticipatory saccades, with

near-zero or even negative latencies, occur when the target systematically

moves back and forth between two fixed locations [Findlay, 1981, Smit and

Gisbergen, 1989]. A number of experiments investigating eye movements

during natural interaction with the environment have found that the hu-

man visual system can benefit from expectations and prior knowledge about

the surrounding world: eye movement patterns were examined during the

performance of well-learned everyday tasks, such as tea- and sandwich-

making [Land et al., 1999, Land and Hayhoe, 2001], hand-washing [Pelz and

Canosa, 2001], and driving [Land and Lee, 1994]. These studies show that in

everyday life eye movements are “proactive, anticipating actions rather than

just responding to stimuli” [Land and Furneaux, 1997]. That is, saccades

are often made to predicted locations of expected events even in advance

of the event. However, these authors stress that eye movement patterns

are highly task-specific: they seem to be influenced by some learned inter-

nal model of the performed actions [Hayhoe and Ballard, 2005, Land and

Furneaux, 1997]. More recent experiments examined gaze patterns in more

dynamic environments, during the execution of actions requiring specific

physical skills. These studies confirm the proactive nature of eye movement

control. For example, in the ball game cricket, experienced batsmen make

high-precision anticipatory saccades to predict the ball’s trajectory [Land

and McLeod, 2000]. Similar results were reported when gaze patterns of

elite-shooters [Russo et al., 2003] and experienced squash players [Chajka

et al., 2006] were compared to those of novices. The main conclusion of these

studies is that these predictive mechanisms may have evolved by learning

the dynamic properties of the surrounding world (here, of the ball). These

studies present evidence for predictive mechanisms during the execution of

different natural tasks.

Furthermore, anticipation is found also during action observation. Ex-

periments have shown that predictions are made also during the viewing

of block stacking and model building tasks [Flanagan and Johansson, 2003,

Gesierich et al., 2008, Mennie et al., 2007]. When subjects watch a block
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stacking task, their gaze anticipates the hand movements of the actor, as if

they performed the task themselves.

Based on these findings, in this chapter we address the question: to

what extent does the human visual system benefit from predictive mecha-

nisms during the free viewing of dynamic natural scenes? Furthermore, how

does the visual system adjust to different degrees of predictability? Our

interest in these questions arose in connection with our work (described in

detail in Chapter 5) on eye movement prediction in dynamic real-world en-

vironments. A critical issue, often neglected in the design of computational

saliency models for eye movement prediction, is when exactly a salient loca-

tion is fixated. Depending on the degree of predictability of a salient event,

saccades may lag, coincide with, or even anticipate the event. Here, we

quantify the average time lag between salient events in the natural scene and

the eye movements responding to the events. Insights into these questions

may have important implications for the design of computational models of

saliency and of gaze guiding systems.

As shown in Chapter 2, most models of visual attention are built around

the concept of a saliency map, which topographically encodes stimulus con-

spicuity [Koch and Ullman, 1985]. In the following, we will refer to these

maps as “analytical saliency maps”, as they are computed analytically by

means of local low-level image properties.

4.1.2 Outline of the approach

To measure the delay between events in a video and saccades towards these

events, we temporally aligned analytical saliency maps with an “empirical”

saliency measure based on real gaze data (see Figure 4.1 for a sketch of

the analysis). According to our hypothesis, a dynamic event, such as the

appearance of an object (e.g. the car on the left), would yield a local spa-

tiotemporal maximum in our dynamic analytical saliency measures (middle

row in Figure 4.1). After a certain time, any saccade made towards this

dynamic event would, in turn, yield a local spatiotemporal maximum in the

empirical saliency map (bottom row). To determine this time lag, analyti-

cal and empirical saliency can be cross-correlated, that is, multiplied when

shifted against each other in time by varying amounts. Therefore, the time

lag at which the cross-correlation function reaches its maximum denotes the

average response delay.
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Figure 4.1: Different (x, y) and (x, t) slices of the spatiotemporal volume
of a video and corresponding analytical and empirical saliency maps. Top
row: Three neighbouring (but not consecutive) frames (i.e. (x, y) slices) of
a video and a horizontal (x, t) slice of the movie cube at fixed y = 400 pixels
(red horizontal line in the spatial screenshots). For the (x, t) slice, time axis
is along the horizontal direction. Here, the time of the sudden appearance
of the car is marked by the red vertical line. Middle row: Corresponding
frames from the analytical saliency map (invariant K of the structure ten-
sor). The sudden appearance of a car from left yields a strong response in the
analytical saliency map. Bottom row: Empirical saliency map based on
raw gaze samples of all subjects. Attention is drawn to the salient event (ap-
pearance of the car in the scene), but the eyes arrive at the target only after
a certain time lag. Saccadic responses yield a spatiotemporal maximum in
the empirical saliency map. The two saliency maps can be cross-correlated
to determine the average time lag between the two maps.
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In our analysis, the geometrical invariants of the structure tensor pre-

sented in Chapter 3 serve as the analytical saliency measure to predict gaze-

capturing events. As we shall see in the next chapter, the invariants (com-

bined with machine learning) will prove to be simple and fast alternatives to

state-of-the-art saliency algorithms (e.g. [Itti et al., 1998]). The invariant H,

for instance, encodes spatiotemporal contrast, whereas K is (only) sensitive

to dynamic content, i.e. encodes dynamic gaze-capturing events.

4.2 Methods

4.2.1 Stimuli and data collection

Natural dynamic scenes with static camera

In a free-viewing task, fifty-four participants (eight male, 46 female) watched

eighteen high-resolution (HDTV standard, 1280× 720 pixels, 29.97Hz) nat-

ural outdoor video sequences with a duration of about 20 s each. During

the recordings, the camera was held still; only four movies contained minor

pan and tilt movements. The clips depicted real-world outdoor scenes in

and around Lübeck: people in a pedestrian area (on the beach, playing in

a park), populated streets and roundabouts, animals. Still shots from nine

movies are shown in Figure 4.2. The videos were displayed at 45 cm viewing

distance and at a visual angle of 48 by 27 degrees, so that the maximum

spatial frequency of the display was 13.3 cycles per degree. The commer-

cially available videographic eye tracker EyeLink II was used to record gaze

data at 250Hz. The experiment was conducted using two computers, the

first of which was used to display the videos, while the second ran the eye

tracking software. Recordings were performed in Karl Gegenfurtner’s lab at

the Dept. of Psychology of Giessen University. To synchronize gaze record-

ing and video timing, the display of a new movie frame was signalled to the

tracking computer with a UDP packet sent over a dedicated Gigabit Ether-

net link; there, these packets were stored together with the gaze data using

common timestamps by the manufacturer’s software. From these recordings,

about 40,000 saccades were extracted using a dual-threshold velocity-based

procedure [Böhme et al., 2006]: to improve noise resilience, gaze velocity had

to exceed a high threshold θ1 = 137.5 deg/s to initiate saccade detection;

saccade onset and offset then were determined by the first samples where
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(a) beach (b) breite strasse (c) bridge 2

(d) ducks boat (e) golf (f) holsten gate

(g) puppies (h) roundabout (i) st petri mcdonalds

Figure 4.2: Still shots from nine natural movies captured with a static cam-
era.

gaze velocity rose above or fell below a lower threshold θ2 = 17.5 deg/s, re-

spectively. Finally, several checks were performed for biological plausibility:

minimal and maximal saccade duration and average and maximal saccade

velocity (the reason being that impulse noise might lead to high sample-to-

sample velocities). The data set is publicly available at [Dorr et al., 2010a]

and http://www.inb.uni-luebeck.de/tools-demos/gaze.

Moving camera and edited videos

As a control data set, we use the CRCNS eye-1 database [Itti, 2004a] (avail-

able at http://www.crcns.org/data-sets/eye/eye-1), a benchmark data

set for the analysis of eye movement data on complex video stimuli. The

database consists of 100 video clips (640 × 480 pixels, 30Hz) and the gaze

data of eight human subjects freely viewing these videos. For our analy-

sis, we used a subset of 50 clips and their corresponding eye traces called

“original” experiment [Itti, 2004a, 2005]. The sequences include indoor and

outdoor scenes, television broadcasts (commercials, sports, news, talk shows,

etc.), and video games. Example still shots from six movies are shown in
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(a) beverly06 (b) gamecube04 (c) standard05

(d) tv-ads03 (e) tv-sports01 (f) tv-news02

Figure 4.3: Still shots from the CRCNS eye-1 video set.

Figure 4.3. In case of all videos, transitions between shots are achieved by

camera movements, such as panning, tilting, and zooming. Besides these,

transitions are realized in television clips (23 out of 50) through jump cuts

and special video editing effects, such as fading, dissolving, and wiping. Text

overlays are also common. The total number of saccades extracted from the

raw gaze data with the aforementioned saccade detection procedure was

about 11,000.

4.2.2 Analytical saliency measures

In search of saccade triggering stimuli, we use a simple measure to detect

salient events in the video. It is well known that the visual signal needs to

change over space and time to capture attention (e.g. we tend not to like

blank walls). Therefore, a simple assumption one can make is that the more

the visual signal changes, the more salient it is. As shown in Chapter 3,

the degree to which a spatiotemporal signal changes is qualitatively well

described by the intrinsic dimension of the signal and we use this concept as

a simple measure of saliency. Obviously, such a simple assumption cannot be

sufficient to explain the complex nature of eye movements, but it works well

enough for our purpose, i.e. to align eye movements with attention-capturing

events in the video.

To estimate our analytical saliency measure, the intrinsic dimension, we
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computed the geometrical invariants H, S, and K of the structure tensor

J, which in Chapter 3 were shown to yield information about the mini-

mum intrinsic dimension of a video region. To improve noise resilience, we

performed our analysis on a lowpass-filtered video (6.6 cycles/degree) that

was created by filtering the video with a 5-tap spatial binomial filter and

downsampling it (in space) by a factor of two.

To obtain the structure tensor J (see Equation 3.11), partial derivatives

were calculated by first smoothing the input video with spatiotemporal 3-

tap binomial kernels, and then applying [−1, 0, 1] kernels to compute the

differences of neighbouring pixel values. The smoothing of the products of

derivatives (with Ω) was done with another spatiotemporal 3-tap Gaussian.

In principle, pooling these derivatives over a larger spatiotemporal neigh-

bourhood is desirable for a robust computation of the structure tensor J,

but for the present analysis, localized responses were more important than

robustness against noise.

In addition to being symmetric, the above filter kernels are centred at

the detected events, i.e. are non-causal. Note that with a non-causal filter,

the output can anticipate the next event. For our purpose, however, a non-

causal filter is more appropriate as its output is maximal at the time of the

event, whereas the maximum response of a causal filter would be lagging

behind the event and, therefore, would decrease the separation between the

analytical and empirical saliency measures.

One might argue that for registering the temporal events with eye move-

ments, it would suffice to consider simple temporal differences only. Indeed,

no substantial differences are expected when cross-correlating gaze responses

either with the original videos or with their saliency maps. Nevertheless, to

keep the noise level low, we prefer to register those spatiotemporal events

that are characterized by a high degree of predictability.

4.2.3 Empirical saliency measures

In eye movement research, eye tracking data typically comes in the form of

gaze coordinates. An important question is how to represent and evaluate

such data. One way to begin is to look at simple parameters such as mean

fixation duration and average saccade amplitude. However, often a more

complex analysis is required. For instance, when comparing eye movement

traces, one may want to compensate for possible imprecisions in both the
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eye tracking and human visual system. Also, eyes are typically directed at

particular regions of interest, not at single points. Wooding [2002] suggested

a means to convert the raw fixation data into a fixation density map, provid-

ing a useful tool to e.g. quantify the similarity of eye traces and compare (or

correlate) discrete gaze coordinates with feature (or saliency) maps. A fixa-

tion density map, also referred to as empirical saliency map, is constructed

by the superposition of Gaussians (to account for imprecisions) centred at

each gaze sample. A subsequent normalization step turns this map into a

probability density map in which regions of interest of human observers are

represented.

Average scanpaths (fixation density map)

We defined our first type of empirical saliency measure as the density of

the gaze points averaged over all subjects. These probability maps were

computed for each video, by placing two-dimensional spatial Gaussians at

each fixation location of all subjects, similarly to the well-known fixation

density distribution [Wooding, 2002]. The Gaussian kernels had a spatial

support of about 4.8 degrees of visual angle and a standard deviation σ of

0.25. The superposition of these Gaussians resulted in the empirical saliency

map. Example still shots from a fixation density map are given in the last

row of Figure 4.1. In that example, eye traces of 54 subjects were used to

create the map.

Average saccades (saccade density map)

In the standard approach, all raw gaze samples are used for creation of

the empirical saliency map, which includes samples throughout or even to

the end of fixations, although ultimately we are interested only in fixation

onsets. Therefore, we also created much sparser empirical saliency maps

with the above parameters but using only the saccade landing points of all

subjects.

Single saccades

As the traditional empirical saliency map contains gaze data of several view-

ers, saccadic responses to a certain salient event might arrive at slightly dif-

ferent times within a short time interval. How does this influence our analy-
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sis? To gain a deeper understanding of the underlying causes, we also exam-

ined the average time lag of individual saccades in responding to changes in

the visual scene. For each saccade, we created a sparse response map (simi-

lar to the empirical saliency), by placing a single two-dimensional Gaussian

at the endpoint of the saccade. Individually, saccade landing points are

more prone to noise than the full empirical saliency map. However, they are

more localized in space-time and in such a large number of samples (about

40,000 saccades in the first data set of natural outdoor scenes), noise should

cancel out.

4.2.4 Normalized cross-correlation

Our analysis is based on the cross-correlation of the above described ana-

lytical and empirical saliency maps shifted, relative to each other, in the

time domain [Gonzalez and Woods, 2001]. The normalized cross-correlation

function (ncc) between two spatiotemporal signals f and g is defined as

ncc(f, g, τ) =

∑

x,y,t(f(x, y, t)− f̄) · (g(x, y, t+ τ)− ḡ)
√
∑

x,y,t(f(x, y, t)− f̄)2 ·
∑

x,y,t(g(x, y, t+ τ)− ḡ)2

where τ is the temporal offset and f̄ and ḡ stand for the DC components

(means) of the two signals. ncc was computed for each analytical and em-

pirical saliency map pair.

To determine the correlation expected by chance, as a control condi-

tion, we randomly paired analytical and empirical saliency maps of different

movies and proceeded as above. This shuffling of scanpaths and videos

among each other is a standard procedure in relating low-level image fea-

tures to gaze data [Reinagel and Zador, 1999, Tatler et al., 2005].

4.3 Results

In our analysis, we shifted the empirical saliency relative to the analytical

saliency one frame per temporal unit (approximately 33.367ms in the first

movie set of natural outdoor scenes with static camera and 33.333ms in

the CRCNS eye-1 movie set), within a range of 61 (± 30) frames. Here,

we are less concerned with the absolute values of the correlation coefficient

obtained for the different time lags, but with the value of the time shift at
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which the maximum correlation occurs. We will mainly restrict ourselves

to invariant K, which encodes three-dimensional changes and is therefore

most informative to the human visual system in an information-theoretic

sense. However, we shall show that the observations also hold for the other

invariants.

4.3.1 Natural dynamic scenes with static camera

Figure 4.4 summarizes results obtained for cross-correlating the analytical

with the average empirical saliency map of all subjects. Mean correlation

coefficients for the eighteen movies are plotted against the frame shift in

Figure 4.4(a) (red cross curve). A positive lag of tms indicates that the

empirical saliency map follows the invariant movie by tms. The maximum

of the averaged coefficients, for correlating invariant K with the empirical

saliency map (“average scanpaths” case), is detected at a lag of 66.73ms

(i.e. two frames).

As can be expected, the maximum is slightly shifted in time to the left

when the fixation data is discarded (“average saccades” case – dotted curve

in Figure 4.4(a)). In this case, quite surprisingly, highest average correlation

is found at −33.36ms, i.e., on average, the empirical saliency map was ahead

of the analytical map by one frame. In both conditions (empirical saliency

based on raw gaze samples and on saccade endpoints only), mean correlation

curves have a Gaussian-like shape and a pronounced peak, whereas randomly

pairing and then correlating analytical and empirical maps of different videos

yields a flat curve (blue asterisk curve in Figure 4.4(a)).

In the following, we will restrict our considerations to an empirical map

based on saccade endpoints only, because, as results suggest, raw gaze data

introduces further undesired shifts in the eye movement response.

The box plot in Figure 4.4(b) shows the distribution (over the eighteen

movies) of time shifts at which maximum correlation was measured. Here,

we compare the distributions of correlation peaks obtained for the three in-

variants, H, S, andK, and for the random analytical–empirical pairing case.

As already expected, for the invariants, the peaks are all centred around 0ms

with only few exceptions (red crosses in Figure 4.4(b)). For example, for

invariant K, the correlation peaks of two movies are identified at very large

negative offsets, meaning that the response in the empirical saliency pre-

ceded the signal by an unrealistically large amount of time. An inspection
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Figure 4.4: The empirical saliency map (ES) is offset (with respect to the
analytical saliency map – AS) along the time dimension by one frame (33.367
ms) per temporal unit within a predetermined range (± 30 frames). A cor-
relation coefficient is calculated for each individual frame shift. (a) Average
correlation coefficients over all movies are plotted against the frame shift
(red cross: ES based on average scanpaths, red dot: ES based on average
saccades, blue asterisk: random AS – ES pairing). The dashed vertical line
represents the normal mean value of the saccadic reaction time (in the order
of 200ms) to unpredictable targets [Becker, 1991]. (b) Box plot comparing
distributions of correlation-peaks over the movie set for the AS measures H,
S, K, and random AS – ES pairing (middle line: median, box: upper and
lower quartile, whiskers: data extent, plus sign: outliers).
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of the shape of the individual correlation curves indicates that these two

curves are flatter than those of the other movies, with no pronounced peaks.

Indeed, a closer look at the content of these movies reveals that they are

of almost still-life character (e.g. unpopulated bridge) and so, as invariant

K is only sensitive to dynamic content, it is not surprising that the correla-

tion curves have no distinctive peaks. In the following, unrealistically large

positive and negative shifts are considered outliers.

Overall, we found that the three distributions of the invariants are very

similar with a median of one frame (33.367ms) for invariant H, −16.68ms

for invariant S and 0ms for K. Unlike the concentrated distributions of

the invariants, the lags at which maximum correlation occurs in the random

pairing case are scattered throughout the correlation window.

Results for correlating invariant K with individual saccades are shown in

Figure 4.5. The maximum of the average correlation curves of all saccades

is here, too, identified at −33.367ms (see the peak of the red dotted curve in

Figure 4.5(a)). The average correlation curve has again a pronounced peak

when compared to the curve of the control condition. However, the peak

around 0ms in the distribution of the time shifts with maximum correlation

(in Figure 4.5(b)) is not very distinctive. This is again due to low values ofK

resulting in a flat correlation curve with no pronounced peaks. To measure

the curves’ “flatness”, we used the following simple measure: in Figure 4.6(a)

we sorted the curves according to the difference of maximum and minimum

correlation values over the frame shifts. The more curved the correlation

line, the larger this difference. Indeed, when plotting, in Figure 4.6(b), only

the distribution of saccades for which this difference exceeded the mean of

all differences (i.e. 0.26), the peak becomes more prominent. Nevertheless,

this simple measure cannot eliminate outliers, such as peaks at implausibly

large time offsets.

4.3.2 Moving camera and edited videos

Next, we compare these findings with those obtained on the CRCNS eye-1

data set. When cross-correlating invariant K with individual saccades, a

noticeable shift is observed in the location of the peak of the mean correla-

tion coefficients (red dotted curve in Figure 4.7). The correlation maximum

is here identified at about 133.33ms (four frames). This larger average time

shift could, however, be explained by the fact that a significant number of
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Figure 4.5: Individual saccade landing points cross-correlated with the ana-
lytical saliency map K. (a) Average correlation coefficients over all saccade
endpoints (red dot: landing points, blue asterisk: shuffled locations). Peak
identified at −33.36ms (−1 frame). (b) Distribution of time shifts (over all
saccades) with maximum correlation.
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Figure 4.6: Individual saccade landing points cross-correlated with the ana-
lytical saliency map K. (a) Histogram of the distribution of saccades sorted
according to the difference between the correlation curves’ extreme points.
A threshold is set at the mean of the differences removing around 60 per
cent of saccades with a flatness measure smaller than the mean measured
“flatness”. (b) Distribution of correlation peaks of curves after thresholding.
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Figure 4.7: Mean correlation curves when cross-correlating individual sac-
cades with the invariant K (CRCNS eye-1 data set). For the “original”
experiment: averaging over correlation curves of all movies (red dot), com-
puter game videos (blue cross), TV-clips (green asterisk), outdoor scenes
(magenta plus sign), and randomly shuffled locations (black diamond).

the clips (television broadcasts and quasi-realistic computer game scenes)

are physically quite different from real-world natural scenes. Jump cuts,

camera movements, and movie-editing techniques introduce unnatural tem-

poral discontinuities which could entail delayed oculomotor responses. For

instance, movie cuts elicit reorienting saccades towards the centre of the

screen [Dorr et al., 2010a]. To further investigate whether the presence of

camera motion and movie-editing techniques affects average response delays,

we categorized the fifty movie sequences into three groups based on stimu-

lus type: TV-broadcasts (23 clips), computer games (9 videos), and outdoor

scenes (17 sequences; parks, crowds, rooftop bar). Note that the outdoor

scenes, too, were captured using basic camera movement techniques (i.e. tilt,

pan, and zoom). We excluded from our analysis a synthetic clip of a disc

drifting on a textured background. Average cross-correlation curves of the

three stimulus groups are plotted in Figure 4.7. Although the three curves

reach their maximum at very similar time shifts (at about 133.33ms), notice

the difference in how peaked the curves are. The correlation curve of the

quasi-realistic computer game stimuli is the most sharply peaked, whereas
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Figure 4.8: Offsets of correlation curve peaks when the correlation window
size is varied. Individual saccades were cross-correlated with the invariant
K. Blue circle: first movie set of outdoor scenes with static camera, red
asterisk: moving camera and edited videos.

the curve of the more natural outdoor scenes reaches a plateau at around

−66.66ms after which only limited increase occurs. Considering that we are

looking at averages of several individual correlation curves, a pronounced

peak and high correlation values (e.g. as in the case of computer games)

suggest that the majority of the underlying individual curves reach their

maximum at roughly the same time lag. In case of the outdoor scenes, how-

ever, the distribution of time shifts at which a peak occurs is more scattered;

therefore averaged coefficient values are lower and the maximum is not very

pronounced.

Finally, we show that the size of the sliding window has no impact on the

outcome of the correlation analysis. In Figure 4.8 we plotted, for various

correlation window sizes, the offsets of the peaks (of mean correlation curves)

for the two movie sets (blue circle – dynamic scenes with static camera,

red asterisk – moving camera and edited videos). When the window is

smaller than the actual optimal offset, the peak is detected at the border of

the correlation window, otherwise the curves are almost flat, i.e. offsets are

consistent, with only small fluctuations of one frame in case of the dynamic
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scenes with static camera. Here, peaks were detected at an offset of either

−1 or 0 frames.

4.4 Discussion

An often neglected question in the design of computational models of saliency

is what the typical response lag is to changes in the visual scene. The choice

of a specific value is typically motivated by laboratory investigations of sac-

cadic response latencies to synthetic stimuli. In [Carmi and Itti, 2006] for

instance, authors manually choose a particular latency that agrees with the

timing of human saccades in the context of a synthetic test clip. How-

ever, depending on the stimulus type, the average lag can vary quite sub-

stantially: in [Land and Furneaux, 1997], authors distinguished between

“reactive saccades of the laboratory” (having positive lags) and “proactive

saccades of normal life” (with near-zero or even negative lags). Here, we

aimed to infer the mean response delay, in laboratory settings under head-

fixed viewing conditions, when free-viewing dynamic natural scenes. Using

cross-correlation analysis of analytical saliency maps — encoding saccade-

triggering changes in the video — and spatiotemporal fixation maps — en-

coding eye movement responses to the salient events —, we identified the

time shift at which the two maps have the maximum correlation. We then

averaged results over several movies or individual saccades to determine the

mean lag in the stimulus class of natural videos. In addition, we examined

whether this average response delay differs from that obtained on similar

natural and quasi-natural (video game) stimuli, which were captured us-

ing basic camera movement techniques and, depending on the movie type,

post-processed with video-editing software.

In the first data set of dynamic natural scenes, we found a near-zero mean

lag, meaning that, on average, reactions to salient events coincided with or

even slightly preceded the events themselves. This result was consistent

for all analytical saliency maps (invariants H, S, and K) and both when

scanpaths of all subjects and individual saccades were cross-correlated with

analytical maps. This somewhat surprising finding may be attributable to

an adaptation of the human visual system to the environmental dynamics of

the surrounding world. Most dynamic events in natural scenes are, at least

to some extent, predictable. Such anticipatory mechanisms (e.g. looking
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ahead of the movement) imply some sort of scene knowledge of the dynamic

characteristics of the environment that is due, for instance, to experience

with the physical laws of motion.

In line with the studies on task-specific gaze control [Hayhoe and Ballard,

2005, Flanagan and Johansson, 2003], one could also speculate that, during

the viewing of a particular scene, observers might identify certain higher-

level (hidden) tasks and actions, such as playing beach ball, walking on a

bridge, driving in a roundabout. If we think of the free viewing of natural

videos as action observation of what is happening in the video, possessed

knowledge about these actions could possibly generate anticipatory gaze

behaviour.

Note that we are here not aiming at explaining gaze behaviour with

a simple bottom-up model but merely at measuring the time lag between

events in the video and the responding eye movements. We use a plausible

model of bottom-up saliency simply to improve the measurement of this time

lag. In other words, our bottom-up saliency model based on the invariants

merely serves as an “event detector”. The fact that this time lag is small

can indeed be attributed to top-down mechanisms but our result does not

depend on such interpretations. The anticipation that we find can be due

to many different predictive mechanisms starting from very simple (low-

level) models, such as a Kalman filter, to more complex (high-level) ones,

such as action planning. Given this possible continuum of mechanisms of

increasing complexity, it seems unnecessary to draw a “bottom-up top-down

borderline”.

The analysis of the second set of complex stimuli (CRCNS eye-1 data

set) reveals a longer average delay of about 133ms between a dynamic event

in the scene and saccades responding to it. We argue that, due to the

presence of jump cuts, camera motion, and other movie-editing techniques,

the amount of bottom-up influence in these stimuli is, on average, higher

than in truly natural scenes. The introduced temporal discontinuities and

the sudden appearance of text overlays in television broadcasts trigger a

high number of reactive saccades. Similarly, to passive observers, the moves

of the video game character are less predictable than to the game player

himself. Looking at the average correlation curves of the three video subsets

(TV-clips, games, and outdoor scenes), the curve of the outdoor scenes pops

out. Its global maximum is identified shortly after the overall average of
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133ms but mean correlation values are comparably high already beginning

with −66.66ms. This could suggest that, in comparison with the first set of

natural outdoor movies in which the great majority of saccades were rather

predictive (therefore, the peak shortly before zero), here the ratio of visually

guided and anticipatory saccades is more balanced.

Computational models of attention either assume no time shift between

their analytical saliency maps and the responding eye movements, or they

do not try to optimize this value but use subjective observations [Carmi and

Itti, 2006]. We argue that by introducing an artificial time lag adjusted to

the stimulus type (i.e. eliciting maximum response in the analytical saliency

at the time of the expected gaze response, not at the time of the event),

saliency models significantly increase their performance in predicting eye

movements. As an alternative, temporal uncertainty could be introduced

in the model in order to account for the different stimulus-specific time

lags [Vig et al., 2009].

The findings of this chapter are also highly relevant for our work on in-

tegrating gaze into future visual and communication systems by measuring

and guiding eye movements. In such a scenario, the right timing of the

so-called gaze-capturing events is critical for achieving the desired effect.

In other words, for attention to be drawn to a specific movie region at a

specific time, the temporal placement of the gaze-capturing event must take

into consideration the stimulus-specific average response lag.

4.5 Chapter conclusion

In summary, in this chapter, we have characterized a special class of visual

stimuli, namely, that of real-world natural scenes, in terms of the typical

time lags between salient changes in the scene and the responding eye move-

ments. To measure this typical time lag, we temporally aligned analytical

spatiotemporal saliency maps with response maps encoding saccadic reac-

tion to the salient events. We argue that the near-zero average lag could

be attributable to an adaptation of the human visual system to the — of-

ten predictable — dynamics of the environment. We have shown that the

degree of anticipation is reduced when moving away from natural scenes by

introducing cuts, camera motion, and film editing. Finally, we suggest that
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the stimulus dependent mean response lag should be an important consid-

eration in the design of computational models of visual saliency and gaze

guiding systems, and provide a method for computing the average time shift

between movie events and eye movements.
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5
Prediction of eye movements on natural

dynamic scenes

Since visual attention-based computer vision applications have gained pop-

ularity, evermore complex, biologically-inspired models — such as those re-

viewed in Chapter 2 and Appendix B — have been developed to predict

salient locations or interest points in naturalistic scenes. However, it is

well-known from machine learning theory that too much complexity can

lead to overfitting and poor generalization performance. In this chapter, we

therefore explore how far one can go in predicting eye movements by using

only basic signal processing, such as image representations derived from the

efficient coding principles presented in Chapter 3, and machine learning.

To this end, we begin with simple single-scale saliency maps computed on

grayscale videos and then gradually increase the complexity of our model to

spatiotemporal multiscale and multispectral representations. Using a large

collection of eye movements on high-resolution videos, supervised learning

techniques fine-tune the (relatively few) free parameters whose addition is

inevitable with increasing complexity. The proposed model, although very

simple, demonstrates significant improvement in predicting salient locations

in naturalistic videos over four selected baseline models and two distinct

data labelling scenarios. Furthermore, we also evaluate the impact of the

different labelling scenarios, which is a novel contribution as well. Finally, we

show that our model can be extended to successfully predict eye movements

even on transparently overlaid movies.

Parts of the work described in this chapter have previously been pub-

lished in [Vig et al., 2009, 2010b, 2012, Barth et al., 2010, Dorr et al., 2010b,

Vig et al., 2010a].
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5.1 Motivation

As we have discussed in Chapter 2, computational saliency models range in

complexity from few-parameter, empirical models to more complex, multi-

parameter ones. We have seen that while evermore complex models seem to

be needed to better predict gaze behaviour on realistic scenes, there are also

a few counterexamples to the trend [Kienzle et al., 2007b, Guo and Zhang,

2010].

This thesis contributes to this latter line of research by exploring the

potential of saliency models that make as few premises as possible. Once we

have established such baseline, we can then investigate (and quantify) the

potential gain from gradually increasing complexity. We propose to go back

to the basics of signal processing to obtain efficient image representations

(such as those presented in Chapter 3), and, if required, utilize powerful

learning algorithms on these representations to predict visual saliency in

videos. Specifically, we begin with the simple observation that many video

regions, such as homogeneous areas, are highly redundant, and that it is

local changes, i.e. intensity variations (along edges, corners, etc.), that are

informative. As shown in Chapter 3, the degree of this signal redundancy

can be mathematically described by the intrinsic dimension of a region,

and we here use this concept as a simple measure of saliency. In order to

further tune the model parameters so as to predict bottom-up attention on

complex scenes, we adopt data-driven machine learning techniques. How-

ever, given the high dimensionality of a pixel-based video representation,

current learning algorithms would require very large amounts of data and

thus have only limited practical applicability. Even with only a moderate

number of training data, i.e. human fixations on videos, we here overcome

the curse of dimensionality through dimensionality reduction (specifically

by spatial pooling of features). This allows us to incorporate more informa-

tion, e.g. from multiple spatiotemporal scales. Furthermore, the concept of

intrinsic dimensionality naturally leads to a unified representation of spatial

and temporal saliency, such that no fusion of separate static and dynamic

maps is required (as in the case of models derived from the Feature Integra-

tion Theory, see Section 2.2.4). Similarly, the definition can be extended to

multispectral sequences, so that it becomes no longer necessary to combine

separate saliency maps from each colour channel. In order to test the per-
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formance of our model, we use the large data set of human fixations on the

diverse collection of high-resolution outdoor videos (captured with a static

camera) presented in Chapter 4. Since top-down processes strongly mod-

ulate gaze behaviour, obviously, we cannot expect any bottom-up model

to fully account for the complex nature of attentional orienting. Neverthe-

less, we shall show that our simple assumptions already account reasonably

well for eye movements during free-viewing of dynamic real-world scenes.

Indeed, the proposed simple approach shows significant improvement over

several state-of-the-art models of bottom-up saliency, which base their pre-

diction on numerous assumptions on perceptual processes and incorporate

several basic features. Through a systematic analysis, we shall also set out

to quantitatively evaluate the gain from more complex features by gradu-

ally extending a simple single-scale saliency map computed on the intensity

videos to a multiscale and multispectral model. Our results support the

(intuitive) assumption that a higher degree of variation in the visual signal

leads to higher saliency.

The remainder of this chapter is organized as follows. In the first and

main part, we describe and empirically validate the major contribution of

this thesis: the generic yet powerful saliency predicting framework derived

from the simple assumption that the degree of local signal variation is related

to informativeness (and thus, salience) of an image region. We start by

describing the computational steps of the above outlined simple and efficient

algorithm for bottom-up saliency. Then, in Section 5.3, we demonstrate its

performance in predicting human fixations on the 18 natural videos of the

previous chapter. There, we shall prove the validity of the approach for

two different data labelling scenarios (Section 5.3.2), discuss implementation

issues (Section 5.3.3), and present a systematic analysis of how the choice

of free parameter values affects prediction performance (Section 5.3.4). In

Section 5.3.5, we compare our results to those of four baseline models for

bottom-up saliency. Finally, in Section 5.4, we interpret the results and

summarize the major findings.

In the second part of this chapter (Section 5.5), we shall extend and ap-

ply our basic saliency to two further application scenarios. First, we examine

the contribution to bottom-up saliency of spatiotemporal intensity variation

along different subspaces of lower dimensionality (i.e. different combinations
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of the x, y, t axes). The findings of this work are particularly relevant for

machine vision systems with limited computing resources. Then, to conclude

this chapter, we shall extend our saliency prediction framework to predict

eye movements on transparent overlaid movies based on the symmetric in-

variants of the generalized structure tensor.

5.2 Model description

An outline of our eye movement prediction approach is schematically illus-

trated in Figure 5.1. Before delving into details, we first provide a brief

overview of the model structure and the main computational steps. Here,

we learn the structural differences between salient and non-salient video lo-

cations on simple video representations (reviewed in Chapter 3) that charac-

terize different types of spatiotemporal intensity changes. Given a collection

of image sequences and a large set of recorded eye movements on them, we

label areas in the videos as either salient or non-salient. For each video, we

compute low-level feature maps that encode the intrinsic dimensionality of

video regions. Such maps are computed on several spatiotemporal levels of

multiresolution image pyramids. In a neighbourhood around each location

(be it salient or not), we extract the feature energy from these maps: the

root-mean-square of the pixels in the spatiotemporal neighbourhood. Fea-

ture energy (a single scalar) is computed on each pyramid level; thus, each

location is described by a low-dimensional vector whose components are the

energy values on different scales. Such feature energy vectors are finally

fed into a classifier (a Support Vector Machine), which learns a mapping

between feature energy vectors and the saliency level of a certain location.

In the following, we shall describe the above steps in greater detail.

5.2.1 Multiscale geometric invariants

To characterize different types of local spatiotemporal variations, we use the

structure tensor-based image representations reviewed in Chapter 3. The

scale on which the intrinsic dimension is estimated depends on the band-

width of the Gaussian smoothing function Ω and of the derivative operators

(see Eq. 3.11). Therefore, we extract the geometrical invariants H, S, and

K (of both grayscale and multispectral videos) on an anisotropic Gaussian

pyramid with nS spatial and nT temporal levels. A detailed description of
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Figure 5.1: Flow diagram of our approach. Using eye tracking data (fixations
denoted by small red squares in the movie frame), we label movie regions
as attended or non-attended. Image features (the geometrical invariants)
are extracted on multiple scales of an anisotropic spatiotemporal pyramid.
For a neighbourhood (large unfilled square shown schematically) around
each location, the average feature energy is computed on each scale of the
spatiotemporal pyramid. An SVM is trained on the obtained energy vectors
and is then used to predict whether a new location will be attended or not.
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such multiresolution Gaussian image pyramids is given in Section 3.3.

5.2.2 Dimensionality reduction

The saliency of a video location is strongly influenced by its spatiotempo-

ral context. Centre-surround models exploit this property when they define

saliency as the ability of some features to best discriminate between image

structure in a centre and a surround window. Besides, in a data-driven ap-

proach, where fixational data is utilized to tune the model parameters, one

also has to compensate for possible inaccuracies in both the eye tracking and

the biological system. The size of the spatiotemporal neighbourhood that

needs to be considered is still a matter of debate in the human vision com-

munity. While some studies use windows of the size of the high-resolution

centre of the retina, the fovea (2–3 degrees), one can also optimize it with

respect to the available eye movement data. Learning in the pixel space de-

termined by the number of pixels of the neighbourhood is often problematic

as the feature space dimensionality of a reasonable sized image patch, e.g.

64 by 64 pixels (2.5 × 2.5 deg) grows rapidly (more than 4000 dimensions).

In such a scenario, given a limited number of training data, the effects of

the “curse of dimensionality” seriously degrade classification performance.

Due to such constraints, the learning algorithm in [Kienzle et al., 2007b],

for instance, was restricted to a single spatial scale.

In order to tackle the above problem and allow incorporating informa-

tion from multiple scales, we perform a spatial pooling : we reduce pixel

information in a window around the location to a single scalar, by taking

the root-mean-square of the feature values (i.e. geometrical invariants) in

the window. As a result of such pooling, an invariant representation of the

local neighbourhood originates. This allows us now to compute such feature

energy on every scale of the above multiresolution pyramids, as the dimen-

sionality is still kept low. Here, we use a spatial neighbourhood only, as

the uncertainty induced by measurement errors and saccade imprecision is

higher in the spatial domain than in the temporal one.

More formally, for a movie location p = (x, y, z) (with spatial coordinates

x and y, and frame number z), we compute a vector

fp = (e0,0, e0,1, · · · , enS−1,nT−1)
✞

✝

☎

✆5.1

68



5.2. MODEL DESCRIPTION

consisting of the feature energies extracted on each scale of an anisotropic

pyramid with nS spatial and nT temporal levels. The feature energy of a

window (centred around the location p) computed on the s-th spatial and

t-th temporal pyramid level is defined as

es,t =

√
√
√
√
√

1

WsHs

Ws/2
∑

i=−Ws/2

Hs/2
∑

j=−Hs/2

I2s,t(xs − i, ys − j) ,
✞

✝

☎

✆5.2

where Is,t represents the s-th spatial and t-th temporal level of one of the

invariant pyramids, H, S, and K, computed beforehand for every pixel.

Ws and Hs stand for the (subsampled) spatial width and height of the

neighbourhood on the s-th spatial scale (independent of the temporal scale).

Ws and Hs are decreased by a factor of two per level, so that the effective

window size is the same on all scales. The spatial coordinates of the location

are also subsampled on the spatial scale s: (xs, ys) = (x/2s, y/2s). In time,

one frame of a lower pyramid level corresponds to several frames on the

original level, so that we implicitly integrate over time, as well. Given a

learning scenario, the optimal window size can be inferred from the eye

movement data by systematically evaluating, in terms of performance in

predicting fixations, a range of different neighbourhood sizes.

5.2.3 Learning

Given a collection of videos together with a set of salient and non-salient

locations on these videos, the task of predicting interesting locations can be

naturally viewed as a binary decision problem, to which efficient methods

from machine learning can be applied.

Thus, the task of learning to distinguish salient locations consists in find-

ing a confidence value quantifying the patch’s level of interestingness. For-

mally, we look for a function g : RnS×nT → R that returns such a confidence

value for a new movie location p, based on its energy vector fp. The training

data comprises the feature energy vectors of previously seen locations and

associated class labels (salient or not), (fpi
, li) ∈ RnS×nT × {−1, 1}.

The available fixational data is partitioned “movie-wise” into a training

and a test set: gaze data of all viewers on one movie are retained for testing,

while the fixations on the remaining movies are used for the training. For

69



CHAPTER 5. PREDICTION OF EYE MOVEMENTS ON VIDEOS

the classification we use a standard soft margin Support Vector Machine

(SVM) with Gaussian kernels. A brief description of the theory of Support

Vector Machines is included in the Appendix. Prior to training, we linearly

scale each attribute (i.e. the feature energy on a particular spatiotemporal

scale) to [−1, 1]. Optimal model parameters are found with cross-validation

on the training sequence. To measure the quality of prediction, we perform

an ROC analysis using the collected human gaze data as ground truth.

Receiver operating characteristic (ROC) analysis is a common evalua-

tion metric from signal detection theory, which in recent years has been

used increasingly in machine learning for model comparison. ROC curves

illustrate possible tradeoffs between true positive rate (i.e. the fraction of

correctly classified fixations among all fixations) and false positive rate (the

fraction of non-fixated locations forecasted as fixations) for classifiers that

have continuous output. A systematic variation of the threshold used to dis-

criminate between salient and non-salient movie locations leads to a change

in both the false positive and true positive rate, which can be plotted as a

curve. The area under the ROC curve (AUC) is commonly used to sum-

marize performance across all possible thresholds in a single value. The

smaller the area under the ROC curve the more the predictor resembles a

random classifier, which has an AUC of 0.5. An AUC of 1.0 means perfect

discrimination.

To quantify the benefits of incorporating information from multiple scales,

we compare the model with simpler variants of the above classifier that

operate on single scales only. For this, we evaluate the performance of one-

dimensional maximum-likelihood classifiers when the feature energies from

individual pyramid levels are treated as inputs to the decision algorithm.

Results for the “most predictive” scale are then compared to the performance

of the (learned) multi-scale model.

5.3 Experimental evaluation

Here, we test the quality of the structure tensor-based predictors on a large

set of eye movement data and compare their predictive power with that of

four state-of-the-art models of bottom-up saliency.
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5.3.1 Videos and eye movement data

Our experiments examined the performance of the proposed approach on the

data set of eye movements on 18 high-resolution naturalistic videos (captured

with a static camera) presented in Chapter 4. From the recorded gaze data,

about 40,000 saccades were extracted using a dual-threshold velocity-based

procedure [Böhme et al., 2006].

5.3.2 Data set labelling

The learning algorithm takes as input a set of positive, salient examples

and a set of negative, non-salient ones. Whereas the set of fixations, more

precisely saccade landing points, appears as a straightforward choice for

the positive class, obtaining negative examples is non-trivial. An intuitive

and commonly used approach is to arbitrarily pick locations from a uniform

distribution either from the entire scene or (better) from areas that were

not fixated, i.e. where spatiotemporal distance to the nearest fixation is

large enough. However, as we have argued in Chapter 4, several recent

studies have pointed out that such approaches do not account for a common

problem inherent in most eye movement data sets: the tendency of viewers to

fixate preferably in the centre of the display [Tatler et al., 2005, Tseng et al.,

2009]. To remove possible artifacts due to the centrally biased distribution

of gaze positions, it has been suggested that the non-salient locations of a

video should be taken from real scanpaths on different movies. That way, an

identical spatiotemporal distribution of the positive and negative examples

over the set of all movies is obtained, but such artefact minimization also

comes at a price. The above procedure of picking the negative examples may

lead to overlap between the two classes and, hence, to an underestimation

of the real model performance.

Existing approaches typically report results for only one of the afore-

mentioned methods, so that it is not clear how sensitive the models are

to labelling conditions, and whether or not the different conditions lead to

significant deviation in performance. To investigate this and provide a fair

comparison of the different models that might otherwise benefit from (la-

belling) biases, here, we consider both of the above labelling procedures: the

“bias-free”, where we account for the central fixation bias and allow for over-

lap, and the “default” one, which minimizes the overlap. Loosely speaking,
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Figure 5.2: Salient (red plus) and non-salient (blue cross) locations on a
movie. These locations are shown on the 2D projections (xy, tx, and ty) of
the 3D spatiotemporal volume of the video. Upper row: “bias-free” labelling
with saccade landing points in the salient class, and fixations on other movies
in the non-salient class. Lower row: “default” labelling — salient and non-
salient locations are chosen from the maxima and minima of the empirical
saliency measure. Note the difference in overlap between the two classes
under the two labelling schemes.

the “bias-free” scheme samples negative training data from different movies,

whereas the “default” scheme samples from different spatial locations.

In the first case, the full set of saccade landing points is used to label the

salient locations (about 40,000 over all movies and subjects). For the neg-

ative class, the non-salient locations of a movie are chosen using randomly

selected scanpaths from different movies (see upper row of Figure 5.2). Be-

cause of latencies of the oculomotor system, the time of the gaze response

to a specific salient event does not necessarily coincide with the time of

the event. Hence, existing approaches usually introduce a temporal offset

(between 150-250ms) based on well-established results on reaction time to
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synthetic stimuli. However, as we have shown in Chapter 4 and in [Vig

et al., 2011b], the typical reaction time is stimulus dependent and in natural

scenes this average lag is near zero (i.e. no offset needs to be considered)

due to the highly predictive nature of salient real-world events.

As argued before, such a “bias-free” labelling procedure introduces over-

lap in the salient and non-salient classes, i.e. the data set is contaminated

with wrongly labelled samples (outliers) that deteriorate the model per-

formance. In an attempt to avoid such overlap, in the “default” labelling

scheme, we rank video regions according to the “empirical” saliency measure

(introduced in Chapter 4), which is derived from the recorded eye movement

data. As shown in Chapter 4, such maps are defined as the density of the

gaze points averaged over all viewers and therefore constitute an upper limit

of prediction, i.e. an inter-subject agreement. We compute such a proba-

bility map for each video, by superposing spatiotemporal Gaussians placed

at each gaze location of all subjects. Samples of the salient and non-salient

classes are picked from regions with the highest (for the positive class) and

lowest (for the negative class) density of fixations. In our analysis, the Gaus-

sian filter had a spatial support of 2.4 degrees of visual angle, a temporal

one of 0.17 s, with the standard deviations 0.6 degrees (spatial) and 600ms

(temporal). An equal number (40,000) of salient (non-salient) locations was

then chosen randomly from locations where the empirical saliency exceeds

(is below) a given global threshold (see lower row in Figure 5.2). Threshold

values were set at the upper ten percent (for salient) and lower one percent

(for non-salient locations) of the maximum empirical saliency estimated over

all movies. These values were chosen so as to obtain an equal number of

data points in the two (salient and non-salient) classes.

5.3.3 Implementation

Here, we provide a more detailed discussion of how implementation consid-

erations were integrated in our analysis.

To extract the proposed salient features (i.e. the geometrical invariants)

on different spatiotemporal scales, we constructed an anisotropic Gaussian

pyramid with nS = 5 spatial and nT = 5 temporal levels, as described in

Section 3.3. This rather high number of pyramid levels (a free parameter)

was chosen so as to ensure that frequency components that are potentially

relevant for visual saliency are represented. For the structure tensor J,
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partial derivatives in Equation 3.11 were calculated by first smoothing the

input with spatiotemporal 5-tap binomial kernels (1, 4, 6, 4, 1)/16 and then

applying [−1, 0, 1] kernels to compute the differences of neighbouring pixel

values. For the smoothing of the products of derivatives (with Ω), we chose

the same spatiotemporal 5-tap Gaussian.

Besides being symmetric, the above filter kernels are non-causal, so that

the temporal filtering requires video frames with future time stamps. As a

consequence, depending on the number of temporal scales, a certain number

of the initial and final output frames of the invariants are distorted. To

avoid such temporal border effects, we only considered fixations from (and

restricted the analysis to) valid frames. For a temporal pyramid with nT = 5

levels, this meant discarding quite a notable number of frames: the first

and last 3.2 s (96 frames) were not considered for further analysis. Since

the invariants H, S, and K comprise of products of one, two, and three

eigenvalues, respectively, their dynamic range is not identical. For a fair

comparison of the three, we therefore mapped them to the same dynamic

range: they were raised to the power of six, three, and two, respectively.

To increase computational efficiency in the subsequent steps, the invari-

ants were stored to disk using lossless compression. We normalized output

invariant videos to pixel intensity values between [0, 255] by taking the eighth

root and linearly scaling the maximum over all levels to 255.

Once these features were extracted on multiple scales, we computed the

feature energy in windows of varying size at each salient and non-salient

location (about 25,000 per class over all movies, after discarding invalid

invariant frames). We cropped the window at the boundaries if it was too

large.

Finally, a classifier was trained with feature energy vectors on all but

one video from the movie set and testing was performed on the withheld

movie. The optimal parameters of the kernel Support Vector Machine (i.e.

the width γ of the Gaussian and the penalty term C) were found by 8-fold

cross-validation on the training sequence. Given a low number of videos (18

in total), and since eye movement predictability varies quite considerably

between different video clips, the whole procedure (including the training

and search for optimal parameters) was repeated 18 times so that each

movie served as test data once.

To estimate the performance gain from incorporating information from
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multiple spatiotemporal scales, the predictability of the single scales was also

tested. For this, an ROC analysis was performed (without further SVM

prediction) on the energies from single pyramid levels. Here, multiscale

results are compared with the outcome of the single “best” scale over all

movies (in terms of ROC analysis), i.e. the frequency component that is

most relevant for attentional selection. In case of multiscale analysis, the

delivered decision values on the test movie are determined with respect to

the training data, that is, the energy vectors from the remaining 17 videos.

For single scales, however, a separate ROC analysis on each single movie

would not take into account the overall distribution of feature energies in

the two classes, and thus overestimate performance. Therefore, for single

scales, instead of 18 ROC tests for the individual movies, we perform a single

ROC analysis on the entire set of salient and non-salient locations from all

18 videos. This assures that during decision making the approximated true

distribution of the fixated and non-fixated energies is used.

5.3.4 Quantitative analysis

In this section, we systematically investigate how different feature types con-

tribute to model performance. We vary three main variables: the window

size considered in extracting the feature energy, the colour channels (lu-

minance alone or multispectral representations) on which the geometrical

invariants are extracted, and, finally, the number of pyramid scales con-

sidered (single-scale vs. multiscale approach). The following analysis was

performed for all three geometrical invariants. Since the qualitative results

for the two types of data set labelling were identical, in this section, we only

consider one: the “bias-free” labelling.

We started with the simplest scenario, considering salient features that

are extracted on single spatiotemporal scales of the grayscale videos (i.e.

no multiscale and multispectral analysis yet). Here, we report results for

the pyramid level that gave best predictability, in terms of a single ROC

analysis over the entire set of fixated and non-fixated locations from all

18 movies. To quantify the gain of the final spatial pooling (i.e. feature

energy computation) on predictability, we varied the spatial window in size

between a single pixel (i.e. no spatial pooling) to about 10 degrees of visual

angle, with the exact window sizes used as follows: 0.03, 1.2, 2.4, 4.8, and

9.6 degrees. As seen in Fig. 5.3(a), the trend is consistent for all three
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Figure 5.3: (a) Eye movement predictability as a function of window size
for the “bias-free” labelling. Range tested: {0.03, 1.2, 2.4, 4.8, 9.6} degrees
of visual angle. For all three invariants, highest ROC scores were found at
2.4 deg. (b) Predictability using the geometrical invariants of the structure
tensor on the luminance channel (Y ) and of the multispectral structure
tensor (Y UV ) given an optimal window size of 2.4 deg. Performance does
not increase much with the addition of the UV colour channels. In both (a)
and (b), invariants that extract features with higher intrinsic dimensions
(K) are more predictive than lower intrinsic dimensions (S and H).

76



5.3. EXPERIMENTAL EVALUATION

invariants: predictability increases with the window size, peaking at around

2.5 degrees, after which it slowly decreases. A window of 4.8 degrees still

yields prediction rates close to the maximum. This is in agreement with

psychophysical studies that claim the size of the influencing spatiotemporal

context has roughly the size of the fovea. Since the relative gain in predictive

power from no window to one of 2.4 degrees is 11% for invariant H, and

8% for S and K, a rather large pooling is justified. Therefore, for further

analysis we fix the window size to the optimal 2.4 degrees.

The qualitatively most relevant result, however, is that the prediction

performance increases with the intrinsic dimension: invariants that extract

features with higher intrinsic dimension are more predictive. Thus, invariant

K with an ROC score of 0.68 is best, followed by S (AUC of 0.66), whereas

the worst performing is H with an AUC of 0.64.

Results for geometrical invariants computed on the luminance channel

alone versus on multispectral representations (the weighted Y ′CbCr colour

space) are shown in Fig. 5.3(b). Colour information has surprisingly little

effect on saliency: it improves prediction performance, but only slightly.

Finally, we evaluate how much improvement can be achieved when in-

cluding information from multiple scales. Thus, the single-dimensional ROC

analysis is replaced by a kernel SVM that operates on 25-dimensional fea-

ture energy vectors computed on anisotropic invariant pyramids with nS = 5

spatial and nT = 5 temporal levels. As expected, results in Fig. 5.4 show

some benefits of multiscale processing: prediction performance improved by

11% for invariant H, for S by 7%, while a slightly smaller increase of 4.5%

is found for K.

5.3.5 Comparison to existing bottom-up models

We compared the proposed generic method with four state-of-the-art models

of bottom-up saliency for dynamic scenes: the Bayesian “surprise” [Itti and

Baldi, 2009], SUNDAy [Zhang et al., 2009], and the models of [Itti et al.,

1998] and [Itti and Koch, 2001] (denoted by “Maxnorm” and “Fancy”),

which are in fact implementations of the classical saliency map of Koch and

Ullman [1985] (detailed in Chapter 2) but which employ different fusing

schemes of the individual saliency maps into a master map. “Maxnorm”

(normalized summation) yields smooth, more continuous saliency maps,

while the iterative “Fancy” scheme yields increasingly sparser maps, with
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Figure 5.4: Predictive power of single-scale (i.e. “best” scale in terms of
ROC analysis) and multiscale approaches (window size = 2.4 degrees, mul-
tispectral structure tensor, “bias-free” labelling). Using information from
multiple scales improves performance, but only slightly.

only a few sharp peaks of activity. In Appendix B, we give an overview

of the architecture of the Itti (“Maxnorm”) and SUNDAy models. Default

model parameters, detailed on the web pages of the toolboxes, were used

to obtain saliency maps for the same video set. To discriminate between

salient and non-salient movie locations, these maps were treated as maxi-

mum likelihood binary classifiers. By thresholding these maps, movie regions

above the threshold were classified as salient. A systematic variation of the

threshold – “movie-wise” – resulted in 18 ROC scores listed in Table 5.1.

As before, the labelling scheme used to obtain the results in Table 5.1 was

the “bias-free”. For comparison, the geometrical invariants were extracted

on multiscale and multispectral representations (with feature energies com-

puted in the optimal window of 2.4 degrees). The prediction performance of

the various models was compared with a paired Wilcoxon signed rank test.

Statistical significance was obtained for K > H (p = 0.034) and K > S

(p = 0.013), however, not for S > H (p = 0.395). Also, results on the

invariants proved to be significantly different from those of the four baseline

models (except for H > SUNDAy with p = 0.07). However, no statistical

differences were found among the four state-of-the-art models.

Possible ROC values range from 0.5, which indicates chance performance,

to 1.0, which means perfect discrimination. Note, however, that different

class labelling strategies narrow the effective range of ROC scores. On the
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Table 5.1: ROC scores of various bottom-up saliency models on the col-
lection of 18 outdoor videos (“bias-free” labelling; numbers in bold indi-
cate highest prediction rate). Regions with higher intrinsic dimension (en-
coded by invariant K) are significantly more predictive for saliency (paired
Wilcoxon’s test).

Movie H S K Maxn. Fancy Surp. SUN

beach 0.67 0.68 0.71 0.64 0.61 0.61 0.65

breite strasse 0.71 0.76 0.76 0.73 0.70 0.70 0.70

bridge 1 0.63 0.61 0.59 0.53 0.52 0.52 0.50

bridge 2 0.57 0.53 0.53 0.59 0.61 0.64 0.60

bumblebee 0.57 0.54 0.63 0.53 0.55 0.54 0.56

doves 0.80 0.82 0.83 0.67 0.70 0.71 0.72

ducks boat 0.58 0.64 0.70 0.70 0.63 0.65 0.63

ducks children 0.73 0.78 0.78 0.52 0.59 0.56 0.70

golf 0.75 0.76 0.77 0.70 0.60 0.67 0.77

holsten gate 0.62 0.62 0.66 0.61 0.53 0.51 0.61

koenigstrasse 0.64 0.62 0.60 0.57 0.53 0.60 0.62

puppies 0.68 0.73 0.75 0.68 0.76 0.71 0.65

roundabout 0.68 0.69 0.70 0.63 0.63 0.62 0.63

sea 0.84 0.86 0.86 0.82 0.77 0.83 0.84

st petri gate 0.56 0.58 0.60 0.52 0.56 0.56 0.51

st petri market 0.62 0.60 0.63 0.57 0.56 0.52 0.58

st petri mcdon. 0.51 0.52 0.50 0.51 0.59 0.51 0.57

street 0.74 0.76 0.77 0.71 0.68 0.58 0.68

Average 0.66 0.67 0.69 0.62 0.62 0.61 0.64
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one hand, the “bias-free” method that accounts for the central fixation bias

may lead to erroneous labelling, which results in lower prediction rates. On

the other hand, with no bias correction (“default” labelling), the model ben-

efits from the differences in the spatiotemporal location distributions, which

amounts to a substantial jump in performance. To estimate the effective

performance range related to the two different labelling strategies, we ad-

ditionally considered two simple control measures: (1) the spatial distance

of the salient/non-salient location to the video-centre as a (possible) lower

bound to this range, and (2) the “empirical saliency” measure – a fixation

density map – as a “perfect” predictor of eye movements and, as such, as an

upper bound. Note that when existing scanpaths from other movies serve

as non-fixated points, the salient and non-salient location distributions are

identical, hence, the distance to centre performs roughly at chance level.

However, the empirical saliency is obviously an optimal predictor (with an

AUC of 1.0) when the locations of the two classes are picked by thresholding

this map.

The performance of the various methods for the two labelling strategies

is summarized as averages over all 18 test sets/movies in Figure 5.5. With

no bias correction (“default” labelling), the distance to the centre alone

achieves a mean ROC score of 0.75, which is in agreement with previously

reported results [Zhang et al., 2008, Judd et al., 2009]. At the same time,

in the case of “bias-free” labelling, an empirical saliency measure built on

the fixation positions discriminates these same locations from non-salient

ones with a mean AUC of 0.79. The non-optimal performance is here due

to noisy labelling and overlap in the two classes.

Despite its simplicity, our generic model based on the invariants of the

structure tensor outperforms all four baseline models when accounting for

the central fixation bias. Invariant K (average 0.69 AUC) comes closest to

the upper bound marked by empirical saliency (0.79 AUC), but even the

“weaker” invariants S and H still perform better than the baseline models;

of those, SUNDAy achieves the highest average AUC (0.64).

Invariant K gives best prediction results (0.84 AUC) also for the second

labelling procedure. Here, the two Itti models (“Maxnorm” and “Fancy”,

0.81 and 0.80) perform better than SUNDAy and Surprise; the latter two

surprisingly seem to be only as good as the “distance to centre” classifier.
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Figure 5.5: Average ROC scores of the various models for the prediction
of eye movements on naturalistic videos. The two data labelling scenarios
(green – “bias-free” and yellow – “default”) differ on whether or not viewing
biases are accounted for, and whether all fixations or only the most salient
areas are modelled. To estimate the effective performance range, two control
measures were introduced: (1) Centre – distance to the video-centre as a
lower bound and (2) EmpSal - the empirical saliency as the upper bound.
The invariants (H, S, and K) were computed with the optimal parameters:
a multispectral anisotropic pyramid with five spatial and five temporal levels,
and feature energy was averaged in a window of 2.4 degrees. Performance
is compared to that of four baseline models: Itti’s Maxnorm (Maxn) and
Fancy algorithm, Itti and Baldi’s Surprise model (Surp) and SUNDAy.
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5.4 Discussion

In this chapter, we have derived a generic yet powerful model for bottom-up

saliency from the simple assumption that the degree of local intensity vari-

ation is related to the informativeness of an image region. The concept of

intrinsic dimensionality measures this degree and yields a basic description

(or “alphabet”) of how a multidimensional signal may change. We charac-

terize typical video structures based on the geometrical invariants H, S, and

K of the structure tensor, which correspond to the minimum intrinsic di-

mension of a movie region. Our model of bottom-up saliency combines such

simple low-level visual features — the geometrical invariants extracted on

multiple spatiotemporal scales — with machine learning to predict salient

locations in natural dynamic scenes. We found that this simple approach

proves successful in explaining human fixation data on a diverse collection of

real-world videos. All three geometrical invariants were found to have good

prediction capability. More importantly, however, our results provide strong

evidence that the human visual system preferentially allocates its processing

resources to more informative image regions; invariants that extract features

with higher intrinsic dimension yield a sparser representation and they are

more predictive for eye movements. Conversely, movie regions with lower

intrinsic dimensions, i.e. redundant locations in case of i0D and i1D, are

less often fixated. Taken together, this provides indirect evidence for the ef-

ficient coding strategy of the brain [Olshausen and Field, 1996], and indeed

i2D operators emerge as non-linear filters when sparse overcomplete bases

are learned [Labusch et al., 2009]. Our structure tensor-based approach is

closely related to the space-time interest points of Laptev [2005]. In their

approach, the spatiotemporal structure tensor is employed to detect local 3D

corners in videos, which are highly useful in providing a compact represen-

tation of a movie. Such space-time interest points are popular in computer

vision, e.g. for learning and recognizing human activities in videos.

Despite being based on simple, low-dimensional representations (1 to

max. 25 scalars), the proposed model shows significant improvement over the

four selected baseline models of bottom-up saliency. This finding becomes

even more striking given the fact that such cognitive models rest on several

assumptions, employ a high number of hand-tuned parameters, and involve

complex computations. However, the straightforward hypothesis that dur-
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ing visual processing signals with lower intrinsic dimension are suppressed

renders our model biologically plausible as well. Indeed, previous work has

shown that this simple hypothesis can already explain the occurrence of lat-

eral inhibition (i0D signals are suppressed), end-stopping (i1D signals are

suppressed) [Zetzsche and Barth, 1990], and motion selectivity [Barth and

Watson, 2000].

Existing approaches are typically tuned towards optimal performance for

specific tasks: while the SUNDAy model yields smooth, continuous saliency

maps that are more adequate for the prediction of real fixations, the Itti

models (especially the normalization scheme Fancy) produce sparser maps

with few peaks that rather account for the most salient scene locations

only. To test how well our simple approach can generalize to both tasks,

we defined two data-labelling scenarios: one that aims to model all human

fixations, but picks non-salient locations so as to account for viewing biases,

too; and a second, where salient and not salient locations are chosen from

the most and least salient video regions without viewing bias correction. To

our surprise, we find that while existing models typically excel in only one

scenario, our approach, more specifically invariant K, is generic enough to

provide optimal prediction for both problems.

We also have shown that although different labelling schemes allow the

comparison of the relative performance of the different models, they also

narrow down the effective performance range. Knowledge of the upper and

lower bounds of the model performance is essential as it allows the assess-

ment of the true performance gain and the estimation of the closeness to

the optimal model behaviour achievable for a given problem formulation.

In order to understand the potential gains from more complex (but bi-

ologically motivated) features, that is from additional information (be it

for instance multiscale or multispectral), we performed a comprehensive

analysis by gradually extending our simplest saliency map, the geometri-

cal invariants computed on a single scale of the intensity videos. With the

integration of more features, the introduction of additional free parame-

ters becomes inevitable, but their values are here fine-tuned in a supervised

learning scenario.

Our first extension, the spatial pooling through feature energy compu-

tation, allowed us to consider movie sub-volumes (i.e. a salient context) of

arbitrary size around the fixation. Thus, we could overcome the limitations
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of learning algorithms operating in high-dimensional (pixel) spaces. This is,

however, only one simple way of decreasing dimensionality, and we are aware

that by such a notable reduction also an information loss is introduced. Still,

this step enabled the computation of visual features on multiple spatiotem-

poral scales, thereby modestly increasing the dimensionality again.

A key issue in the design of bottom-up saliency maps is how to combine

separate feature maps coming from different modalities to create a unique

master map. A main advantage of the concept of intrinsic dimensionality

is that it leads to a unified representation of spatial and temporal saliency

and, moreover, it can be readily extended to multispectral sequences. How-

ever, we found no strong difference between the invariants on luminance

and those on a multispectral representation. This could be partly due to

the fact that colour channels are highly correlated with each other, so that

only redundant information is added with colour. Also, other colour spaces,

such as the perceptually uniform CIELAB space, as well as the approxi-

mately equidistant HSV space, may better capture the true role of colour in

attentional guidance.

Overall, we found that including more information and fine-tuning the

model parameters through learning algorithms increased the predictability,

but the gain was less than intuitively expected. Learning appears to partially

compensate for the lower quality of an image or video representation, when

quality is measured in terms of how compact a representation is. Note,

however, that our eye movement prediction results are better than those of

the reference models even without multiscale learning.

Obviously, as with any purely bottom-up model of visual saliency, the

present approach cannot fully account for the complex nature of human fix-

ation patterns. Nevertheless, such models may predict top-down behaviour

reasonably well when the high-level task is implicit or unknown Elazary

and Itti [2008]. Indeed, our proposed model further improves upon pre-

vious approaches and successfully predicts human eye movements during

free-viewing of dynamic real-world scenes. Note that incorporating other

known properties of active vision, such as scanpath statistics, temporal cor-

relations of scanpaths, and preference for the centre, could lead to even

better performance.
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5.5 Extensions

In the remainder of this chapter, we report two extensions of the basic

saliency framework presented above. The first extension consists of the

substitution of the invariants of the classical (three-dimensional) structure

tensor with the invariants of the nD structure tensor (1 ≤ n ≤ 3) with the

aim of investigating what kind of local spatiotemporal variation is particu-

larly predictive for saliency in natural scenes. A systematic analysis of the

different types of variations shall reveal which dimensions may be sacrificed

for a faster computation of saliency (or regions of interest) in systems with

limited computing resources, e.g. mobile robot applications.

The second extension makes again use of the geometric interpretation

of multidimensional signals. Our basic framework for saliency prediction is

now extended to the case of multiple overlaid movies. Although such stimuli

do not constitute the natural input the human visual system is exposed to,

still, locally, multiple motions (in forms of occlusions) are common in natural

scenes. We shall show that the invariants of the generalized structure tensor

(see Section 3.2.4), which better characterize (and discriminate between)

various motion types are more adequate for the prediction of eye movements

on such complex stimuli than the invariants of the classical structure tensor.

5.5.1 Contribution of spatiotemporal intensity variation to

bottom-up saliency

In this section, we use the above saliency prediction framework to quantify

the contribution of local spatiotemporal variation of image intensity to visual

saliency. To measure different kinds of variation, we compute, for the set of

natural outdoor videos used above, invariants of the n-dimensional structure

tensor (1 ≤ n ≤ 3). Considering a video to be represented in spatial axes

(x, y) and temporal axis t, the nD structure tensor is evaluated for different

combinations of axes (2D and 3D) and also for the (degenerate) case of only

one axis. To obtain a simple measure of bottom-up saliency now the sym-

metric invariants of the nD structure tensors are used, which we compute

on several spatiotemporal scales. The resulting features are evaluated in

terms of how well they can predict eye movements on our complex videos.

We shall show that a 3D structure tensor is optimal: the most predictive

regions of a movie are indeed those where intensity changes along all spatial
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and temporal directions. Among two-dimensional variations, the axis pair

yt, which is sensitive to horizontal translation, outperforms xy and xt by a

large margin, and is even superior in prediction to two baseline models of

bottom-up saliency.

As discussed in Chapter 3, for three-dimensional signals, i.e. the spa-

tiotemporal volume of the video, usually a three-dimensional structure ten-

sor is defined. However, on subspaces of the video volume (e.g. combinations

of two axes, or even considering the degenerate case of a single axis only)

1D or 2D structure tensors can be constructed. For instance, considering

only the vertical spatial dimension y and the temporal dimension t, the

two-dimensional structure tensor J2 is defined as

J2 = ω(y, t) ∗

(

f2
y fyft

fyft f2
t

)

,
✞

✝

☎

✆5.3

where ω(y, t) is a 2D-Gaussian smoothing function and fy and ft stand for

the first order partial derivatives δf/δy and δf/δt.

The intrinsic dimension is then obtained from the symmetric invariants

of J2:
H = 1/2 trace(J2) = λ1 + λ2

K = |J2| = λ1λ2
,

✞

✝

☎

✆5.4

where λi denote the eigenvalues of J2. Regions where H > 0 are at least in-

trinsically one-dimensional (iD ≥ 1), e.g. non-vertical stationary edges, ver-

tically translating edges, and uniform regions that change in time, whereas

K > 0 indicates an i2D feature such as yt corners (changing motion) and

structures that appear or disappear in yt, which correspond to non-vertical

translation. The generalization of the formulas for the n-dimensional case

(1 ≤ n ≤ 3) is summarized in Table 5.2.

In the following, we shall quantitatively compare the power in predicting

eye movements on complex natural videos of the above simple tensor-based

representations that characterize different types of spatiotemporal changes.

For our evaluation, we used the same data set of 18 high-resolution movie

clips of natural scenes that proved useful in testing the predictability of

our saliency prediction scheme. As a preprocessing step, all movies were

cropped to the same size along the spatial axes (preserving the central 600

by 600 pixels), to make the resulting space-time cubes rotation-invariant
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Table 5.2: n-dimensional structure tensors and their invariants, which corre-
spond to the minimum intrinsic dimension (iD) of a region. Invariants that
encode features of higher iD were previously shown to be better predictors
of eye movements; therefore, they are used for further analysis (these are
marked with a box).

n nD Structure Tensor Invariants (eigendecomp. of Jn)

1 J1 = ω(u) ∗ f2
u H = λ1 iD = 1

u ∈ {x, y, t}

2
J2 = ω(u, v) ∗

(

f2
u fufv

fufv f2
v

)

H = λ1 + λ2 iD ≥ 1

K = λ1λ2 iD = 2

u, v ∈ {x, y, t}, u ̸= v

3 J3 = ω(x, y, t) ∗

⎛

⎝

f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t

⎞

⎠

H = λ1 + λ2 + λ3 iD ≥ 1
S = λ1λ2 + λ1λ3 + λ2λ3 iD ≥ 2

K = λ1λ2λ3 iD = 3

with regard to size (because movies had 600 frames). The total number of

saccades that remained after the cropping was 24,370.

In the main part of this chapter, we showed that invariants that en-

code features of higher intrinsic dimensionality are better predictors of eye

movements; therefore, here only these were considered (see Table 5.2). For

each video, we computed the invariants of the tensors J1, J2, and J3 along

all possible dimensions/combinations of dimensions. See Figure 5.6 for still

shots from a movie and the corresponding invariants. The above invariants

were computed on each scale of an anisotropic spatiotemporal multiresolu-

tion pyramid with nS = 2 spatial and nT = 2 temporal scales, in which

each spatial pyramid was decomposed further into its temporal bands.

Following the prediction scheme detailed in the first part of this chapter,

we labelled areas in the videos as salient and non-salient (according to the

“bias-free” labelling scheme). To account for imprecisions in both the ocu-

lomotor and the eye-tracking system, we considered a spatial window (of 32

pixels, i.e. about 1.2 deg, on the highest pyramid level), and computed the

window’s energy, as defined in Section 5.2.2.

The predictive power of the different representations was assessed by

evaluating (through ROC analysis) the performance of one-dimensional max-

imum-likelihood classifiers when the feature energies from the single pyramid

levels are used as inputs to the decision algorithm. In Table 5.3, we report
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Figure 5.6: Top row (from left): H of J1 computed along the individual
axes x, y, and t; original frame also shown. Bottom row (from left): K of
J2 computed along the axes xy, xt, and yt; below the original image: K of
J3 along all three axes.

average ROC scores (over the 18 movies) obtained for the “most predictive”

scale (i.e. the pyramid level with the highest average ROC score).

For comparison, the saliency maps computed by two of the four state-of-

the-art algorithms considered above [Itti et al., 1998, Zhang et al., 2009] were

treated as maximum-likelihood classifiers for discriminating between fixated

and not fixated video regions. By thresholding these maps, movie regions

above the threshold are classified as salient. A systematic variation of the

threshold parameter gives us a single ROC curve per movie and model. The

averaged ROC scores over all videos are reported in Table 5.3.

We find that with an average ROC score of 0.673 the three-dimensional

structure tensor J3 is optimal, suggesting that the most predictive regions

of a movie are indeed those where intensity varies along all spatial and

temporal dimensions. Surprisingly, the second best predictor operates on

the axis pair yt; this predictor is sensitive to horizontal translations, which

are most common in typical natural scenes. J2 evaluated on the axes yt

outperforms xy and xt by a large margin (with an ROC score of 0.656

compared to 0.639 and 0.637, respectively), and is even superior to the two

baseline models with ROC scores 0.644 (Itti & Koch) and 0.635 (SUNDAy),

which incorporate a number of different features such as colour, contrast,
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Table 5.3: Average ROC scores (AUC) of the different models and repre-
sentations.

Model AUC Model AUC Model AUC

x 0.621 xy 0.639 J3(xyt)−K 0.673
J1 y 0.617 J2 xt 0.637 Itti & Koch 0.644

t 0.623 yt 0.656 SUNDAy 0.635

and orientation. Although one-dimensional variations perform worst (with

J1 along the vertical axis giving the lowest score – 0.617), their average

prediction rate is still significantly higher than chance (ROC score of 0.5).

Our results can be used to choose efficient active vision strategies. Under

the assumption that the human visual system is near-perfectly optimized for

natural environments, the spatiotemporal structure tensor J3 thus picks the

most informative regions. However, with our data, it is now also possible

to choose which dimension should be sacrificed for faster computation in

resource-limited systems, e.g. in an embedded real-time module of a robot

with active vision sensors: for natural environments, the axis pair yt is more

informative than xy or xt.

5.5.2 Prediction of eye movements on overlaid movies

In the following, we shall extend our framework to predict eye movements on

transparently overlaid videos. In Chapter 3, we introduced a mathematical

formalism, based on the invariants of the generalized structure tensor, to

characterize multidimensional signal variation and certain motion patterns.

Here, we use such generic tensor-based representations combined with the

prediction framework presented in this chapter to investigate how eye move-

ments are influenced by multiple overlaid motions and how well gaze can be

predicted on such stimuli. Since the generalized structure tensor JG — as

opposed to the classical J — is able to distinguish between complex motion

patterns [Barth et al., 2010], our hypothesis is that the invariants of JG

might better predict viewing behaviour on such complex stimuli than the

invariants of J.

In psychophysics, multiple transparent motions have often been used

to probe the human visual system (see e.g. Braddick and Qian [2001] for
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Figure 5.7: Stillshots from two blended movies.

a review). Obviously, such visual stimuli do not faithfully represent the

kind of sensory input that biological visual systems are faced with every

day. However, multiple motions are locally quite common in natural scenes

because of reflections, occlusions, and transparencies. Here, we use such

stimuli to test our hypothesis (already formulated in the first part of this

chapter) that by suppressing all the redundancies that arise if the visual

signal does not change in a particular direction(s) efficient representations

can be obtained. The brain might employ such efficient representations for

visual information coding (see Chapter 3).

For our evaluation, we used 19 transparently overlaid movie clips that

were obtained by blending two videos randomly selected from our set of

18 outdoor sequences. Superimposing videos with very different spatiotem-

poral spectral energy distribution can lead to the perceptual dominance of

one of the videos in the overlaid result. To avoid this, spatiotemporal fre-

quency bands were equalized prior to blending. To perform pyramid-based

blending, the videos were first decomposed into an anisotropic spatiotem-

poral Laplacian pyramid with five spatial and five temporal levels. Then,

on each pyramid level, the blending weights were derived as the reciprocal

of their standard deviation. Example stimuli are shown in Figure 5.7. The

19 resulting overlaid clips were shown on an Iiyama Master Pro 514 display

screen (covering about 43 by 23 deg) to ten human subjects. From the raw

gaze data, collected with an SMI Hi-Speed eye tracker running at 1250Hz,

about 10,000 saccades were extracted with the velocity-based procedure of

Böhme et al. [2006].

Feature extraction was performed in a similar manner as for the single

movies in the first part of this chapter. The invariants of J and JG were

computed on an anisotropic Gaussian pyramid with five spatial and five
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temporal levels. For a set of salient and non-salient locations (again, “bias-

free” labelling), 25-dimensional feature vectors were extracted with which

a Support Vector Machine was trained. The way the set of attended and

non-attended locations was divided into a training and a test set differed

slightly from the division on the single movies. The training set contained

the fixations of two-thirds of all subjects (on all 19 movies), whereas the test

set consisted of the fixations of the remaining one-third of the subjects (also

on all movies). Hence, gaze data from all movies were used both for training

and testing, but for the sake of generality, eye movements of any particular

viewer were only present in one of the two data sets. Thus, our model is here

put to test in terms of how well it can predict gaze behaviour of new viewers

on videos that have already been “seen” (i.e. learned on) by the classifier.

Apart from being able to predict eye movements on new, “unseen” videos, for

various computer vision problems it is often important to model the expected

gaze behaviour on stimuli that have already been seen by several viewers (e.g.

websites). Here, we also test this ability of the presented saliency prediction

framework. Due to the differences in the training/test set division, results

cannot be compared directly between overlaid and single movies.

Quantitative differences in the distribution of prediction rates (ROC

scores over 20 realizations into a training and a test set) are plotted for

the invariants of J and JG in Figure 5.8. As expected, prediction scores are

now higher than for single movies, but qualitatively our results confirm the

previous findings: eye movement predictability increases with the intrinsic

dimension (i.e. the rank of the structure tensor) both for J (left part of fig-

ure) and JG (right part). More importantly, the higher-order representation

of JG that allows a more precise characterization of motion types signifi-

cantly outperforms J (paired Wilcoxon’s signed rank test, p < 1.1 · 10−4).

Thus, the generalized structure tensor is indeed able to better capture and

characterize the complex nature of multiple signals (here motions) than the

classical structure tensor. Results confirm our hypothesis that redundancies

are suppressed even in the more complex case of transparent overlaid movies

(as eye movements tend to avoid redundant regions).
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Figure 5.8: Box plot comparing AUC values obtained for the prediction of
eye movements on overlaid movies with different invariants of J (H1, S1,
and K1 on the left) and JG (H2, S22, S23, S24, S25, and K2 on the right).
Comparison of the prediction performance was done by Wilcoxon’s signed
rank test. Predictability is found to increase significantly with the rank.
Overall, the invariants of JG and the highest-order invariant (K1) of J give
comparably high performance (median 78%, indicated by the red dashed
line).
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5.6 Chapter conclusion

In summary, in this chapter we have demonstrated how standard super-

vised learning techniques can fine-tune the free parameters of a simple image

processing-based model of bottom-up saliency to account for eye movements

in natural dynamic scenes. Grounded in the intuitive assumption that the

visual signal must change in order to attract attention, in the first part of

this chapter we proposed a generic model and tested its predictive power

on a large set of eye movements in two distinct data labelling scenarios.

Despite its conceptual simplicity, our model outperforms state-of-the-art

baseline models. In the second part, we have presented two extensions of

this model: i) to examine the contribution of intensity variation along differ-

ent combinations of spatiotemporal dimensions to bottom-up saliency and

ii) to predict eye movements on transparent overlaid movies based on the

symmetric invariants of the generalized structure tensor. The results of the

first extension are particularly relevant for machine vision systems with lim-

ited computing resources as they shed light on which dimensions may be

sacrificed for a faster computation of interest points. In the second exten-

sion, our saliency prediction framework has proven successful in predicting

eye movements also on more complex natural stimuli such as transparently

overlaid movies.
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6
Learned saliency transformations for gaze

guidance

Through unconscious steering of visual attention to goal-relevant scene re-

gions, gaze-guiding systems — as presented in Chapter 1 — promise to aid

and complement human vision in many areas of human-computer communi-

cation and interaction. In previous chapters, we have already addressed two

critical components of this process. In Chapter 5, we have put forth a simple

yet powerful saliency model for the prediction of a limited set of salient can-

didate locations, from which the next desired saccade target is selected. For

an unconscious guiding process, the optimal timing of gaze-capturing events

is decisive. Therefore, in Chapter 4 we have characterized various video

types with respect to the typical saccadic response lags to salient events.

A major question, however, is yet to be answered: what image transforma-

tions are suitable and effective for altering the saliency level of a specific

image or video region? In the present chapter, a generic saliency modifica-

tion scheme is proposed that is built upon the saliency learning framework

detailed in the previous chapter. Once the structural differences between

attended and non-salient video regions have been distilled, transformation

rules can be derived that manipulate some saliency-relevant properties of

video regions. The proposed generic scheme is implemented in practice

by considering spatiotemporal contrast manipulations (on an anisotropic

Laplacian pyramid), and is evaluated both conceptually and empirically, in

a psychophysical study.

Parts of the work described here have previously been published in [Vig

et al., 2011a] and [Dorr, 2010].
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6.1 Motivation

Apart from the prediction of scanpaths, only very few studies have addressed

the intriguing question of how one can change an image or video locally

to influence the emerging scanpath, i.e. how human gaze can be guided

by image-based manipulations to the input. In situations where specific

information must be found on a large visual display (e.g. while driving,

analysing medical and geological images) [Rasche and Gegenfurtner, 2010],

it is often crucial in which order the salient and relevant objects and events

are attended to, i.e. how we look at a certain visual stimulus. Eye movement

studies have shown that in several domains the gaze patterns of experts

differ considerably from that of novices. For example, search strategies of

expert and novice radiologists are substantially different [Nodine and Mello-

Thoms, 2000], and experienced drivers’ and pilots’ gaze patterns exhibit

shorter dwell times and are better defined [Kasarskis et al., 2001]; in other

words, experts have learned to direct their eyes more efficiently. Moreover, in

safety-critical situations, such as driving, assistance in where to look next,

for example in order not to overlook a pedestrian, can prove more than

beneficial.

Barth et al. [Barth, 2001, Barth et al., 2006] proposed gaze-guidance

systems that steer the observer’s gaze in a visual scene in order to enforce

a predetermined, optimal scanpath and, through this, to aid the informa-

tion uptake of the human viewer. The goal is to augment human vision

with computer vision technology in a least-obtrusive way. Gaze guidance is

realized by gaze-contingent interactive displays that use an eye tracker to

monitor the viewer’s gaze. In order to achieve an alteration of the gaze pat-

terns, the saliency distribution of the visual scene is modified in real time

by local changes to the visual input. Based on the original visual input

and the eye position of the viewer, first, a limited set of salient, candidate

locations is predicted that would attract the user’s gaze. Then, using real-

time video processing, the probability of being attended (i.e. its saliency) is

increased for one selected candidate location, and simultaneously decreased

for all other candidates. That such modifications are not perceived con-

sciously is assured by the fact that they are embedded gaze-contingently in

the periphery.

A few other attempts had been made to influence gaze patterns, either by
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filtering potentially salient targets [Su et al., 2004, Nyström and Holmqvist,

2010] or by adding synthetic gaze attractors such as high-frequency noise

[Einhäuser et al., 2006] or flashing Gabors [McNamara et al., 2009]. How-

ever, these attempts were limited to static natural images and computer-

generated content, where eye movements are more idiosyncratic and less

driven by bottom-up saliency than on natural movies [Dorr et al., 2010a],

and they were also not rendered gaze-contingently, so that subjects presum-

ably quickly became aware of the changes and could consciously decide to

ignore their effect.

In the above formulation, a critical issue is to identify optimal image

transformations that can make a video region more (or less) eye-catching

(i.e. salient) to the viewer. Here too, we use a data-driven approach to the

problem by learning, from eye movements collected on real-world dynamic

scenes, how to alter the saliency level of the video locally. As in the case

of saliency prediction described in the previous chapter, we here consider a

two-class classification scenario in which the video regions fixated by humans

form the salient class and non-fixated locations represent the non-salient

class. To the best of our knowledge, the general problem of “moving” a

sample of a class into the other class, in an optimal way and under certain

constraints, is novel in the machine learning and computer vision literature.

Before we describe our saliency modification framework in detail, we pro-

vide a short overview of past work on gaze-contingent displays, also briefly

presenting the gaze-contingent display based on an anisotropic spatiotem-

poral Laplacian pyramid that we use for our experiments on gaze guidance.

6.2 Gaze-contingent displays — state of the art

Gaze-contingent displays (for extensive reviews see Duchowski et al. [2004],

Parkhurst and Niebur [2002], Reingold et al. [2003]) manipulate an image

or a video in real time based on the observer’s gaze direction. The two main

components of a gaze-contingent display are i) an eye tracker and a ii) dis-

playing system that modifies its output as a function of the measured gaze

position. The gaze-contingent paradigm has first been adapted in reading

research (see e.g. Rayner [1998] for a review). Lately, it has been used exten-

sively both in clinical applications (e.g. to understand and simulate visual

field defects such as scotoma) as well as in psychophysical studies. Gaze-
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contingency can be incorporated in various ways in experimental paradigms.

One form of gaze-contingent displays during saccades modifies some proper-

ties of the visual input, such as contrast, motion content, colour, etc. With

such displays one can investigate e.g. change blindness and transsaccadic

integration. Other displays mask parts of the visual field permitting e.g.

either central or peripheral vision only, and thus allow vision scientists to

probe different perceptual mechanisms.

Gaze-contingent displays continue to receive great research interest also

in more technical areas. The probably most well-known application of such

displays is foveation. Foveated displays present high-resolution visual infor-

mation at the point of gaze and gradually decreasing spatiotemporal reso-

lution as the distance from the fixation increases. Thus, they simulate the

non-uniform sampling of visual information implemented in the retina. If

the width of the decay function matches the resolution distribution of the

retina, an undisturbed (natural) visual experience can be evoked. Because of

less high-frequency content, foveated images and videos can be compressed

more efficiently and, hence, foveation is useful in reducing the bandwidth

and storage requirements for video transmission and encoding [Geisler and

Perry, 1998, Sheikh et al., 2003, Böhme et al., 2008].

Until recently, such foveated displays only allowed the lowpass filtering of

the input (using a Gaussian pyramid) and rarely met real-time constraints.

For the purpose of gaze guidance, however, a more sophisticated weighting

scheme — such as the individual weighting of frequency bands — is highly

desirable, not to mention the real-time requirements of gaze-guiding systems.

For this purpose, Dorr et al. [Dorr, 2010] developed a gaze-contingent display

that is based on an anisotropic spatiotemporal Laplacian pyramid, and thus

allows the space-variant spatiotemporal filtering (by individual frequency-

band weighting) of high-resolution videos. Extensions i) from an underlying

isotropic Gaussian to an anisotropic Laplacian pyramid, as well as ii) from

only the spatial to the spatiotemporal domain greatly increased the compu-

tational complexity, but algorithmic improvements and the implementation

of the software framework on dedicated graphics hardware allowed for the

realization of gaze guidance systems with very low latencies.
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6.3 Saliency transformations

In the current gaze-guidance scenario, saliency transformations are limited

to subtle changes in the video patch that go “unnoticed” — as they are

embedded gaze-contingently in the periphery — yet still have a gaze-guiding

effect.

In principle, such image modifications could be derived directly in the

pixel (or intensity) space of image or video regions (also referred to as

“patches”). However, as natural image patches are known to be samples

of an unknown low-dimensional manifold in the space of all possible image

patches (i.e. randomly drawing intensity values for the pixels of an image

patch does not result in a natural image), transforming them in the original,

high-dimensional pixel space will most probably result in unnatural, white

noise images. In other words, there are only a limited number of modi-

fication types that can be applied to a given image while still keeping its

natural look. Moreover, these modification rules would be specific to the

image patch at hand, and would not apply to all patches.

Alternatively, one could map the high-dimensional pixel patch onto some

lower-dimensional (parameter) space by performing local feature extraction

on the patch. Such an approach clearly limits the range of possible image

modifications to changes in the chosen feature space. This could mean, for

example, an increase/decrease in either luminance contrast, colour contrast

or intensity, or motion velocity. Nevertheless, it has the advantage that

any meaningful feature modification still yields a natural looking image.

However, a strong constraint is imposed on the chosen feature space by the

need to be able to apply (or map back) the changes in the feature space to the

pixel image. Additionally, as we intend to derive transformation rules from

information on the characteristics of salient and non-salient image regions

that was obtained with machine learning algorithms, the proposed feature

space must be characterized by a good separability of the salient and non-

salient classes.

Here, we propose to use the local spectral energy as a feature space that

satisfies the above constraints. It is a low-dimensional representation of a

movie patch computed on each level of a spatiotemporal Laplacian pyra-

mid by averaging the squared pixel intensities within the patch. Learned

transformations within this space can be implemented as local spatiotem-
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poral contrast manipulations on a spatiotemporal Laplacian pyramid. We

will show that such transformations lead to a modification of the saliency

distribution, which in turn results in a change in the eye movement statistics.

In the following, we present the machine learning framework used for

deriving transformations in the spectral energy space. Then, in Sec. 6.5, we

evaluate the effect of the spatiotemporal contrast modifications on saliency

distribution in a preliminary experiment, where such energy modifications

are embedded offline in our naturalistic videos. The desired effect — an

increase or decrease in absolute saliency — is observed in different saliency

maps of the modified movies — maps computed by our saliency predictor

(outlined in the previous chapter) and two other state-of-the-art models

of eye movements. We end this chapter with an empirical evaluation of

the effect of gaze-contingent saliency transformation on eye movements in a

psychophysical experiment.

6.4 Transformations in the spectral energy space

To derive saliency alteration rules, we again explore a data-driven approach

that takes advantage of learning the discriminative characteristics of salient

video regions directly from human-labelled data (i.e. fixated video areas).

Note that this approach does not make any strong assumptions per se on

what constitutes saliency in natural movies. Our strategy is to first learn

the structural differences between fixated and non-fixated movie regions by

building a classifier that operates on the spectral energy representation of

the patches, and then use information on the classification boundary to move

elements of one class into the other.

6.4.1 Spectral energy as a simple saliency measure

The flow diagram of our joint saliency classification/modification scheme is

depicted in Figure 6.1. The classification part of the model is built around

the learning framework outlined in the previous chapter, the only difference

being that instead of the geometrical invariants now a band-pass Laplacian

serves as image feature. As in Chapter 5, we use eye movements collected

on our videos to label movie areas as either attended or non-attended. The

videos are first decomposed into their Laplacian pyramid representation (see
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Figure 6.1: Flow diagram summarizing the proposed approach. In the
saliency classification phase (top), a classifier is trained with the spectral
energy profiles of attended and non-attended video patches (fixations are
denoted by small red squares in the movie frame). This feature is extracted
as the mean-square-root of pixel intensities in a neighbourhood around the
locations (large unfilled square) on each level of a spatiotemporal Laplacian
pyramid. Bottom: Schematic view of transformation rules (for illustration
purposes, only a two-dimensional feature space is shown: f = (e1, e2)). An
iterative SVM approach (kernel + linear SVM) is utilized to learn an optimal
separation (a hyperplane h = (w, b)) of salient (green dots) and non-salient
(red triangles) video regions. To avoid saccades to a particular salient region
whose energy profile is f , the energy profile of the patch is moved perpendic-
ular to the hyperplane h in the direction of the class of non-salient regions
(along fdec). To increase the saliency of the patch, its energy profile is moved
away from h (along finc).
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Chapter 3), i.e. a dissection of the original movie into a hierarchy (or pyra-

mid) of videos such that each pyramid level corresponds to a different spa-

tiotemporal frequency band. For each movie location p = (x, y, z) in the two

classes, the local spectral energy is extracted on each level of the spatiotem-

poral Laplacian pyramid. The spectral energy es,t on the s-th spatial and

t-th temporal pyramid level (Ls,t) is computed in a spatial neighbourhood

centred around p as

es,t =

√
√
√
√
√

1

WsHs

Ws/2
∑

i=−Ws/2

Hs/2
∑

j=−Hs/2

L2
s,t(xs − i, ys − j) ,

✞

✝

☎

✆6.1

where Ws and Hs stand for the width and height of the neighbourhood on

the s-th spatial scale (fewer pixels on lower-resolution spatial scales, but

independent of the temporal scale). The spatial coordinates of the location

p are also subsampled on the spatial scale s: (xs, ys) = (x/2s, y/2s). The size

of the neighbourhood considered is, here too, a free parameter whose value

needs to be determined either from data fitting or chosen in accordance with

the results of perceptual experiments.

With this low-dimensional representation — the spectral energy profile

— of a video patch, a non-linear kernel Support Vector Machine (SVM) is

trained that can discriminate between salient and non-salient movie regions.

We here note only briefly that despite its simplicity this algorithm yields sim-

ilar results to state-of-the-art saliency models. On our collection of natural

videos, the leave-one-out ROC score for predicting eye movements — aver-

aged over all movies and after removing the already discussed biases inherent

in eye tracking data — is 0.62 for the above simple algorithm, 0.62 for the

classical Itti and Koch model (with the Maxnorm normalization scheme),

and 0.64 for SUNDAy (see Table 5.1). When the invariants of the structure

tensor are used as underlying image features, better prediction results can

be obtained (see previous chapter). However, these generic representations

are not invertible (as non-linearities are involved in their computation —

see Equation 3.12) and thus cannot be used for saliency modifications.
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6.4.2 Spectral energy modification

Support vector machines search for an optimal “hyperplane”, a decision

boundary that separates the two classes with maximum margin. The hy-

perplane h is described by a vector w perpendicular to the plane and the

bias b, which specifies its shift from the origin. The closer an instance to

the plane, the more difficult it is to classify it into either group, because the

more it resembles instances of the other class. The classification confidence

of those points located far from the plane is high since, in our case, they are

“truly” salient/non-salient video areas. Therefore, in order to change the

saliency level of a movie region (in terms of its spectral energy) it suffices

to move its energy profile relative to the plane, either towards the plane or

away from it. Thus, a separating plane imposes a meaningful direction for

transformations of spectral energy profiles in the feature space.

Still, an important question remains: how can we map back a modified

feature vector (i.e. an energy profile) to an image patch? How to apply

the learned transformations to the original video patch? Obviously, this

mapping can only be approximate, but there are various ways of increasing

or decreasing the spectral energy of a video patch. A straightforward ap-

proach, applied here, is to multiply every pixel in the patch with the ratio

of the desired and actual energy, thus increasing or decreasing contrast in

the specific pyramid scale.

One complication in our scenario relates to the fact that the classifier

that best discriminates salient video regions from non-salient ones is kernel-

based, i.e. it non-linearly maps its input data into a higher-dimensional

space, where the problem becomes linearly separable. The non-linear map-

ping between the input space and the high-dimensional feature space is per-

formed implicitly using the kernel trick, hence the φ non-linear embedding

function is unknown. As a result, the reverse mapping (with an unknown

φ−1) from the feature space back to the input (energy) space of the modi-

fied data points is difficult. This is known as the pre-image problem in the

kernel methods literature [Kwok and Tsang, 2004, Bakır et al., 2004]. It

has been shown that exact pre-images typically do not exist but need to

be approximated, in the process of which they can easily get distorted. To

remediate the issue of a further non-linear mapping, we reformulate the task

of learning a saliency classifier by considering only a subset of the attended
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and non-attended locations, thereby making the problem “easier”. Assum-

ing that the video patches correctly classified by the kernel Support Vector

Machine approximate well the manifolds of their respective classes, we train

a second, linear Support Vector Machine with only these patches, in case of

which the separating plane is defined in the input (i.e. energy) space — see

Figure 6.1 for a visual illustration.

Recall that with our problem formulation (gaze guidance through saliency

manipulations), only the alteration (in terms of the relative probability of be-

ing attended) of potentially gaze-capturing locations (i.e. candidate points)

is intended. To modify the saliency of a candidate, i.e. salient, video patch,

we move its energy profile perpendicular to the separating hyperplane of

the linear SVM, either towards the non-salient class (i.e. towards the hy-

perplane, to make the patch less salient), or away from the hyperplane (to

increase its saliency) — as shown schematically in Figure 6.1. Thus, for a

candidate location with spectral energy vector f , the transformation rules

are defined as
finc = f + α1w

b
||w||

fdec = f − α2w
b

||w||

,
✞

✝

☎

✆6.2

where αi denotes the degree of change.

One might argue whether the learning of such contrast modification rules

(or weights) from eye movement data really is necessary. An analysis of the

average spectral energy at attended and non-attended locations reveals that,

on every scale, the attended movie regions have higher spectral energy than

non-attended ones. Thus, it may suffice to increase/decrease energy by a

constant factor — relative to the average spectral energy of the specific

class — in each frequency band. However, we chose to learn these weights,

since this way the local structure of the manifold of natural video patches

is also considered, and the relative weighting of individual frequency bands

becomes possible. Different spatiotemporal frequency bands may play differ-

ent roles in guiding bottom-up attention, and individually weighting them

can account for these differences.

To avoid artefacts, such as pixel saturation, due to strong contrast en-

hancements (occurring in the “saliency-increase” case), elaborate normal-

ization schemes that map back the output videos to pixel intensity values

in [0, 255] are required. Because natural videos usually already use up the

limited dynamic range of the display, we reduce the to-be-modified videos
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to x% overall contrast and adjust the energy weights (through the strength

factors αi in Equation 6.2) such that the intensity range at the modified

location is stretched maximally without overflows. Also, in order to avoid

strong and unnatural luminance changes in the candidate video patch, the

DC component (i.e. the lowest pyramid level of the Laplacian) is left unal-

tered.

6.5 Conceptual evaluation

To evaluate the effect of the spatiotemporal contrast modifications on salien-

cy and eye movements, in a first preliminary experiment, we embed such

local energy transformations offline (i.e. not in a gaze-contingent manner) in

our high-resolution videos of natural outdoor scenes. Our saliency prediction

model outlined in the previous chapter and two baseline saliency models

briefly presented in Appendix B (the Itti and Koch [Itti et al., 1998] and

SUNDAy [Zhang et al., 2009] models), are used to compute saliency maps

both for the unmodified and transformed movies. Using statistical tests, we

verify whether the embedded spectral energy modifications really bring the

desired change, i.e. an increase or decrease in absolute saliency.

6.5.1 Learning the contrast modification rules

For the experiment, we use our collection of 18 natural videos for which eye

movements of 54 human subjects freely viewing these movies are available.

The extracted saccades are used to find an optimal hyperplane for separating

salient and less salient video regions.

The energy profiles of the attended and non-attended locations are com-

puted on an anisotropic Laplacian pyramid decomposition of the videos (the

pyramid having nS = 5 spatial and nT = 4 temporal levels), in a 5 by 5

degree spatial neighbourhood on all scales (which corresponds to 128× 128

pixels on the highest spatial levels). In the periphery, the highest spatial

frequency information is known to contribute little to attentional selection

because it is discernible only near the fovea, and high spatiotemporal fre-

quencies in general might contain a significant amount of noise from the

recording system (e.g. camera sensor noise). Therefore, we leave the ener-

gies in these scales (8 out of the 20 pyramid levels) unaltered, i.e. we fix

their weights to 1.0. Thus, the soft-margin kernel SVM [Chang and Lin,
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2001] operates in a low-dimensional space: on the only 12-dimensional vec-

tors containing energies from all but the highest spatial and temporal scales.

The optimal SVM parameters, the width of the Gaussian γ and the penalty

term C, are found with 5-fold cross-validation. Different from classical ma-

chine learning tasks, here, we do not wish to improve the performance of

the above simple classifier on independent test data, but rather optimize it

to better fit the given training data. Even though not relevant here, perfor-

mance on test data is also good (see Sec. 6.4.1). The quality of prediction

on the training data is measured through ROC analysis, which reports an

ROC score of 0.82. After discarding the wrongly classified video patches,

about 28,000 locations are left per class, with the energy profiles of which

a linear SVM is trained. Its C parameter is again determined with 5-fold

cross-validation. Now, with this linear SVM, on the selection of “truly” (i.e.

easily discriminable) salient and non-salient video patches, an ROC score of

0.819 is achieved. The optimal separating hyperplane h = (w, b) found by

this linear SVM shall be used to derive the rules in Equation 6.2.

6.5.2 Embedding the modifications in natural movies

For our evaluations, in the above 18 movies, about every second, 10 candi-

date locations are determined. In principle, we could have used the above

simple saliency predictor based on the spectral energies (or the saliency

model of the previous chapter) to generate these locations. However, for

our testing purposes, the most precise determination of gaze-capturing areas

is important, and human observers’ eye movements are still best predicted

by other observers’ eye movements. Hence, we created a spatiotemporal

fixation density map (the already discussed “empirical” saliency map) for

each movie by placing a two-dimensional Gaussian with standard devia-

tion 0.75 deg at each gaze sample of the 54 subjects. After normalizing the

superposition of these Gaussians, the candidate locations are iteratively ex-

tracted from these maps by picking the location with the highest “empirical”

saliency, and subsequently laterally inhibiting this location with an inverted

Gaussian of standard deviation 2.35 deg. In this way, it is also assured that

within a neighbourhood of about 5× 5 deg no overlaps of candidates occur.

With Equation 6.2, for each of these candidates a pair of new spectral energy

vectors is computed based on the candidates’ actual profiles, which were ex-

tracted with the parameters used for the SVM learning. The scalar αi, which
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controls the degree of change, is first set to a fixed initial value independent

of the candidate’s energy vector. The rationale is that, at this point, we only

define the directions of change in the feature space of spectral energies, and

adjust the strength of the modification later, separately for each test con-

dition, in which the effectiveness related to different modification strengths

is examined. Thus, for contrast modifications, initial weights winc and wdec

are derived as the ratio between the desired and actual energies finc
f and fdec

f ,

respectively.

As mentioned above, if contrast is increased beyond what the dynamic

range of the display allows, artefacts occur. Therefore, to leave room for

contrast enhancements, we reduce the overall contrast of our movies by dif-

ferent amounts, and embed modifications in each of these contrast-decreased

videos.

The final, video patch specific saliency-increase weights winc
′ are defined

for each contrast level so as to stretch the dynamic range in the neighbour-

hood of the candidate between the extrema (i.e. 0 and 255, black and white

– as we are operating on the brightness channel only). Thus, with different

overall contrasts, it becomes possible to quantify the strength of the modifi-

cation and evaluate its effect on saliency. We introduce a simplified notation

for the synthesis of the Laplacian pyramid:
∑nS−1

s=0

∑nT−1
t=0 Ls,t, which in fact

involves the iterative upsampling and addition of the Laplacian levels. To

avoid overflows, for each pixel p = (x, y, z) in the modified spatiotemporal

video patch the following must hold:

0 ≤
nS−1
∑

s=0

nT−1
∑

t=0

w′
s,tLs,t(x, y, z) ≤ 255,

✞

✝

☎

✆6.3

where w′
s,t is the patch-specific weighting coefficient for the spatiotemporal

frequency band (s, t). These weights are obtained from the initially derived

ones (ws,t):

w′
s,t = (ws,t − 1)β + 1,

✞

✝

☎

✆6.4

where β takes now the role of αi from Equation 6.2 in controlling the strength

of the manipulation. To stretch the intensity range to the extrema but not

beyond, β is derived from Equation 6.3 for each spatiotemporal video patch
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individually as

β = min(x,y,z)∈patch

⎧

⎪
⎪
⎨

⎪
⎪
⎩

255−
∑

s

∑

t Ls,t(x, y, x)

d
, d > 0

−

∑

s

∑

t Ls,t(x, y, z)

d
, d < 0

where d =
∑

s

∑

tws,tLs,t(x, y, z)−
∑

s

∑

t Ls,t(x, y, z) .

✞

✝

☎

✆6.5

For each pixel in the video patch, exactly one of the following conditions

holds: (1) the denominator d is larger than zero, i.e. the manipulation brings

an increase in pixel intensity, and so (in the limit) β should stretch the new

intensity to 255; (2) the denominator is negative, i.e. the modified pixel

intensity is smaller than the original, and should, therefore, be decreased

further to 0; (3) the denominator is zero, i.e. the pixel intensity remains the

same, hence, β is not affected. By picking the smallest ratio over all pixels

in the patch, we assure that the modified intensities remain in the allowed

range.

The quantification of the strength of the saliency-decrease rules cannot

be tied to the overall contrast level of the video. Instead, the strength is

varied by scaling the initial wdec weights so that n weights closest to zero

are actually brought to zero (0 ≤ n < nS · nT ). Setting the energies in

certain scales to zero means removing those frequencies. For example, by

carefully selecting the bands in which the energies are set to zero an object

of a certain size moving with a certain speed can be filtered out.

For the experiment, three saliency-increase and one saliency-decrease

strengths were tested; for the increase rules, the original videos were de-

creased to 70, 80, and 90 percent overall contrast. For simplicity, we only

report results for one condition: the 80% overall contrast case. The same

qualitative results were obtained in the other two conditions, with the ob-

vious difference that saliency-increase modifications at 70% contrast were

stronger than at 80% or 90%. For decrease rules, n was set to 4, i.e. fre-

quencies in four spatiotemporal levels – with weights closest to zero – were

removed. Every second, the saliency of 5 randomly chosen candidate points

was increased further, and the remaining 5 candidates were decreased in

their saliency. For the results reported below, spatiotemporal contrast ma-

nipulations were embedded in a 5 by 5 deg spatial and 700ms temporal

neighbourhood centred around the candidates. An example still shot from a
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Figure 6.2: Saliency maps for one frame of an original (first column) and
altered (second column) video. Ten non-overlapping candidate (i.e. salient)
regions undergo saliency manipulations: the five candidates in the upper
part of the scene are reduced in saliency, while the remaining five in the lower
part are rendered more salient. Three baseline models are used to obtain
the saliency maps: the geometrical invariant K (second row), the model of
Itti and Koch (third row), and SUNDAy (last row). In the differences of the
saliency maps before and after the modification (third column), the desired
alteration in saliency can be clearly detected for the saliency-increase case
(dark areas in the difference maps), while the decrease rules (bright areas
in the differences) have a weaker effect on the saliency (in particular for
SUNDAy).
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movie and its altered version is shown in the first row of Figure 6.2. Lack of

temporal change in the printed figure renders the modifications less visible

than in the actual movie; however, in the difference map of the two, the 10

modified patches are clearly discernible. In this specific frame of the “round-

about” scene, the 5 locations in the upper part of the scene are decreased

in saliency, while those in the lower part are increased.

6.5.3 Results

The effect of spectral energy modifications on overall saliency is evalu-

ated by pairwise comparison of the saliency maps of unmodified and trans-

formed videos — maps which were generated by three independent models of

bottom-up attention: the classical Itti and Koch model (with the Maxnorm

normalization scheme), SUNDAy, and our saliency predictor that relies on

the estimation of the intrinsic dimension by means of computing the geo-

metrical invariants of the structure tensor. As we have seen in Chapter 5,

the geometrical invariant K, which encodes spatial and temporal changes

and is computed as the product of the eigenvalues of the structure tensor,

even outperforms baseline models in predicting eye movements. All of these

models compute saliency on spatially downsampled versions of the origi-

nal movie in order to reduce computational cost and to increase resilience

against noise. The lowpass-filtered videos (6.6 cycles/degree) were created

by filtering the video with a 5-tap spatial binomial filter and downsampling

it (in space) by a factor of two. Note, though, that the highest spatial levels

remained unchanged in our transformations anyway.

Saliency maps for the “roundabout” scene from Figure 6.2 are shown

in subsequent rows of the same figure (in the order: invariant K, Itti and

Koch, and SUNDAy – second to fourth rows). Alterations in the saliency

distribution are visually more striking in the image differences between the

saliency maps of unchanged and modified videos (third column). Here, a

deviation from the gray value indicates an alteration in the saliency level:

at darker areas a saliency-increase occurs, while brighter regions experience

a decrease in saliency. Visually, saliency-increase seems to have a more

pronounced effect than decrease, especially in the case of the maps computed

by SUNDAy.

The saliency of candidate locations before and after the energy modifica-

tion was compared with a paired Wilcoxon signed rank test, and proved to
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be significantly different for all three saliency models and both increase and

decrease (see Figure 6.3). Results confirm our observation on the effective-

ness of the modifications: the differences in saliency level are substantially

greater where a saliency-increase manipulation was performed than at de-

crease locations. However, comparing the effectiveness of the two types of

changes is not entirely fair, as the quantifications of the strength of manipu-

lation for increase rules is independent of that of the decrease rules. Also, the

modifications are the most effective (in changing the saliency distribution)

for invariant K (p = 1,9 · 10−240 for increase rules, p = 1,7 · 10−165 for de-

crease rules). Nevertheless, the desired effect is reached also in the saliency

maps of Itti and Koch (increase, p = 4,9 · 10−213; decrease, p = 5,0 · 10−67)

and SUNDAy (increase, p = 1,0 · 10−145; decrease, p = 8,0 · 10−25). Unlike

invariant K, which detects spatiotemporal intensity variations (space-time

corners, non-constant translations), the two state-of-the-art models base

their prediction of saliency on additional low-level features, such as colour

and orientation. This explains why modifications to contrast only have a

more modest (yet significant) impact on overall saliency in the case of the

Itti and Koch and SUNDAy models.

It should be noted that, since the saliency transformation rules are

learned from eye movement data and validated on existing saliency models,

our results are also indicative of the biological relevance of these models.

Since the learned energy modifications indeed resulted in the desired alter-

ation of the saliency level, in this first evaluation stage we have successfully

demonstrated that gaze guidance is feasible in principle. The next step is to

prove its usefulness also empirically, by examining what effect such low-level

video modifications have on eye movement statistics.

6.6 Empirical validation

Although the above conceptual evaluation delivered encouraging results, a

further empirical validation needs to be performed to prove the effectiveness

of gaze-contingent energy modifications in guiding eye movements within

an eye-tracking paradigm. To this end we performed a psychophysical ex-

periment, in which six subjects viewed our gaze-contingently manipulated

18 videos of natural outdoor scenes. The experimental setup was identical
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Figure 6.3: Box plots comparing the saliency distributions of candidate lo-
cations extracted from the saliency maps of original and modified videos.
The distributions at saliency-increase (INC) and decrease (DEC) locations
are treated separately. In all cases, the differences between the original and
modified saliency distributions are statistically significant (paired Wilcoxon
signed rank test) (middle line: median, box: upper and lower quartile,
whiskers: data extent, outliers not shown).
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Figure 6.4: Empirical cumulative distribution function (ECDF) of the dis-
tribution of distances of saccades to the nearest manipulated location. Sac-
cades tend to converge towards the modified regions in the gaze-contingently
manipulated videos — therefore the shift of the solid curve to the left.

to the one considered in Chapter 4. The energy modification rules derived

from the information on salient and non-salient video regions were now em-

bedded online, in a gaze-contingent manner. Six different saliency increase

and three decrease strengths were tested (in the same manner as above),

and subjects were asked to press a button whenever they detected contrast

manipulation during the viewing of the videos. To ensure correct coupling

of responses and modifications, contrast manipulations were embedded only

every three seconds. During each modification, up to 20 candidate locations

were detected, one of which was increased in saliency whereas all others

underwent a decrease in saliency.

As above, for simplicity, we only report results for a single increase–

decrease strength combination. For gaze guidance to be successful, a sig-

nificant difference is expected in the distribution of fixations recorded on

the manipulated videos vs. those on the originals. Figure 6.4 summarizes

results on the effect of gaze-contingent energy modifications on eye move-

ment statistics. There, we plot the distribution of the distances measured

between saccade endpoints and the nearest modified location. When com-

pared with the control condition (i.e. saccades collected on the unmodified

videos), the cumulative distribution of the distances is shifted to the left,

indicating that saccades were made significantly more often to manipulated
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regions than when no manipulations were present at these locations. In-

terestingly, subjects became aware of the manipulations in only 4.5% of

the trials, suggesting that an unconscious gaze-guiding process was indeed

achieved in the rest of the trials [Dorr, 2010].

Thus, results confirm the preliminary conclusions of the previous sec-

tion: gaze guidance proves feasible and useful even with simple spatiotem-

poral contrast manipulations implemented as local weighting of the spectral

energies extracted on the levels of an anisotropic Laplacian pyramid. The

evaluation of a considerably larger body of experimental data with a more

systematic exploration of the parameter space (concerning e.g. the strength,

duration, and spatiotemporal distribution of manipulations) is still ongoing,

but interim results support the above findings.

6.7 Chapter conclusion

Directing visual attention to particularly goal-relevant areas in the visual

field is a promising new strategy to integrate into future visual and commu-

nication systems. Our goal in this chapter was to explore techniques that

allow to alter the saliency distribution of the scene, by embedding subtle

low-level changes in the visual stimulus. With effective changes that do

not introduce objectionable image artefacts, an unconscious gaze guiding

process may be achieved.

In this chapter, we proposed a generic saliency modification scheme in

which, first, the structural differences between attended and non-attended

video locations are learnt. The information on the class boundary that sep-

arates the two classes was then used to derive the desired image transforma-

tions that lead to an alteration in saliency. Our scheme is generic because it

does not assume any specific low- or high-level image feature space in which

the manipulation rules are derived. However, two constraints have to be

met by the selected feature(s). First, for effective saliency transformations,

in this space, a high separability of the salient and non-salient video areas

is highly desirable. Second, modifications in the chosen feature space need

to be mapped to manipulation rules in the original input or pixel space of

videos.

The spectral energy, computed on a spatiotemporal Laplacian pyramid,

has proven to be a simple feature that fulfills the above constraints. Transfor-
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mations performed in this low-dimensional space were implemented as local

spatiotemporal contrast manipulation rules (on the spatiotemporal Lapla-

cian). Normalization schemes to avoid visual artefacts and ways to quantify

the modification strengths were also discussed. In a preliminary experiment,

which aimed at evaluating the potential of such local video manipulations,

we used three independent saliency models to compare the saliency maps

of the unmodified and altered videos. The desired effect was reached in the

saliency maps of modified movies, where a saliency-increase (or -decrease)

rule applied to a video patch led to an increase (or decrease) in absolute

saliency relative to the original movie patch. The second experiment con-

firmed the effectiveness of the modifications in a real-world eye-tracking

experiment: even though gaze-contingent modifications usually remained

invisible, they had a guiding effect on eye movements.

Note, however, that with such simple modifications the guiding effect

is provable but still rather modest. We expect that the use of other, more

powerful image features (such as motion and flicker) would greatly enhance

the effectiveness of these video manipulations.
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7
Conclusion

Gaze guidance, as envisaged in this thesis, holds considerable promise for im-

proved human-machine communication, by complementing human percep-

tion with computer vision technology in a least-obtrusive way. The potential

for such augmented vision aids is indeed huge. Gaze-guidance systems can

provide “support” to an untrained eye in various scenarios and accelerate

the mastering of task-specific skills. They may have a great impact on medi-

cal applications, too, e.g. by aiding patients with attentional deficits such as

neglect. Also, this technology permits the guidance of gaze in safety-critical

situations, for instance in traffic when a driver would otherwise overlook a

pedestrian. Yet, before such systems become a reality, significant technolog-

ical developments, on the one hand, and a deeper understanding of visual

perception, on the other, must be achieved. The critical aspects of the

technical side, such as the need for accurate and low-latency gaze-tracking

and real-time image processing, may be more evident. However, a com-

plete knowledge of the mechanisms involved in attentional orienting and the

ability to simulate these biological processes are also required.

With the work presented in this thesis, we have contributed significantly

to this latter challenge — the computational modelling and simulation of

attentional processes — and, through this, opened the road towards the

practical implementation of such attention-directing systems. Specifically,

within the context of gaze guidance, our model of bottom-up attention,

described in detail in Chapter 5, provides a solution to the problem of iden-

tifying a small set of salient locations in videos that the viewer may next

attend to. Using the saliency modification framework put forth in Chap-

ter 6, we can then apply appropriate transformation rules to the selection of
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salient locations in order to modify their interestingness, and thus, to influ-

ence where people look. Apart from the critical questions of where and how

to apply the optimal video transformations, in a gaze-contingent scenario

it is also essential to know when exactly to perform these manipulations to

optimally bias saliency. To this end, Chapter 4 investigated the oculomotor

response time to various types of video data.

Beyond their relevance for gaze guidance, the proposed models and find-

ings have far-reaching implications in a much wider context. We have, for

instance, demonstrated how simple principles rooted in the signal processing

properties of human perception can serve as tools both to investigate percep-

tual phenomena and to predict likely saccade targets in videos. The simple

geometrical framework reviewed in Chapter 3 proved very useful in quanti-

fying the degree of anticipation in both truly natural and edited videos. The

temporal component of gaze allocation is a rarely studied aspect of visual

orienting in complex scenes, and we could show that the typical response

times in naturalistic videos differ considerably from that in quasi-realistic

scenes such as video games and TV clips. More importantly, we found that

the average oculomotor lag in natural scenes is near zero, indicating an

adaptation — in the course of evolution — of the human visual system to

the often predictable dynamics of the real world.

The same geometrical scheme served as a basis for the novel, low-complex-

ity computational model of attention put forth in Chapter 5. Hence, in this

thesis, visual saliency has been quantified as a measure of the degree of lo-

cal (video) signal variation, and special emphasis was placed on the generic

nature of the approach: machine learning techniques and simple image rep-

resentations of videos derived from efficient coding principles were combined

to advance the state of the art in eye movement prediction. Our aspiration

towards simplicity in design contrasts with existing, usually more complex

approaches which, in order to grant biological plausibility, make several as-

sumptions about perceptual processes, and whose results depend on the

optimal choice of many free parameters. Despite its conceptual simplic-

ity, our model outperforms baseline methods, and hence, holds considerable

promise for practical applications in machine vision.

Finally, with the work on saliency transformations described in Chap-

ter 6 we hope to have opened up a new research direction in attentional

modelling. The proposed saliency modification scheme is built upon our
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saliency-learning framework, and is generic enough to operate on a diverse

set of image features on which the manipulation rules are derived. We have

demonstrated empirically the capability of the approach to alter the saliency

distribution of scenes and guide the eyes in two validation experiments,

thereby delivering a proof of concept of the feasibility of gaze-guidance sys-

tems.

The saliency prediction and modification framework put forth in this

thesis suggests many promising directions for future research. Possible ex-

tensions of the saliency model include the incorporation of a top-down com-

ponent that allows modulation by task and prior knowledge. Also, the con-

sideration of a foveated input promises to reduce the computational load of

the operations, and hence, to notably speed up the prediction. The recently

developed principles of compressed sensing might lead to even more efficient

image representations. With respect to computer vision, the possible practi-

cal problems where our saliency predictor could act as an efficient attentional

front-end (or preprocessor), e.g. by filtering out the irrelevant information,

are numerous. Work on using the attentional model as a component of an

existing very powerful object recognition system has already been planned

for the near future. The problem of deriving saliency transformations is an

example of the much more generic problem of moving data points in high-

dimensional manifolds under a set of constraints. We believe our work on

saliency transformations is primarily a methodological contribution, and we

acknowledge that the feature space — of the spectral energy — for which the

use of the proposed modification scheme is demonstrated is rather simple.

Therefore, a natural extension of this work would be the consideration of

a wider set of more complex image features with which more sophisticated

saliency transformations could be learned.

In summary, this thesis has contributed several essential building blocks

towards the development of future information and communication systems

that incorporate attention.
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A
Support Vector Machines

In this appendix, we briefly recall the theoretical foundations of Support

Vector Machines (SVM) for the discrimination of both linearly separable and

non-separable data. For additional information on Support Vector Machines

we refer to seminal papers [Vapnik, 1998, Osuna et al., 1997, Burges, 1998]

and textbooks [Cristianini and Shawe-Taylor, 2000, Schölkopf and Smola,

2002, Bishop, 2006].

Support Vector Machines are supervised learning techniques that have

been applied successfully to a variety of classification and regression prob-

lems and are considered state of the art. We here formalize the theory for

the two-class classification scenario. The problem setting is as follows: given

a set of training examples of the form (xi, yi), i = 1, . . . , N , xi ∈ Rd, with

yi ∈ {−1,+1} class labels, we wish to predict whether a new (so-called test)

example belongs to one of the two (positive or negative) classes. We first

consider the simplest case, when the data is linearly separable, i.e. a function

f(x) = wTx + b, w ∈ Rd and b ∈ R, exists (in the 2D case a straight line)

such that ∀i
wTxi + b ≥ 0, if yi = 1,

wTxi + b < 0, if yi = −1.

✞

✝

☎

✆A.1

Given such a separating line (or a hyperplane in higher dimensional spaces),

a new test sample xt is classified according to the rule yt = sign(f(xt)).

However, there are multiple solutions, i.e. hyperplanes that can separate the

two classes, but our goal is to find the one that gives the smallest general-

ization error. Support Vector Machines approach the problem through the

concept of the margin: the smallest distance between the separating plane

and the closest samples to the plane. Support Vector Machines search for
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Figure A.1: Optimal separating hyperplane h (solid line) with maximal
margins. Data samples that lie on the margins (dashed lines) are called
support vectors. The two classes are in this case linearly separable.

the separating plane (the function f(.)) with the largest margin. The ratio-

nale is that the larger the margin, the higher the likelihood that novel test

points are classified correctly. Figure A.1 illustrates how Support Vector

Machines operate.

Let d+ and d− be the shortest distance from the hyperplane to the closest

positive and negative example, respectively. The margin is thus defined as

d+ + d−. It can be shown that d+ = d− = 1
∥w∥ ; hence, the margin that we

want to maximize is 2
∥w∥ , which is equivalent to minimizing 1

2∥w∥.

As defined above, any solution must satisfy the constraints

wTxi + b ≥ +1, if yi = 1

wTxi + b ≤ −1, if yi = −1

✞

✝

☎

✆A.2

which can be combined together as yi(wTxi + b) − 1 ≥ 0. Thus, in order

to maximize the margin, we wish to optimize the parameters w and b. We

formulate the primal problem of the SVMs as

minimize 1
2∥w∥2,

subject to yi(wTxi + b)− 1 ≥ 0, ∀i .

✞

✝

☎

✆A.3
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The data points for which yi(wTxi + b) − 1 = 0 are called support vectors

since the location of the decision boundary is determined solely by this

subset of the data points.

In order to solve the above constraint optimization problem, we rewrite

Equation A.3 using the Lagrangian as

L(w, b,α) = 1
2∥w∥2 −

∑N
i=1 αi[yi(wTxi + b)− 1],

✞

✝

☎

✆A.4

where α = (α1, . . . ,αN ), ∀αi ≥ 0 is a set of Lagrangian multipliers. Thus,

we must minimize L with respect to w and b, and maximize it with respect

to α. Hence, the solution that minimizes the primal problem subject to the

constraints is given by the saddle point problem:

minwmaxαL(w,α).
✞

✝

☎

✆A.5

We set the derivatives of L(w, b,α) with respect to w and b to zero and

obtain
w∗ =

∑N
i=1 αiyixi

0 =
∑N

i=1 αiyi

✞

✝

☎

✆A.6

The elimination of w and b in Equation A.4 using these conditions leads to

the dual problem

maximize LD =
∑N

i=1 αi −
1
2

∑

ij αiαjyiyjxi
Txj,

subject to
∑N

i=1 αiyi = 0

αi ≥ 0, ∀i .

✞

✝

☎

✆A.7

The dual problem can be solved using classical quadratic programming

based, for example, on constrained gradient descent.

The advantage of the dual formulation over the primal one is that the

problem now only depends on xi through the inner product xi
Txj which we

can substitute with kernel matrices k(xi,xj), thus projecting the data into

a higher dimensional space where the separation of the two classes may be

easier. Although the data set may not be linearly separable in the input

space x, it can often be separated linearly in the nonlinear feature space

defined implicitly by the nonlinear kernel function.

A number of conditions (called the Karush-Kuhn-Tucker conditions)

must hold at saddle points. They are derived partly from the primal problem

123



APPENDIX A. SUPPORT VECTOR MACHINES

by setting the derivatives with respect to w and b to zero. The constraints

of the primal problem are also part of these conditions. Finally, the so-called

“complementary slackness” constraint needs to be satisfied. The KKT con-

ditions can thus be summarized as

∂L
∂w = w −

∑N
i=1 αiyixi = 0

✞

✝

☎

✆A.8

∂L
∂b =

∑N
i=1 αiyi = 0

✞

✝

☎

✆A.9

yi(wTxi − b)− 1 ≥ 0
✞

✝

☎

✆A.10

αi ≥ 0, ∀i
✞

✝

☎

✆A.11

αi[yi(wTxi − b)− 1] = 0 (complementary slackness)
✞

✝

☎

✆A.12

These conditions are used to estimate the solution for b∗ (after w∗ has been

found during training)

b∗ =
∑

j αjyjxj
Txi − yi, i – support vector

✞

✝

☎

✆A.13

The training instances where αi > 0 are the support vectors and they define

the solution. Typically, α is very sparse (which means that the number of

support vectors is low), i.e. not all kernel entries need to be evaluated to

predict the class membership of a test sample.

So far, we have assumed that the training data is linearly separable. How-

ever, this rarely holds, and the proposed minimization problem does not

have any solution if the two classes are not separable. To account for this

case, the soft margin method will relax the constraints by introducing slack

variables ξi that penalize (but nevertheless allow) mislabelled samples

wTxi + b ≥ +1 + ξi, if yi = 1,

wTxi + b ≤ −1− ξi, if yi = −1,

✞

✝

☎

✆A.14

where ξi ≥ 0, ∀i. To penalize the objective function for these constraint

violations, we add a new term C
∑

i ξi to the primal problem, where the

constant C controls the tradeoff between a large margin and a small penalty
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error. Thus, the primal form can be rewritten as

minimize 1
2∥w∥2 + C

∑

i ξi,

subject to yi(wTxi + b)− 1 + ξi ≥ 0, ∀i

ξi ≥ 0, ∀i

✞

✝

☎

✆A.15

leading to the Lagrangian form

L(w, b, ξ,α, µ) =
1

2
∥w∥2 + C

∑

i

ξi −
N
∑

i=1

αi[yi(w
Txi + b)− 1 + ξi]

−
N
∑

i=1

µiξi.

✞

✝

☎

✆A.16

The dual form is derived using the KKT conditions to get rid of w, b, and ξ

maximize LD =
∑N

i=1 αi −
1
2

∑

ij αiαjyiyjxi
Txj,

subject to
∑N

i=1 αiyi = 0

0 ≤ αi ≤ C, ∀i

✞

✝

☎

✆A.17

Surprisingly, the only difference to the quadratic programming problem from

the linearly separable case, is the extra constraint (i.e. the upper limit) on

the αi multipliers. Also note that LD can again be easily kernelized by

replacing the inner products xi
Txj with a kernel matrix k(xi,xj).

Throughout the thesis, for our analysis, we used the publicly available

LIBSVM package, a standard implementation of various types of Support

Vector Machines [Chang and Lin, 2001].
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B
State-of-the-art saliency models

Throughout the present dissertation, we have extensively evaluated and

compared our saliency prediction and modification approach to a number of

baseline models of saliency. Two such state-of-the-art methods, the SUN-

DAy and the classic Itti and Koch model, are used recurringly in this work,

and therefore, apart from their brief mention in Chapter 2, they merit fur-

ther attention. Understanding the working principles behind these models

can help placing our saliency model in the right context. In the following,

we therefore briefly review the main steps of the algorithms employed by

the two approaches.

B.1 The SUNDAy model

The model of Zhang et al. [2009], SUNDAy, defines saliency as the self-

information of some low-level visual features. In the context of attentional

modelling, self-information adequately quantifies the assumption that novel

items draw attention. Self-information and the probability of a visual feature

are inversely proportional, i.e. rarer features are more informative. In the

formulation of Zhang et al. [2009], the probability distribution of the visual

features are learned “through experience”, from a large collection of natural

videos. Figure B.1 shows the saliency map computed by SUNDAy on one

of our videos.

The features used in their model are separable linear filters and they

are computed on the intensity (I), red-green (RG), and blue-yellow (BY)

channels of the videos, defined as I = r + g + b, RG = r − g, and BY =

b− r+g
2 − min(r,g)

2 . r, g, and b stand here for the red, green, and blue video

components. The feature response functions take the form of F = V ∗ g ∗ h,
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Figure B.1: The SUNDAy saliency map for one video frame.

where V is one of the above video channels, and g and h are filter components

applied along the spatial and temporal dimensions, respectively. Difference

of Gaussian filters (DoGs – with various σ’s) are used as spatial filters:

g(x, y;σ) =
1

σ2
e−

x2+y2

σ2 −
1

(1.6σ)2
e
− x2+y2

(1.6σ)2 ,
✞

✝

☎

✆B.1

while the temporal components take the form of a Difference of Exponential

(DoE):

h(t; τ) = h′(t, 2τ)− h′(t; τ)
✞

✝

☎

✆B.2

due to the resemblance of h′(t, τ) to an exponential distribution:

h′(t; τ) =
τ

1 + τ
(1 + τ)t.

✞

✝

☎

✆B.3

From each channel, all possible spatiotemporal combinations of five σ spatial

and τ temporal scale parameters are extracted. Thus, overall, 75 feature

responses are obtained. Since all filters are linear, the final filter response

can be computed as

F (x, y, t;σ, τ) = F ′(x, y, t;σ, 2τ)− F ′(x, y, t;σ, τ),
✞

✝

☎

✆B.4

where F ′(x, y, t;σ, τ) = V (x, y, t) ∗ g(x, y;σ) ∗ h′(t; τ).

To learn the distribution for each feature, first the feature responses

on about two hours of documentaries are computed, after which a gener-

alized Gaussian distribution is fitted to the estimated distributions. The

log-probability of a feature is written as

log p(Fi,j,k) = −

∣
∣
∣
∣
∣
∣

f
θi,j,k
i,j,k

ςi,j,k

∣
∣
∣
∣
∣
∣

+ const
✞

✝

☎

✆B.5
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where θi,j,k is the shape parameter, and ςi,j,k is the scale parameter of each

of the 75 filters fi,j,k (spatial: i = 1, . . . , 5, temporal: j = 1, . . . , 5, colour:

k = 1, . . . , 3). The saliency of a location corresponds to the self-information

(− log p(F = f)) calculated as the sum of scaled and shaped filter responses:

log s = − log p(F = f) =
5
∑

i=1

5
∑

j=1

3
∑

k=1

∣
∣
∣
∣
∣
∣

f
θi,j,k
i,j,k

ςi,j,k

∣
∣
∣
∣
∣
∣

+ const.
✞

✝

☎

✆B.6

Source code for computing SUNDAy saliency maps is publicly available as

part of the FastSaliency toolbox at http://mplab.ucsd.edu/~nick/NMPT/.

B.2 The Itti and Koch model

The biologically-inspired saliency framework of Itti et al. [1998, 2003] is per-

haps the most popular model of bottom-up attention, against which all other

approaches are compared. A schematic overview of the model architecture

is given in Figure 2.3. The input video is here, too, decomposed into an

intensity I (I = r+g+b
3 ) and two colour opponency channels RG and BY (as

above). The decomposition is performed at nine spatial scales using Gaus-

sian pyramids. Local orientation features (for four preferred orientations

Oθ, θ ∈ {0◦, 45◦, 90◦, 135◦}) are extracted, again on nine scales, by applying

steerable filters to the intensity pyramid levels. Two types of temporal fea-

tures, flicker (FL) and motion (Mθ) filters are used. The difference between

the luminance of the current frame and that of the previous frame yields

the flicker response. Motion features are extracted from spatially-shifted

differences between steerable pyramids from adjacent frames. The steerable

pyramids are those considered for orientation, and only shifts of one pixel

orthogonal to the Gabor orientation are used.

To simulate centre-surround receptive fields, the authors perform across-

scale subtraction of the individual feature maps. The centres are taken

at pixels from the pyramid levels c ∈ {2, 3, 4}, while the surround at the

corresponding pixels in the pyramid levels s = c + δ, where δ ∈ {3, 4}.

Thus, six centre-surround maps are computed for each of the above features,

yielding a total of 72 maps. Formally, the centre-surround feature maps are
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obtained as

CS l(c, s) = |Fl(c)⊖ Fl(s)|, ∀l ∈ L

with L = {I, RG,RB,Oθ, FL,Mθ}, θ ∈ {0◦, 45◦, 90◦, 135◦}

✞

✝

☎

✆B.7

⊖ denotes across-scale map subtraction, and Fl is either an intensity, colour,

orientation, flicker, or a motion feature.

Next, the individual centre-surround feature maps are normalized and

summed across scales using the across-scale addition operator ⊕:

Fl =
4
⊕

c=2

c+4
⊕

s=c+3

N (CS l(c, s)), ∀l ∈ L
✞

✝

☎

✆B.8

The normalization step (with N (.)) assumes an iterative convolution with

a large Difference of Gaussian (DoG), which results in simultaneous self-

excitation and inhibition of neighbouring locations, a behaviour associated

with long-range connections in V1.

For colour, orientation, and motion the normalized feature maps are

combined into a single conspicuity map. Thus for each feature type the

following conspicuity maps are obtained:

Intensity CI = FI

Colour CC = FRG + FBY

Orientation CO =
∑

θ N (FOθ
)

Flicker CF = FFL

Motion CM =
∑

θ N (FMθ
)

✞

✝

☎

✆B.9

These maps are again normalized and then summed into the final saliency

map S:

S =
1

3
(N (CI) +N (CC) +N (CO) +N (CF ) +N (CM ))

✞

✝

☎

✆B.10

From this map, winner-take-all (WTA) mechanisms select the most conspic-

uous location, which is attended to and then inhibited within a given radius.

An iteration of WTA and inhibition-of-return steps assures the generation

of attention shifts to locations of successively decreasing saliency.

In our work, we are concerned with the generation of saliency maps

rather than scanpaths. Therefore, for all our analysis, WTA and inhibition-
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of-return mechanisms are turned off.

A complete real-time implementation of the above model is freely down-

loadable from http://ilab.usc.edu/toolkit.
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Symposium (DAGM’04), Tübingen, pages 163–170, 2004b.

Cicero Mota, Ingo Stuke, and Erhardt Barth. The intrinsic dimension of

multispectral images. In MICCAI Workshop on Biophotonics Imaging

for Diagnostics and Treatment, pages 93–100, 2006.

Vidhya Navalpakkam and Laurent Itti. Modeling the influence of task on

attention. Vision Research, 45(2):205–231, Jan 2005.

Ulrik Neisser. Cognitive Psychology. New York: Appleton, 1967.

Alexandre Ninassi, Olivier Le Meur, Patrick Le Callet, and Dominique

Barba. Does where you gaze on an image affect your perception of qual-

ity? applying visual attention to image quality metric. In Proceedings of

the International Conference on Image Processing (ICIP), pages 169–172,

2007.

Calvin F. Nodine and Claudia Mello-Thoms. The nature of expertise in

radiology. In Richard L. Van Metter, Jacob Beutel, and Harold L. Kun-

del, editors, Handbook of Medical Imaging, Volume 1. Physics and Psy-

chophysics. SPIE Press, Bellingham, WA, 2000.

David Noton and Lawrence Stark. Eye movements and visual perception.

Scientific American, 224(6):34–43, 1971.

Marcus Nyström and Kenneth Holmqvist. Effect of compressed offline

foveated video on viewing behavior and subjective quality. ACM Trans.

Multimedia Comput. Commun. Appl., 6(1):4:1–4:14, February 2010.

142



BIBLIOGRAPHY

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive

field properties by learning a sparse code for natural images. Nature, 381:

607–609, 1996.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete

basis set: A strategy employed by V1? Vision Research, 37:3311–3325,

1997.

Edgar E. Osuna, Robert Freund, and Federico Girosi. Support vector ma-

chines: Training and applications. Technical report, 1997.

Nabil Ouerhani, Javier Bracamonte, Heinz Hugli, Michael Ansorge, and

Fausto Pellandini. Adaptive color image compression based on visual

attention. In Proc. of the International Conference of Image Analysis and

Processing (ICIAP), pages 416–421, 2001.

Stephen E. Palmer. Vision Science: Photons to Phenomenology. MIT Press,

1999.

Derrick J. Parkhurst and Ernst Niebur. Variable-resolution displays: A

theoretical, practical, and behavioral evaluation. Human Factors, 44(4):

611–29, 2002.

Jeff B. Pelz and Roxanne Canosa. Oculomotor behavior and perceptual

strategies in complex tasks. Vision Research, 41:3587–3596, 2001.

Michael I. Posner. Orienting of attention. Quarterly Journal of Experimental

Psychology, 32:3–25, 1980.

Christoph Rasche and Karl Gegenfurtner. Orienting during gaze guidance

in a letter-identification task. Journal of Eye Movement Research, 3(4):

1–10, 2010.

Keith Rayner. Eye movements in reading and information processing: 20

years of research. Psychological Bulletin, 124(3):372–422, 1998.

Pamela Reinagel and Anthony M. Zador. Natural scene statistics at the

centre of gaze. Network: Comput Neural Syst, 10:341–350, 1999.

Eyal M. Reingold, Lester C. Loschky, George W. McConkie, and David M.

Stampe. Gaze-contingent multiresolutional displays: An integrative re-

view. Human Factors, 45(2):307–28, 2003.

143



BIBLIOGRAPHY

Ronald A. Rensink. The dynamic representation of scenes. Visual Cognition,

7:17–42, 2000.

Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2:1019–1025, 1999.

Giacomo Rizzolatti, Lucia Riggio, Isabella Dascola, and Carlo Umilta. Re-

orienting attention across the vertical and horizontal meridians: Evidence

in favor of a premotor theory of attention. Neuropsychologia, 25:31–40,

1987.

Francesco Di Russo, Sabrina Pitzalis, and Donatella Spinelli. Fixation sta-

bility and saccadic latency in élite shooters. Vision Research, 43(17):1837

– 1845, 2003.

Ueli Rutishauser, Dirk Walther, Christof Koch, and Pietro Perona. Is

bottom-up attention useful for object recognition. In In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 37–44,

2004.

Anthony Santella, Maneesh Agrawala, Doug DeCarlo, David Salesin, and

Michael Cohen. Gaze-based interaction for semi-automatic photo crop-

ping. In Proceedings of the SIGCHI conference on Human Factors in

computing systems, CHI ’06, pages 771–780, New York, NY, USA, 2006.

ACM.

Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation of

interest point detectors. International Journal of Computer Vision, 37

(2):151–172, 2000.

Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support

vector machines, regularization, optimization, and beyond. the MIT Press,

2002.
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