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Abstract

Sparsifying signal transforms play a fundamental role in various engineering disciplines.

They allow to represent signals less redundantly by exploiting regular structures. Their

scope of application is versatile and covers feature extraction, lossy compression and

signal restoration, to name a few. Early pioneering developments of sparsifying sig-

nal transforms have been devoted to static orthogonal transform schemes. Later on,

the learning of overcomplete dictionaries became popular as these sparsifying trans-

forms can be tailored to the data. While numerous learning algorithms exist for that

overcomplete setting, only few different learning strategies have been proposed for the

orthogonal one, although orthogonality of the dictionary bears appealing advantages.

With the first part of this thesis we contribute to the collection of orthogonal dictio-

nary learning methods. We propose two novel online learning methods that challenge

the existing state-of-the-art batch learning strategies as they can achieve sparser repre-

sentations. By Orthogonal Sparse Coding (OSC) we propose a stochastic descent ap-

proach which sequentially updates the dictionary atoms based on a fusion of a Hebbian

learning rule and an iterative Gram-Schmidt orthogonalization scheme. By Geodesic

Flow Orthogonal Sparse Coding (GF-OSC) we propose a stochastic gradient descent

approach that is based on the geodesic flow optimization framework by Plumbley. The

gradient of the cost function is derived in the space of free dictionary parameters and

leads to a rotational update rule for the dictionary.

We compare the ability of different learning methods to recover an orthogonal ref-

erence dictionary from synthetic sparse data and show that OSC and GF-OSC master

the recovery task for challenging scenarios for which the other methods fail, such as low

sparsity levels or the presence of noise. We analyze the dictionaries that emerge from

learning on real training data sets and show that those learned by OSC and GF-OSC

achieve superior encoding performance, particularly for lower sparsity levels. Two ap-

plications of orthogonal dictionary learning by means of OSC are demonstrated. An

image denoising experiment reveals that the use of an orthogonal dictionary learned

by OSC leads to image restoration qualities comparable to the orthogonal dictionary

learned by a baseline approach and an overcomplete dictionary learned by K-SVD. We

also show that an orthogonal dictionary learned by OSC can be used for image com-

pression and that the resulting rate-distortion performance can be improved relative to
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Abstract

the JPEG baseline codec, particularly for low bit rates.

Nowadays, the sparse encodability of natural signals by sparsifying transforms is also

exploited by contemporary acquisition paradigms, such as Compressed Sensing (CS),

to capture only the crucial information of a signal by merely few linear measurements.

With the second part of this thesis we contribute to the collection of such alternative

sampling techniques. We propose Adaptive Hierarchical Sensing (AHS) for sampling

sparse or compressible signals by a number of linear measurements which corresponds

to the measurement complexity of CS. AHS is an adaptive approach that selects sensing

vectors during the sampling process based on simple decision rules and depending on

previously observed measurements of the signal. Prior to sampling, the user chooses a

suitable sparsifying transform in which the signal of interest is assumed to have a sparse

or compressible representation. The transform determines the collection of sensing

vectors. AHS gradually refines initially coarse measurements towards significant signal

coefficients in the transform domain based on a sensing tree which provides a natural

hierarchy of sensing vectors. AHS eventually captures significant signal coefficients and

does not require a recovery stage based on inverse optimization. We formulate two AHS

variants: τ -AHS, a variant based on absolute comparisons of the measurements with a

threshold, and K-AHS, a variant based on relative comparisons of the measurements.

On standard benchmark images, we demonstrate that K-AHS achieves lower recon-

struction errors than τ -AHS and, for the relevant scenario of few measurements, also

lower reconstruction errors than CS. We present a learning strategy that optimizes,

based on training data, the composition of sensing vectors and show, exemplarily for

natural image patches, that it improves sensing performance and leads to meaning-

ful spatial structures of the sensing vectors. Furthermore, we investigate the sensing

performance of K-AHS mathematically from a deterministic and a probabilistic per-

spective. A sufficient condition is proven which guarantees to deterministically sample

the k most significant signal coefficients. The condition is applied to particular signal

models in order to derive sufficient conditions depending on the model parameters. The

analytical findings are supported by simulations with synthetic signals and real world

images.
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Zusammenfassung

Sparsifizierende Signaltransformationen spielen in verschiedenen Ingenieursdisziplinen

mittlerweile eine wichtige Rolle. Sie erlauben, Signale weniger redundant zu repräsen-

tieren, indem sie reguläre Strukturen ausnutzen. Ihr Anwendungsbereich ist vielseitig

und deckt Merkmalsextraktion, verlustbehaftete Kompression und Signalaufbereitung

ab, um nur einige zu nennen. Frühe bahnbrechende Entwicklungen sparsifizieren-

der Signaltransformationen, widmeten sich statischen orthogonalen Transformationen.

Später wurde das Lernen übervollständiger Wörterbücher populär, da sparsifizierende

Transformationen damit auf Daten zugeschnitten werden können. Während zahlreiche

Lernalgorithmen für den übervollständigen Fall existieren, wurden nur wenige unter-

schiedliche Lernstrategien für den orthogonalen Fall vorgeschlagen, obwohl Orthogo-

nalität des Wörterbuchs viele Vorzüge mit sich bringt.

Mit dem ersten Teil der Arbeit leisten wir einen Beitrag zum Gebiet der Lernmetho-

den für orthogonale Wörterbücher. Wir schlagen zwei neue online Lernmethoden vor,

die existierende state-of-the-art Batch-Lernstrategien herausfordern, da sie spärlichere

Kodierungen erzielen können. Mit Orthogonal Sparse Coding (OSC) schlagen wir ein

stochastisches Abstiegsverfahren vor, das die Atome des Wörterbuchs sequentiell an-

passt, beruhend auf einer Zusammenführung einer Hebbschen Lernregel und einem

iterativen Gram-Schmidt Orthogonalisierungsschema. Mit Geodesic Flow Orthogonal

Sparse Coding (GF-OSC) schlagen wir ein stochastisches Gradientenabstiegsverfahren

vor, basierend auf der Optimierung mittels geodätischem Fluss von Plumbley. Der Gra-

dient der Kostenfunktion wird im Raum der freien Wörterbuchparameter bestimmt und

liefert eine rotierende Anpassungsregel für das Wörterbuch.

Wir vergleichen die Fähigkeit verschiedener Lernmethoden, ein orthogonales Refe-

renzwörterbuch von synthetischen spärlichen Daten wiederherzustellen und zeigen, dass

OSC und GF-OSC die Aufgabe in schwierigen Situationen meistern, bei denen die an-

deren Methoden versagen, wie beispielweise bei geringem Spärlichkeitsgrad oder bei

der Anwesenheit von Rauschen. Wir analysieren die Wörterbücher, die sich beim

Lernen auf reellen Trainingsdatensätzen herausbilden und zeigen, dass die von OSC

und GF-OSC gelernten Wörterbücher eine bessere Kodierungsleistung erzielen, im

Speziellen bei geringeren Spärlichkeitsgraden. Zwei Anwendungen des Lernens or-

thogonaler Wörterbücher durch OSC werden aufgezeigt. Ein Experiment zur Bildent-
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Zusammenfassung

rauschung zeigt, dass die Verwendung eines durch OSC gelernten orthogonalen Wörter-

buchs zu vergleichbarer Wiederherstellungsgüte führt wie ein orthogonales Wörterbuch,

das durch ein Standardverfahren gelernt bzw. wie ein übervollständiges Wörterbuchs,

das durch K-SVD gelernt wurde. Wir zeigen auch, dass ein orthogonales Wörterbuch,

das durch OSC gelernt wird, zur Bildkompression verwendet werden kann und dass

die resultierende Rate-Distortion Güte relativ zum JPEG Standard verbessert werden

kann, im Speziellen für geringe Bitraten.

Heutzutage wird die spärliche Kodierbarkeit von Signalen durch sparsifizierende

Transformationen auch von modernen Akquisitionsparadigmen wie z.B. Compressed

Sensing (CS) ausgenutzt, um die ausschlaggebende Information eines Signals mit ledig-

lich wenigen linearen Messungen einzusammeln.

Mit dem zweiten Teil dieser Arbeit leisten wir einen Beitrag zum Gebiet solcher

alternativen Samplingtechniken. Wir schlagen Adaptive Hierarchical Sensing (AHS)

vor, um spärliche oder komprimierbare Signale mit einer Anzahl linearer Messun-

gen zu erfassen, die der Messkomplexität von CS entspricht. AHS ist ein adaptiver

Ansatz, der Sensingvektoren während des Samplingprozesses basierend auf einfachen

Entscheidungsregeln bzgl. zuvor beobachteter Messungen des Signals auswählt. Vor

dem Sampling wählt der Nutzer eine geeignete sparsifizierende Transformation aus, in

der das Signal mutmaßlich eine spärliche oder komprimierbare Repräsentation hat. Die

Transformation determiniert den Satz an Sensingvektoren. AHS verfeinert sukzessive

anfänglich grobe Messungen hin zu signifikanten Signalkoeffizienten der Transforma-

tionsdomäne mittels eines Sensingbaums, der eine natürliche Hierarchie der Sensingvek-

toren repräsentiert. AHS erfasst letztlich signifikante Signalkoeffizienten und benötigt

keine Wiederherstellungsstufe, die auf inverser Optimierung beruht. Wir formulieren

zwei AHS Varianten: τ -AHS, eine Variante basierend auf absoluten Vergleichen der

Messungen mit einem Schwellwert, und K-AHS, eine Variante basierend auf relativen

Vergleichen der Messungen.

Wir demonstrieren anhand von Benchmarkbildern, dass K-AHS geringere Rekon-

struktionsfehler als τ -AHS und CS erreicht, im Besonderen für das relevante Szenario

von wenigen Messungen. Wir präsentieren eine Lernstrategie, die ausgehend von Train-

ingsdaten die Zusammensetzung der Sensingvektoren optimiert und zeigen beispielhaft

für natürliche Bildausschnitte, dass die Sensingleistung dadurch gesteigert wird und

zu sinnvollen räumlichen Strukturen bei den Sensingvektoren führt. Weiterhin unter-

suchen wir die Sensingleistung von K-AHS mathematisch von einer deterministischen

und einer probabilistischen Perspektive. Wir können eine hinreichende Bedingung be-

weisen, die die Erfassung der k signifikantesten Signalkoeffizienten garantiert. Die Be-

dingung wird für bestimmte Signalmodelle angewendet, um hinreichende Bedingungen

für die Modellparameter abzuleiten. Die analytischen Ergebnisse werden durch Simu-

lationen mit synthetischen Signalen und realen Bildern gestützt.
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1 Introduction

1.1 Orthogonal Dictionary Learning for Sparse Coding

Many higher level machine learning tasks, as for instance object recognition, rely on a

suitable feature representation of raw input data such that initially hidden structural

properties become accessible. The underlying objective is to extract and exploit relevant

information from the data in order to solve the task or to improve performance on it

[Bengio et al., 2013].

Many unsupervised machine learning problems impose a basic generative model,

a linear feature model, on a given set of observed data [Roweis and Ghahramani,

1999, Oja, 2002]. In general, such a linear feature model can be formulated as a

matrix factorization problem, by which the set of observed data instances, strung in

a data matrix X, is assumed to be (approximately) generated by a matrix product

WS, where W is a matrix representing some linear transform which maps the feature

space to the input space and S is a matrix representing the data within the feature

space. Commonly, W and S are unknown and shall be identified such that an objective

function is optimized. The objective function embodies the desired criterion of the

representation in a formal mathematical sense.

A well-known example of a linear feature model is given by the Principal Component

Analysis (PCA) which asks for a low-dimensional decorrelated representation S of the

data matrix, and an orthonormal matrix W spanning a low-dimensional subspace, such

that the approximation X ≈WS has minimal error [Pearson, 1901, Hotelling, 1933].

Likewise, Sparse Coding imposes a linear feature model on observed data [Olshausen

and Field, 1996a, Rubinstein et al., 2010], and spans an important subclass of unsu-

pervised machine learning problems [Lee et al., 2007]. The principal learning task for

Sparse Coding can be phrased as follows: generate for a given set of observed signals

a dictionary, a suitable collection of atomic signals, such that each observed signal can

be well approximated by an individual sparse linear combination of atomic signals. In

other words, find W and S such that, column-wise, only few entries of S are distinct

from zero and such that X ≈WS has minimal error.

Sparse Coding has a connection to the neurobiological processing of the brain,

particularly to the encoding and processing of sensory inputs [Olshausen and Field,
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2004] such as vision [Olshausen and Field, 1996a, Olshausen and Field, 1997], audition

[Hromádka et al., 2008, Willmore and King, 2009], touch [Crochet et al., 2011], and

olfaction [Ito et al., 2008, Lin et al., 2014], and also to memory formation [Kanerva,

1988, Palm, 2013]. Early work on Sparse Coding proposed that the goal of visual coding

is to faithfully represent the visual input with minimal neural activity in order to save

energy and computational resources. This principle is called efficient-coding hypothesis

and goes back to Barlow [Barlow, 1961] and is based on earlier work of Mach [Mach,

1886] and MacKay [MacKay, 1956]. It has been later extended in several ways and

related to the statistics of natural images [Field, 1994, Zetzsche et al., 1993, Olshausen

and Field, 1996a]. Olshausen and Field have shown that learning a coding strategy

that maximizes sparsity is sufficient to let atomic signals emerge that have receptive

field properties of simple cells in the primary visual cortex [Olshausen and Field, 1996b,

Olshausen and Field, 1996a].

Sparse Coding has various applications in the area of image processing and com-

puter vision. For instance, dictionaries learned on image patches can be used for lossy

compression, i.e. to store good approximate versions of uncompressed images at a much

lower bit rate [Bryt and Elad, 2008, Skretting and Engan, 2011, Pati et al., 2015]. Fur-

thermore, Sparse Coding can be used to restore corrupted images, i.e. to remove noise

[Elad and Aharon, 2006, Sundaresan and Porikli, 2012], to fill in intensity values for

missing pixels [Mairal et al., 2008a, Mairal et al., 2008b], or to revert the convolution

of an image with a known filter (deblurring) [Yang et al., 2014, Xiang et al., 2015].

Sparse Coding approaches have also been used in many pattern recognition applica-

tions, for instance to classify images [Labusch et al., 2008, Mairal et al., 2009, Qin

et al., 2016, Bao et al., 2016].

The vast majority of existing methods to learn dictionaries for Sparse Coding covers

primarily the non-orthogonal overcomplete setting, in which the number of atomic

signals is much larger than the data dimensionality. The overcomplete setting has been

focused on, in order to capture invariances, to achieve robustness in the presence of

noise, flexibility to fit the data, and coding efficiency [Rubinstein et al., 2010, Lewicki

and Sejnowski, 2000, Elad, 2010].

In the first part of this thesis, we propose and investigate novel methods to learn

complete orthogonal dictionaries for Sparse Coding [Schütze et al., 2013, Schütze et al.,

2015, Schütze et al., 2016]. The question arises: What is the motivation to contribute

to the orthogonal dictionary variant of the Sparse Coding problem?

First, learning a dictionary for Sparse Coding induces in most cases an alternating

update scheme of two nested subproblems [Rubinstein et al., 2010, Elad, 2010]. In the

orthogonal setting, there is a distinct advantage: both subproblems can be solved fast

and optimally. One subproblem, finding the optimal sparse representation of a signal

subject to a given dictionary, is particularly important as it might be solved frequently

after learning is finished. The efficient and optimal solvability of both subproblems
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entails a fast alternating batch learning approach that has been independently devel-

oped for different models [Lesage et al., 2005, Sezer et al., 2008, Bao et al., 2013, Cai

et al., 2014]. Unfortunately, it suffers from suboptimal solutions in conditions that

are quite relevant in practice, which leaves room for improvements and motivates the

development of new algorithmic approaches.

Second, many natural signals, e.g. natural images can be sparsely encoded by or-

thogonal linear transforms. This fact has been exploited in the area of image compres-

sion to build efficient codecs such as the JPEG standard [Pennebaker and Mitchell,

1992]. By using an adequate analytic orthogonal transform, e.g. the Discrete Cosine

Transform (DCT) [Ahmed et al., 1974], many transform coefficients are close to zero

and do not need not be encoded. If the (image) data originates from a different domain

with unique statistical properties, but is nonetheless sparsely encodable by an orthog-

onal transform, a suitable analytic one might be unknown. A learning method copes

with this issue as it is adaptive and generates the transform tailored to the statistics

of the data.

Third, principal applications of Sparse Coding can be solved by orthogonal dictio-

naries as well [Sezer et al., 2008, Bao et al., 2013, Cai et al., 2014, Sezer et al., 2015, Bao

et al., 2015, Rusu et al., 2016]. Furthermore, there are scenarios which require that the

sparsifying transform (the dictionary) is invertible, e.g. for particular reconstruction

approaches in the area of Compressed Sensing. Orthogonality is highly convenient as

the dictionary serves simultaneously as synthesis and analysis transform.

Last but not least, approaches to solve the orthogonal dictionary learning problem

are not exhausted. It has not attained as much attention as the counterpart deal-

ing with overcomplete dictionaries. Consequently, only few conceptually different ap-

proaches have been proposed to solve the problem. Currently, it is still an active topic

of research with recent contributions such as [Bao et al., 2015, Rusu et al., 2016, Rusu

and Thompson, 2017].

1.2 Adaptive Hierarchical Sensing

During the last decade Compressed Sensing has rapidly emerged. It is now established

as a sophisticated sampling technique in various engineering disciplines [Eldar and Ku-

tyniok, 2012]. Many digital acquisition devices, for instance digital cameras, first fully

sample the analog signal of interest and subsequently perform lossy compression to

get rid of the vast amount of redundant information collected in the first stage. Com-

pressed Sensing, on the contrary, is a much more efficient approach as it embeds the

data compression step into the sampling stage [Takhar et al., 2006]. Given the sig-

nal is sparse or compressible in some transform domain, the total number of required

Compressed Sensing measurements is much lower than the Nyquist-Shannon sampling

theorem demands in the case of classical sampling [Candès et al., 2006, Donoho, 2006].

3



Chapter 1. Introduction

Fortunately, the sparseness assumption holds for many types of natural signals. Clas-

sical sampling of a signal, e.g. capturing a visual scene by a digital camera, can be seen

as making linear measurements in terms of inner products of the signal with canoni-

cal basis vectors. With Compressed Sensing, inner products of the signal are instead

measured sequentially with alternative sensing vectors. These sensing vectors can be

composed of random entries, or can be randomly selected basis vectors of some trans-

form basis. Given the small collection of linear measurements, the sparse representation

of the signal is recovered by solving an inverse optimization problem. In essence, such

an optimization reduces to the problem of finding a sparse solution to an underdeter-

mined system of linear equations, and is thus related to Sparse Coding, particularly to

sparse recovery problems [Kutyniok, 2012].

Compressed Sensing has found versatile applications. For radar imaging systems,

Compressed Sensing is used to improve hardware designs and to increase resolution

[Baraniuk and Steeghs, 2007, Herman and Strohmer, 2009, Potter et al., 2010, Ender,

2010]. In the area of Magnetic Resonance Imaging (MRI), image acquisition is done in

the Fourier domain, which allows to apply Compressed Sensing to improve the image

quality while reducing the number of collected measurements [Lustig et al., 2008, Gam-

per et al., 2008, Jung et al., 2009]. Compressed sensing has also found applications in

the area of seismic imaging to improve acquisition of seismic data [Herrmann and Hen-

nenfent, 2008, Hennenfent and Herrmann, 2008] Furthermore, single pixel imaging has

been realized based on Compressed Sensing, which contributed considerably to its pop-

ularity. A single photo detector can be used, in combination with some spatial light

modulator, to capture images in fairly high resolution [Takhar et al., 2006, Wakin et al.,

2006a, Wakin et al., 2006b, Welsh et al., 2013, Sun et al., 2013].

Commonly, Compressed Sensing measurements are collected non-adaptively, i.e.

with the beginning of the acquisition process all sensing vectors are entirely deter-

mined [Donoho, 2006, Candes and Tao, 2006, Kutyniok, 2012]. They are sequentially

processed during the sampling process independent from previously received sensing

values. Due to the independence of the sensing vectors from the signal, non-adaptive

sampling has been advocated as it prevents any computational overhead for computing

the sensing vectors during the acquisition process.

In the second part of this thesis, we present and analyze novel adaptive approaches

to the Compressed Sensing problem, where sensing vectors are selected dependent on

values of previously observed measurements. In general, previously proposed adaptive

Compressed Sensing schemes can lead to more accurate reconstructions, for instance

in the presence of noise [Castro et al., 2008, Ji et al., 2008, Seeger, 2008, Seeger and

Nickisch, 2008]. Furthermore, some adaptive approaches, e.g. [Deutsch et al., 2009], as

well as the ones proposed in this thesis, do not rely on solving an optimization problem

to reconstruct the signal, but identify relevant signal coefficients directly in the sparse

transform domain [Schütze et al., 2014, Schütze et al., 2017].
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1.3 Thesis Organization

The thesis is organized in two major parts.

The first part covers the topic orthogonal dictionary learning for Sparse Coding.

After introducing the basic terminology, the learning problem is characterized alge-

braically and two principal sparse models are introduced together with their solutions

to the sparse approximation problem. A literature review gives an overview of previous

approaches to the problem. Subsequently, the Canonical Approach (CA), the Orthog-

onal Sparse Coding (OSC) as well as the Geodesic Flow Orthogonal Sparse Coding

(GF-OSC) algorithms are presented. Subsequent sections cover various numerical ex-

periments for methodical comparisons. On synthetic data, the superiority of OSC and

GF-OSC is demonstrated at dictionary recovery tasks. Orthogonal dictionaries learned

on real world image data are analyzed and their sparse encoding performance is as-

sessed. Finally, applications are demonstrated in form of image compression and image

denoising experiments.

The second part covers the topic Adaptive Hierarchical Sensing (AHS). First, we

introduce the sensing problem formally, together with common approaches and require-

ments to reconstruct a signal from a small set of linear measurements. Prior to the

detailed presentation of two AHS algorithms, we explain the central structural compo-

nent of AHS, the sensing tree. Subsequently, τ -AHS and K-AHS are presented, their

sampling complexity is analyzed, and it is outlined how the sparse signal representation

is obtained. We analyze mathematically situations in which AHS can miss important

portions of a signal and prove a sufficient deterministic success condition. The per-

formance of AHS is evaluated for synthetic signals as well as for natural images. A

comparison of the imaging results with a conventional Compressed Sensing scheme is

provided. We show that AHS sensing performance can be increased if the structure of

the sensing tree is learned from training data. Furthermore, it is shown that, through-

out the sensing procedure, AHS automatically intensifies the sensing at salient locations

of the scene.

Finally, the developed methods and results presented in this thesis are concluded. A

discussion weighs out value and limitations of the proposed methods and experiments

and outlines possible advancements that remain open.
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2 Orthogonal Dictionary Learning

for Sparse Coding

This chapter is organized as follows. In Section 2.1 basic terms and definitions are

introduced to make the reader familiar with the terminology for diving into the orthog-

onal sparse coding world. Section 2.3 and Section 2.4 introduce two principal models

for learning orthogonal dictionaries for sparse coding: the constrained K-sparse model

and the unconstrained regularized sparse model. For each model it is shown how to

efficiently perform, for a given dictionary, optimal updates of sparse coefficients. A

literature review in Section 2.5 gives an overview which algorithmic approaches have

been proposed so far to solve the learning problem of interest. Section 2.6 presents the

Canonical Approach (CA) which is a natural modification of a base line method from

the unconstrained model to the constrained model. In Section 2.7, the new online learn-

ing algorithm Orthogonal Sparse Coding (OSC) is proposed to solve the constrained

model using a Hebbian learning rule and Gram-Schmidt orthogonalization. In Section

2.8, a further new online learning algorithm, Geodesic Flow Orthogonal Sparse Coding

(GF-OSC), is proposed to address the same model using a gradient descent approach

based on geodesic flow optimization. Section 2.9 provides a performance comparison

of several methods for the task to recover a generating orthogonal dictionary from

synthetic sparse data. Section 2.10 and Section 2.11 present and analyze the orthogo-

nal dictionaries that emerged from learning on natural image data and on image data

of handwritten digits. Section 2.12 presents image compression and image denoising

applications for dictionaries learned by the proposed methods.

2.1 Terminology and Formal Definitions

Definition 1 (Data Sample). In the following, we consider a data sample as a real

N -element column vector and denote it by x ∈ RN .

Definition 2 (Data Set). A data set is a collection of multiple, say L, data samples

which are stored column-wise in a matrix X = (x1, ...,xL) ∈ RN×L.

Definition 3 (Dictionary Atom). A dictionary atom is an N -element column vector

u ∈ RN with unit Euclidean length ‖u‖2 = 1.

7
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Definition 4 (Orthogonal Dictionary). A dictionary is a collection of multiple, say M ,

dictionary atoms which are stored column-wise in a matrix U = (u1, ...,uM ) ∈ RN×M .

The dictionary is called orthogonal if for all M(M − 1)/2 pairs of distinct dictionary

atoms ui, uj the inner product 〈ui,uj〉 = 0, or in other words UTU = IM . The

dictionary can alternatively be termed orthonormal (rather than orthogonal) as the

dictionary atoms have unit length. An orthogonal dictionary U is called undercomplete

if M < N , and complete if M = N . In the latter case, U is an orthonormal basis

(ONB). In the remaining part of this chapter, the complete setting can be assumed, if

not explicitly stated otherwise.

Definition 5 (Sparse Representation, Sparse Approximation). Given an orthogonal

dictionary U, a data sample x ∈ RN is said to have a sparse representation by a

coefficient vector â ∈ RM , if most of its entries – the coefficients – are zero or close to

zero, and the data sample is well approximated as follows: x ≈ x̂ = Uâ. We call x̂ the

sparse approximation of x subject to U and â.

Definition 6 (Residual/Error of a Sparse Approximation). The residual r of a sparse

approximation x̂ of x is defined by r := x− x̂. Its squared Euclidean norm ‖r‖22 – the

residual norm – measures the approximation error.

Definition 7 (Sparsity Measures). To measure the sparsity of a vector a we use the

`0-norm ‖·‖0 : RN → {0, ..., N} to obtain the size of its support, i.e. its number of

non-zero coefficients

‖a‖0 = |{j | aj 6= 0}| =
N∑

j=1

1R\{0}(aj) . (2.1)

The smaller ‖a‖0, the higher is the sparsity of a. Note that the `0-norm is not a true

norm as is does not satisfy the property of homogeneity. Alternatively, the `1-norm

‖·‖1 : RN → R can be used as a convex relaxation to measure the sparsity of a vector

‖a‖1 =

N∑

j=1

|aj | . (2.2)

Generalizations of ‖·‖0 and ‖·‖1 for matrices are obtained by taking the indices over

all matrix elements.

Definition 8 (Overlap of two Vectors). The (normalized) overlap of two vectors v and

w is defined by

ovlp(v,w) =
|vTw|
‖v‖2 ‖w‖2

, (2.3)

and is equivalent to the magnitude of the cosine of the (aligned) angle that is embraced

by v and w. Note that ovlp(v,w) ∈ [0, 1] is invariant to a sign switch of v or w due

to the absolute value taken in the numerator.
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Definition 9 (Mutual Coherence of a Dictionary). The mutual coherence of a dictio-

nary is the maximal overlap among all M(M − 1)/2 pairs of distinct dictionary atoms.

Definition 10 (Orthogonal Group). The orthogonal group O(N) defines the set con-

taining all ONBs spanning the RN :

O(N) =
{
U | U ∈ RN×N ,UTU = IN

}
. (2.4)

The orthogonal group consists of two disconnected subgroups: SO(N) and SO(N) :=

O(N) \ SO(N). The SO(N) is called the special orthogonal group and contains all

ONBs U with det(U) = +1.

2.2 Characterization of the Learning Problem

Learning a dictionary for sparse coding can be grasped as the task to find a suitable

set of low dimensional linear subspaces to encode a given data set. The dictionary with

its atoms is a collection of direction vectors from which small subsets can be taken to

span lower-dimensional subspaces that contain the given data samples up to a small

error. Suppose a data sample can be represented by a K-sparse linear combination

of dictionary atoms, i.e. by the product of the dictionary and a K-sparse coefficient

vector, then these coefficients correspond to the coordinates of the sample in the K-

dimensional subspace that is spanned by the atoms which correspond to the indices of

the non-zero coefficients.

2.2.1 Orthogonal and Overcomplete Dictionaries

Learning overcomplete dictionaries allows to arbitrarily increase the collection of atoms

to a size larger than the dimensionality of the signal space which in turn increases the

number of possible subspaces that can be used for encoding. Disjoint1 linear subspaces

composed from an overcomplete dictionary are mutually non-orthogonal which enables,

in general, a better adaptation to the training data set and can represent a wider range

of signal phenomena [Rubinstein et al., 2010, Lewicki and Sejnowski, 2000, Elad, 2010].

However, without further conditions on the dictionary it becomes difficult to compute

the optimal sparse data representations, i.e. the optimal sparse coefficient vectors and

their support. For general overcomplete dictionaries, this problem is NP-hard [Davis

et al., 1997]. Sparse recovery algorithms like Basis Pursuit [Chen et al., 1998] or Or-

thogonal Matching Pursuit [Pati et al., 1993] can find optimal coefficients only if the

dictionary satisfies particular conditions such as upper bounds of the mutual coherence

[Donoho and Elad, 2003] or the restricted isometry property [Candes and Tao, 2005].

These properties require that dictionary atoms are not too similar and might be inter-

preted as a relaxation of orthogonality. However, unlike orthogonality, it is difficult to

1except the shared zero element 0
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implement such properties as constraints in dictionary learning algorithms. Orthogonal

dictionaries, on the other hand, are mathematically simple and also maximally inco-

herent. Disjoint linear subspaces composed from an orthogonal dictionary are mutually

orthogonal with the implication that optimal sparse coefficients of a data sample can be

efficiently computed from its dense representation. Moreover, an orthogonal dictionary

can be easily inverted. It serves simultaneously as synthesis and as analysis operator.

2.2.2 Interpretation As a Special Blind Source Separation Problem

The orthogonal dictionary learning problem for sparse coding can be casted to a spe-

cial blind source separation (BSS) problem [Mishali and Eldar, 2009, Dobigeon and

Tourneret, 2010], where N sensors record different linear mixtures of M ≤ N sparse

source signals. One sample is acquired per discrete time index. The sparseness con-

dition implies that only few sources are active for each time index. The recorded, i.e.

observed, signals are given by the rows of the data matrix X, the source signals are

given by the rows of the coefficient matrix A, the mixture coefficients for the individual

source signals are given by the atoms of the dictionary U. In this special setting one

additionally assumes that columns of U, which contain the mixture coefficients, are mu-

tually orthonormal. Solving this blind source separation problem is ill-posed, meaning

that X is given, whereas both A and U are unknown and have to be estimated.

2.2.3 Alternating Optimization

The sparse coding literature provides a considerable number of algorithms to learn

sparse representations for a given data set. Generally, a joint optimization problem has

to be solved which takes two terms into account. On the one hand, the approximation

error of the training data set, which is commonly measured by the residual norm,

shall be minimized. On the other hand, the sparsity of the data representation, which

is commonly measured by the `0-norm or `1-norm, shall be maximized. Note that

maximizing the sparsity of the data representation is equivalent to minimizing one of the

aforementioned norms. Hence, two “forces” drive the optimization process in general.

To jointly optimize the sparse coefficients and the dictionary is difficult [Rubinstein

et al., 2010, Elad, 2010]. Therefore, an update scheme which alternately optimizes two

kinds of subproblems is used to handle the nested optimization of the sparse model.

One subproblem addresses the update of the sparse coefficients while the dictionary is

fixed. The second subproblem addresses the update of the dictionary while the sparse

coefficients are fixed.

When learning orthogonal dictionaries for sparse coding, as opposed to learning

overcomplete ones, the first subproblem can be solved efficiently and optimally. Its

solution depends on the sparse model. In the following two sections we introduce

the two primary sparse models that occur in the literature: the constrained K-sparse

10
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model and the unconstrained regularized sparse model. For each model we give the

corresponding optimal solutions to the first subproblem. Indeed, the second subproblem

can be solved fast and optimally as well. However, performing alternating updates using

the optimal solutions of both subproblems does not necessarily yield an optimal solution

to the joint optimization problem, particularly if the sparsity is not very high, noise

is present or a good initial dictionary is unknown. Therefore, we provide alternative

strategies to solve the second subproblem, which can yield superior solutions to the

joint optimization problem.

2.3 Constrained K-Sparse Model

In the following, we introduce the constrained K-sparse model to find for a given train-

ing data set X an optimal ONB U∗ in which the training data samples xi are optimally

approximated by K-sparse coefficient vectors a∗i . Sparsity level K ∈ {1, . . . , N} is a

user parameter to control the sparsity of the representations.

The learning methods presented in this chapter are predominantly based on this

model.

2.3.1 General Cost Function

Suppose a given data matrix X is represented by some (arbitrary) coefficient matrix A

(of the same size) subject to an ONB U. The cost function

EX(U,A) = ‖X−UA‖2F (2.5)

=

L∑

i=1

N∑

j=1

(
Xj,i − (UA)j,i

)2
(2.6)

=
L∑

i=1

‖xi −Uai‖22 (2.7)

assesses the inaccuracy of the representation by measuring the squared residual norm,

i.e. the squared error between data matrix X and its approximation given by UA. Up

to the constant factor 1
L , the cost function is equivalent to the mean squared error

(MSE) of the approximated samples.

2.3.2 Joint Optimization Problem

The joint optimization problem of the constrained K-sparse model is given by mini-

mizing the cost function EX(U,A), as given by (2.5), regarding its two arguments with

the constraint that the columns of A are K-sparse:

P(2.8) : arg min
U∈O(N),A∈RN×L

‖X−UA‖2F , s.t. ‖ai‖0 ≤ K for i = 1, . . . , L . (2.8)

11
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2.3.3 Optimal Coefficient Update

Suppose ONB U is given, then P(2.8) reduces to the batch learning variant of the

K-sparse approximation problem:

P(2.9) : arg min
A∈RN×L

‖X−UA‖2F , s.t. ‖ai‖0 ≤ K for i = 1, . . . , L . (2.9)

Its solution gives the optimal (column-wise) K-sparse coefficient matrix A∗ to approx-

imate X in ONB U with minimal error and is denoted by SK
(
UTX

)
. Solving P(2.9) is

equivalent to solve L independent optimization problems of the form

P(2.10) : arg min
a∈RN

‖x−Ua‖22 , s.t. ‖a‖0 ≤ K , (2.10)

one for each training data sample xi. P(2.10) is the online learning variant of the K-

sparse approximation problem. Its minimizer gives the optimal K-sparse coefficient

vector to represent a single data sample x in ONB U, and can be efficiently computed

as follows:

Remark. For given data sample x, ONB U and sparsity level K, let h1, . . . , hN be

a sequence such that
(
uTh1x

)2 ≥ · · · ≥
(
uThN x

)2
. The K-sparse coefficient vector

a∗ = SK
(
UTx

)
, with entries

a∗hk =





uThkx if k ≤ K
0 otherwise

(2.11)

is a global minimizer of P(2.10).

Proof. First, let a be in the feasible set of P(2.10), i.e. a is an arbitrary K-sparse co-

efficient vector. Assume S ⊆ {1, . . . , N} is the support of a, where |S| ≤ K. We

have

‖x−Ua‖22 =

∥∥∥∥∥∥
x−

∑

j∈S
ajuj

∥∥∥∥∥∥

2

2

(2.12)

= ‖x‖22 − 2
∑

j∈S
aju

T
j x +

∑

j∈S
a2
j (2.13)

Taking the partial derivative ∂
∂ aj

of (2.13) and setting to zero, yields aj = uTj x for

j ∈ S, and 0 = 0 for j /∈ S. Hence, any stationary point a∗ of P(2.10) requires non-zero

12
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coefficients of the form a∗j = uTj x. Taking this into account, yields

‖x−Ua∗‖22 =

∥∥∥∥∥∥
x−

∑

j∈S

(
uTj x

)
uj

∥∥∥∥∥∥

2

2

(2.14)

= ‖x‖22 −
∑

j∈S

(
uTj x

)2
. (2.15)

Hence, S∗ = {h1, . . . , hK} is optimal as no other support S with |S| ≤ K can further

decrease (2.15), which yields (2.11) as the global minimizer. Furthermore, the solution

a∗ is unique iff
(
uThKx

)2
>
(
uThK+1

x
)2

.

In other words, an optimal solution a∗ to the K-sparse approximation problem

P(2.10) can be efficiently determined by first computing the dense representation a =

UTx, then retaining the K entries ah1 , . . . , ahK with largest magnitude (e.g. via partial

sorting), and setting the other N −K entries ahK+1
, . . . , ahN to zero.

Another, sometimes more useful way to write the minimizer (2.11) of the K-sparse

approximation problem (2.10) is given by

a∗ = SK(UTx) = DUTx , (2.16)

where D is a diagonal matrix with K entries equal to 1 and otherwise entries equal

to 0. The locations of 1-entries on the diagonal correspond to the indices h1, . . . , hK

which select the K largest squared projections
(
uTh1x

)2
, . . . ,

(
uThKx

)2
.

2.3.4 K-Sparse Approximation Error

Given a data matrix X and a sparsity level K, the cost function measuring the (optimal)

K-sparse approximation error as a function of an ONB U, is given by

EX,K(U) =
∥∥X−USK(UTX)

∥∥2

F
(2.17)

= ‖X‖2F −
L∑

i=1

xTi UDiU
Txi , (2.18)

where SK(UTX) is the solution A∗ to P(2.9).

By (2.17) the subproblem of finding the optimal K-sparse representation of X is

merged to a certain extent into the cost function. In the broader sense, solving P(2.8)

is equivalent to minimizing (2.17). When we assess the sparse encoding performance

of an ONB U, we evaluate EX,K(U) and call it the (total) costs of encoding X by its

optimal K-sparse representation subject to U.

13
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The single sample (online) variant of the K-sparse approximation error is given by

Ex,K(U) =
∥∥x−USK(UTx)

∥∥2

2
(2.19)

= ‖x‖22 −
K∑

k=1

(uThkx)2 (2.20)

= ‖x‖22 − xTUDUTx . (2.21)

2.4 Unconstrained Regularized Sparse Model

In the following, we introduce the unconstrained regularized sparse model. The key

difference to the constrained K-sparse model is, that the sparsity inducing term is not

tied as a side condition, but instead imposed as a regularization term on the objec-

tive function. Hence, the two driving forces of the optimization task, approximation

error and sparsity of the representation, are linearly combined. Although the learning

methods presented in this chapter are focussed on the constrained K-sparse model, the

unconstrained regularized sparse model is relevant as well, as it has been addressed by

other authors [Lesage et al., 2005, Bao et al., 2013, Bao et al., 2015, Sezer et al., 2008].

We emphasize that the methods proposed in Section 2.7 and Section 2.8 can be

easily adapted for the unconstrained model by simply interchanging the coefficient

update module. The coefficient update subproblem can be solved fast and optimally

for both models, cf. Section 2.3.3 and Section 2.4.3 below.

2.4.1 Cost Function

The cost function of the unconstrained regularized sparse model is given by:

EX,λ(U,A) = ‖X−UA‖2F + λ ‖A‖p , (2.22)

where p ∈ {0, 1}. Thus, the sparsity of the representation is measured by the matrix

variant of either the `0-norm or the `1-norm. The sparsity term is weighted by a global

regularization coefficient λ in order to balance the sparsity of the representation relative

to the approximation error.

2.4.2 Joint Optimization Problem

The joint optimization problem of the unconstrained regularized model is given by

minimizing cost function EX,λ(U,A), as given by (2.22), regarding its two arguments.

P(2.23) : arg min
U∈O(N),A∈RN×L

‖X−UA‖2F + λ ‖A‖p . (2.23)
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2.4.3 Optimal Coefficient Update

Suppose ONB U is given, then P(2.23) reduces to the batch variant of the regularized

sparse approximation problem:

P(2.24) : arg min
A∈RN×L

‖X−UA‖2F + λ ‖A‖p . (2.24)

The optimal sparse coefficient matrix A∗, which minimizes P(2.24), is obtained by ap-

plying an element-wise sparsification operator Sp,λ(·) to threshold the dense coefficient

matrix UTX. Dependent on the sparsity measure, i.e. dependent on p, the global

thresholding operation is either hard or soft.

In the case p = 0, the minimizer of P(2.24) is given by A∗ with entries resulting from

hard thresholding

A∗j,i = S0,λ(uTj xi) =





uTj xi if |uTj xi| ≥
√
λ

0 if |uTj xi| <
√
λ

(2.25)

[Bao et al., 2013, Sezer et al., 2008, Cai et al., 2014, Bao et al., 2015].

In the case p = 1, the minimizer of P(2.24) is given by A∗ with entries resulting from

soft thresholding

A∗j,i = S1,λ(uTj xi) =





uTj xi − λ/2 if uTj xi > λ/2

0 if |uTj xi| ≤ λ/2
uTj xi + λ/2 if uTj xi < −λ/2

(2.26)

[Lesage et al., 2005].

2.5 Literature Review

Some authors approached the problem of learning orthogonal dictionaries for sparse

coding before.

Coifman et al. proposed the Wavelet Packet Transform [Coifman et al., 1990], which

is an early attempt to enhance orthogonal transforms with a certain degree of adaptivity

to the represented signal. For a given signal, it allows to select a basis from a large

collection of dyadic time frequency atoms derived from a specific pair of mother wavelet

and scaling function.

Mishali and Eldar addressed the constrained K-sparse problem, where the number

of non-zero coefficients for each sample is modeled to be exactly K rather than bounded

by K [Mishali and Eldar, 2009]. They proposed a method with two separate successive

stages. The first stage aims to estimate the support pattern of the sparse coefficient

matrix by inference exclusively based on data matrix X. Locations of zero and non-zero
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coefficients are iteratively deduced by applying a small set of heuristic rules, such as

xTi xj = 0⇒ xi and xj have disjoint support. The resulting support pattern matrix Z

estimated by this first stage is fixed and passed to the second stage, where the following

alternating update scheme is conducted. (i) The dense coefficient matrix is created via

A = UTX. Subsequently, coefficients predicted to be zero, according to the support

pattern estimate Z, are set to zero leading to a sparse coefficient matrix A. (ii) The

ONB U is updated by solving the Orthogonal Procrustes Problem (OPP) [Schönemann,

1966] as described in Section 2.6.1 below, using A resulting from step (i). In [Mishali

and Eldar, 2009] only low-dimensional synthetic data sets were investigated, and merely

two quite high sparsity levels (K ∈ {2, 3}) were considered. The authors point out that

the support recovery stage can be inaccurate. We can confirm this observation and

found on synthetic data that this becomes an issue for the subsequent stage as ONB

recovery capabilities are severely impaired if the sparsity level is lowered. Another

issue with their first stage is the rigid requirement that the given data has an exactly

K-sparse representation which does not tolerate small amplitude noise, and is therefore

not applicable to real word data. For this reason, we can evaluate this approach only

with noiseless synthetic data (see Section 2.9 below).

Lesage et al. proposed overcomplete dictionary learning for sparse coding, where

the dictionary is a union of ONBs [Lesage et al., 2005]. The authors addressed the

unconstrained regularized sparse model, as described in Section 2.4 (p = 1), and pro-

pose a customary alternating optimization scheme consisting of coefficient update and

dictionary update. For dictionaries composed of unions of ONBs, the coefficient update

problem can be relieved by implementing the well-known Basis Pursuit (BP) algorithm

[Chen et al., 1998] more efficiently using Block Coordinate Relaxation. Their approach

is evolved starting from the case where the dictionary is a single ONB, which justifies

its consideration here. In the single ONB setting, the BP based coefficient update re-

duces to soft thresholding as described in Section 2.4.3. Moreover, ONB U is updated

by solving the OPP, as described in Section 2.6.1 below, using A∗ resulting from the

soft thresholding step.

Sezer et al. proposed similarly an alternating optimization scheme to learn data-

driven a set of multiple ONBs for sparse coding [Sezer et al., 2008, Sezer et al., 2015].

Their iterative method consists of three alternating stages: In the first stage, each

data sample is assigned to the individual ONB that provides the lowest cost function

value. The two subsequent stages, coefficient update stage and dictionary update stage,

are then sequentially applied to the single ONBs using the correspondingly assigned

data subset. The authors addressed the unconstrained regularized sparse model, as

described in Section 2.4 (p = 0). For this model, the optimal coefficient update is given

by hard thresholding as described in Section 2.4.3. Each individual ONB Ul is updated

by solving the OPP, as described in Section 2.6.1 below, using A∗l resulting from the

hard thresholding step. Sezer et al. applied their method to natural image patches
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and observed ONBs emerging with selectivity to particular spatial directions prior to

appropriate initializations. In image compression experiments, their method attained

superior rate-distortion compared to the DCT.

Bao et al. proposed an alternating batch algorithm to learn an ONB to sparsely

encode image patches [Bao et al., 2013]. The authors addressed the unconstrained

regularized sparse model, as described in Section 2.4 (p = 0). Their proposed method

is equivalent to [Sezer et al., 2008, Sezer et al., 2015] (if only one ONB would be learned

rather than multiple ones) and to the tight frame learning approach proposed in [Cai

et al., 2014] (the correspondence is pointed out more evidently in [Bao et al., 2015]).

The main difference in [Bao et al., 2013] is the option that, in advance, a static subset

of ONB atoms can be reserved which is not updated during learning. The remaining

atoms of the ONB are learned subject to the orthogonal complement of the fixed ones

in the same alternating iterative scheme consisting of hard thresholding and solving

the OPP. The primary application in [Bao et al., 2013] was to learn ONBs on patches

of corrupted images with the objective to solve image restoration problems.

Dobigeon and Tourneret proposed the hierarchical Bayesian model BOCA for learn-

ing undercomplete orthogonal dictionaries for sparse coding [Dobigeon and Tourneret,

2010]. BOCA relies on selecting suitable prior distributions for the unknown model

parameters and hyperparameters. The authors model the sparse coefficients by a

Bernoulli-Gaussian process and the dictionary by a uniform distribution on the Stiefel

manifold. To estimate the hyperparameters, a second level of hierarchy is introduced

in the Bayesian model. The joint posterior distribution of the unknown model parame-

ters is approximated from samples generated by a Markov chain Monte Carlo (MCMC)

method. The MCMC scheme is a partially collapsed Gibbs sampler.

Gribonval and Schnass considered the joint `1-norm minimization problem with re-

spect to the ONB and the coefficient matrix [Gribonval and Schnass, 2008]. Their main

results are identifiability conditions that guarantee local convergence to the generat-

ing ONB. They showed that the Bernoulli-Gaussian model satisfies these conditions

with high probability, provided that enough samples are given. However, an explicit

algorithm is not proposed and the convergence relies on a good initialization.

Rusu et al. proposed an orthogonal dictionary learning method for sparse coding,

where the ONB is composed by a product of few Householder reflectors [Rusu et al.,

2016]. The main advantage of the proposed approach is its low computational complex-

ity in terms of applying and manipulating the dictionary which implies a fast learning

process. The number of reflectors balances the trade-off between computational com-

plexity and accuracy of the sparse representation. Note that the fewer reflectors are

used the more is the search space of candidate ONBs limited to subsets of O(N). The

authors apply their approach to natural image data and investigate sparse approxima-

tion performance as well as image denoising capabilities. Merely very high sparsity

levels, K ∈ {4, 6}, are considered for 8 × 8 image patches. This approach based on
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Householder reflectors seems to yield inferior encoding performance compared to the

Canonical Approach, which is introduced in the following section. Most recently, Rusu

et al. proposed an alternative learning approach that is based on generalized Givens

rotation [Rusu and Thompson, 2017].

2.6 Canonical Approach (CA)

The Canonical Approach (CA) is a batch learning procedure to minimize P(2.8), the joint

optimization problem of the constrained K-sparse model [Schütze et al., 2015, Schütze

et al., 2016]. To each ONB update, all training data samples contribute simultaneously

to reduce cost function (2.17). CA performs alternating minimization, i.e. the sparse

coefficient matrix A is updated while ONB U is fixed and conversely, U is updated

while A is fixed.

CA is related to orthogonal dictionary learning approaches which were previously

proposed by other authors who addressed the unconstrained regularized sparse model

[Lesage et al., 2005, Sezer et al., 2008, Bao et al., 2013, Cai et al., 2014, Sezer et al., 2015,

Bao et al., 2015]. CA is the natural modification to the constrained K-sparse model

[Schütze et al., 2016]. Particularly the coefficient update stage is different from the

global thresholding, cf. Section 2.3.3 and Section 2.4.3. The same model modification,

as given by CA, was later independently used by Rusu et al. (who credited [Lesage

et al., 2005]) for the sake of baseline comparisons [Rusu et al., 2016].

For either model, the two subproblems, updating sparse coefficient matrix A and

updating ONB U, can be solved fast and optimally. However, using these globally

optimal solutions to the subproblems in an alternating scheme does not guarantee to

always minimize the joint problem P(2.8) globally. This will become apparent in our

numerical experiments presented in Section 2.9 and Section 2.10.

2.6.1 Dictionary Update

CA updates ONB U by solving the Orthogonal Procrustes Problem.

Orthogonal Procrustes Problem

The Orthogonal Procrustes Problem (OPP) is a matrix nearness problem in linear

algebra which seeks, given two equal sized matrices A,X ∈ RN×L, for an ONB U ∈
O(N) which maps A in minimal distance to X in terms of the Frobenius metric:

P(2.27) : arg min
U∈O(N)

‖X−UA‖2F . (2.27)

The OPP has a unique closed form solution which is given by

U∗ = VWT , (2.28)
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where V and WT are the outer matrices of the singular value decomposition (SVD)

of XAT = VΣWT [Schönemann, 1966]. If for a given data set X the optimal sparse

coefficients A subject to an unknown ONB U∗ were known, then solving (2.27) would

derive U∗. See Section 2.5 for the previous usage of (2.28) in the context of orthogonal

dictionary learning for sparse coding.

2.6.2 Complete Learning Algorithm

Algorithm 1 lists CA in pseudo code.

Algorithm 1 Canonical Approach (CA)

Input: Training data set X = (x1, ..., xL) ∈ RN×L
Total number of batch ONB updates tmax

Sparsity level K
Initial ONB U(0) (optional)

Output: ONB U minimizing P(2.8)

1: Initialize ONB U(0) randomly if not supplied
2: for all t = 1, ..., tmax do

3: Update the sparse coefficient matrix A(t) ← SK
(
UT

(t−1)X
)

4: Compute the SVD VΣWT of XAT
(t)

5: Update the ONB U(t) ← VWT

6: end for
7: U← U(tmax)

2.6.3 Computational Complexity

A great benefit of CA is its low computational complexity which enables a fast imple-

mentation. To update the sparse coefficients, first, the dense coefficient matrix UT
(t−1)X

of the training data set X is computed subject to ONB U(t−1), which requires O(LN2)

floating point operations (flops). Subsequently, the N −K least important coefficients

of each column are set to zero, which requires additionally O(LN) flops using a partial

sorting algorithm [Chambers, 1971]. Updating the dictionary by solving the OPP re-

quires to compute the product XAT
(t) (O(LN2) flops), its SVD VΣWT as well as the

product U(t) = VWT (both O(N3) flops). Since commonly L � N , the dominating

term for the computational complexity of a CA learning epoch, i.e. one batch update,

is O(LN2). Although CA is a batch learning procedure, since sample size L contributes

linearly to the complexity, one can interpret the corresponding “per sample complexity”

as O(N2) flops for comparisons with the following online learning methods.
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2.7 Orthogonal Sparse Coding (OSC)

Orthogonal Sparse Coding (OSC) is an online learning procedure to minimize P(2.8),

the joint optimization problem of the constrained K-sparse model [Schütze et al., 2013,

Schütze et al., 2016]. Each ONB update is done subject to a single data sample which is

randomly selected from the training data set. OSC reduces the cost function (2.17) via

stochastic descent using alternating minimization, i.e. updating the sparse coefficient

vector a of the selected sample while ONB U is fixed and conversely, updating U while

a is fixed.

2.7.1 Dictionary Update

OSC updates the atoms of ONB U sequentially using a Hebbian learning rule and

Gram-Schmidt orthogonalization.

When a new training data sample x is drawn from X, its dense representation

a = UTx is computed subject to the current, temporary fixed U. Subsequently, sorting

the squared entries of a yields an index sequence h1, . . . , hN such that (uTh1x)2 ≥ · · · ≥
(uThN x)2. Recall that the K-sparse approximation error of U subject to x, i.e. the

contribution to cost function (2.17), is given by Ex,K(U) = ‖x‖22 −
∑K

k=1(uThkx)2.

Consequently, the costs for x are reduced if U is modified such that the sum of the K

largest squared coefficients of x is increased. Loosely speaking, this requires to update

U such that the sample energy ‖x‖22 is more focussed on uh1 , . . . ,uhK , the K atoms

which are most relevant to encode sample x.

The index sequence h1, . . . , hN defines furthermore the order in which OSC updates

the atoms, starting with uh1 which contributes most to (2.21). Before an atom uhk , k ∈
{1, . . . ,K} is updated by the Hebbian learning rule, it is orthogonalized with respect

to span({uh1 , ...,uhk−1
}), the span of atoms that were already updated in the current

learning step, using Gram-Schmidt:

uhk ← uhk −
(
uThkuhl

)
uhl , l = 1, . . . , k − 1 . (2.29)

This scheme of iterative Gram-Schmidt steps ensures that U remains an ONB when the

update is finished. Subsequently, the orthogonalized atom uhk is updated via gradient

descent subject to residual vector xres, the original training sample x which is likewise

orthogonalized to span({uh1 , ...,uhk−1
}), such that the cost contribution −(uThkxres)

2

in (2.21) decreases. This leads to the Hebbian update rule

y ← uThkxres (2.30)

∆uhk ∝ ∂

∂uhk

(
uThkxres

)2
(2.31)

∆uhk ← εt · y · xres , (2.32)
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where εt is the learning rate for the current learning step t, which cools down from εinit

to εfinal with increasing number of ONB updates. The updated atom uhk is normalized

to unit Euclidean length.

Subsequently, xres is orthogonalized with respect to the new uhk using Gram-

Schmid:

xres ← xres −
(
xTresuhk

)
uhk , (2.33)

thus becoming the residual vector for the update of uhk+1
.

How many atoms are updated with learning rule (2.32) depends on the sparsity

parameter K. Note, however, that due to the required orthogonality, all atoms are

modified even if only K were updated by (2.32). A learning step is complete when the

last atom uhN has been normalized.

2.7.2 Complete Learning Algorithm

Algorithm 2 lists OSC in pseudo code.

2.7.3 Universality for Unknown Sparsity Levels

We have observed that OSC does not rely on receiving the “right” or an optimal value

for user parameter K. When setting user parameter K to N , OSC is able to learn a

universal ONB Ũ from the training data set X such that Ũ minimizes the K-sparse

approximation error EX,K(Ũ) for many different sparsity levels K. More precisely,

given a particular value K0, the cost function value EX,K0(Ũ) is as small as EX,K0(U),

where U is learned by OSC using the matching sparsity level as user parameter, i.e.

K = K0. That the ONB learned by OSC for K = N is universal, has been observed for

several data sets such as synthetic data sets, where the ground-truth for K is known,

as well as for natural data, where a suitable K might be unknown (see Section 2.9,

Section 2.10 and Section 2.11). In the following, we distinguish the corresponding OSC

variants by K-OSC and N -OSC.

2.7.4 Stochastic Descent

N -OSC is an online learning algorithm that updates sparse coding ONB U for each

presented training data sample x. The following theorem assures that such an N -OSC

learning step increases the sparsity of the representation of x. This can be proven

for small learning rates ε, but seems to be valid for large ε as well according to our

numerical experiments.

Theorem 1. Given an ONB U. If learning rate ε > 0 is small enough, applying an

N -OSC learning step to an arbitrary non-zero x yields a new ONB U′ such that for the

sequences (uTh1x)2 ≥ (uTh2x)2 ≥ ... ≥ (uThN x)2 and (u′Th1x)2 ≥ (u′Th2x)2 ≥ ... ≥ (u′ThN x)2
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Algorithm 2 Orthogonal Sparse Coding (OSC)

Input: Training data set X = (x1, ..., xL) ∈ RN×L
Total number of online ONB updates tmax

Initial and final learning rate εinit ≥ εfinal

Sparsity level K (optional, default K = N , see Section 2.7.3)
Initial ONB U(0) (optional)

Output: ONB U minimizing P(2.8)

1: Initialize ONB U(0) randomly if not supplied
2: for all t = 0, ..., tmax do
3: Set the learning rate for the current learning step εt ← εinit (εfinal/εinit)

t/tmax

4: Select data sample x from X uniformly at random, and set xres ← x

5: Determine sequence h1, ..., hN such that
(
uTh1x

)2 ≥ ... ≥
(
uThN x

)2

6: Update U(t) to U(t+1) as follows:
7: for all k = 1, ..., N do
8: for all l = 1, ..., (k − 1) do
9: Orthogonalize the current atom uhk subject to the previously updated atom

uhl by a Gram-Schmidt step

uhk ← uhk −
(
uThkuhl

)
uhl

10: end for
11: if k ≤ K then
12: Apply the Hebbian learning rule to the current atom uhk

uhk ← uhk + εt ·
(
uThkxres

)
xres

13: end if
14: Normalize uhk to unit Euclidean length
15: Orthogonalize residual xres subject to the current atom uhk by a Gram-Schmidt

step
xres ← xres −

(
uThkxres

)
uhk

16: end for
17: end for
18: U← U(tmax)

the ordering
(u′Thk+1

x)2

(u′Thkx)2
≤

(uThk+1
x)2

(uThkx)2
(2.34)

holds for all k = 1, ..., N − 1.

Proof. In the following, we use the assumption that ε is small. We develop all expres-

sions up to first order in ε and treat terms of order ε2 and higher as vanishing.

Without any loss of generality, we assume (uT1 x)2 ≥ (uT2 x)2 ≥ ... ≥ (uTNx)2 which

defines the order of basis vector updates. Each uk, except for u1, is updated in two
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steps. First, the Gram-Schmidt orthogonalization

vk = uk −
k−1∑

l=1

(u′Tl uk)u
′
l , (2.35)

followed by the normalized Hebbian main update

u′k =
vk + ε(vTk xk)xk∥∥vk + ε(vTk xk)xk

∥∥
2

, (2.36)

where

xk = x−
k−1∑

l=1

(u′Tl x)u′l . (2.37)

Atom u1 is only updated by (2.36) due to (2.35). In that sense v1 = u1 and x1 = x

due to (2.37).

We will show by induction that

vk = uk − ε(uTk x)
k−1∑

l=1

(uTl x)ul +O(ε2) . (2.38)

Note that by (2.38) it holds ‖vk‖2 ≈ 1 +O(ε2). Hence, the Taylor expansion of update

step (2.36) up to first order in ε is

u′k = vk + ε(vTk xk)(xk − (vTk xk)vk) +O(ε2) . (2.39)

Note that (2.36) is a Oja learning rule, i.e. a Hebbian learning rule with a normalization

constraint. We apply the same expansion as in Section 4 of [Oja, 1982].

Furthermore, since vTk xk = vTk x and with (2.38) we have vTk xk = uTk x + O(ε) as

well as (vTk xk)vk = (uTk x)uk +O(ε). Hence, (2.39) can be restated as

u′k = vk + ε
(
uTk x

) (
xk −

(
uTk x

)
uk
)

+O(ε2) . (2.40)

We will now show (2.38) by induction.

Initial Step k = 1. According to (2.35), we have by definition v1 = u1 which

satisfies (2.38).

Induction Step (k − 1)→ k. According to (2.35), we have by definition

vk = uk −
k−1∑

l=1

(u′Tl uk)u
′
l .

Due to induction hypothesis (2.38), u′l can be restated according to (2.40). In addition

23



Chapter 2. Orthogonal Dictionary Learning for Sparse Coding

to (2.38) we will use uTl uk = 0 and vTl uk = O(ε2) as well as uTk xl = uTk x +O(ε).

vk = uk −
k−1∑

l=1

[
(vl + ε(uTl x)(xl − (uTl x)ul))

Tuk
]
u′l +O(ε2)

= uk − ε(uTk x)

k−1∑

l=1

(uTl x)u′l +O(ε2)

= uk − ε(uTk x)
k−1∑

l=1

(uTl x)(vl + ε(uTl x)(xl − (uTl x)ul)) +O(ε2)

= uk − ε(uTk x)
k−1∑

l=1

(uTl x)ul +O(ε2)

The induction is complete.

Combining (2.40) and (2.38) gives us up to first order in ε

u′k = uk + ε(uTk x)

(
xk −

k∑

l=1

(uTl x)ul

)
.

Hence, for small ε and with (2.37) we obtain

(u′Tk+1x)2

(u′Tk x)2
=

(uTk+1x)2

(uTk x)2

(
1 + ε

[
xTk+1x−

k+1∑
l=1

(uTl x)2

])2

(
1 + ε

[
xTk x−

k∑
l=1

(uTl x)2

])2

=
(uTk+1x)2

(uTk x)2

(
1 + ε

[
||x||2 −

k∑
l=1

(u′Tl x)2 −
k+1∑
l=1

(uTl x)2

])2

(
1 + ε

[
||x||2 −

k−1∑
l=1

(u′Tl x)2 −
k∑
l=1

(uTl x)2

])2

≤ (uTk+1x)2

(uTk x)2
,

since the square bracket in the nominator is smaller than the square bracket in the

denominator.

Theorem 1 states that an N -OSC update decreases the magnitude of each coefficient

relative to its predecessor in the sequence of sorted coefficients. This means, that after

the learning step the squared coefficients obey a stronger decay.

Figure 2.1 illustrates the squared coefficients of an image patch x in an ONB U(t)

as well as the squared coefficients of x in U(t+1), i.e. after an update of U(t) by N -OSC.

Note that both curves integrate to the same value as the energy of x is preserved under

any orthonormal transformation, i.e. ‖x‖22 =
∥∥UTx

∥∥2

2
. It can be seen that after the

N -OSC update, more energy is distributed over less coefficients and that the magnitude
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2.7. Orthogonal Sparse Coding (OSC)

of the less encoding relevant atoms shrinks. Thus, the sparsity of the representation of

x is increased.
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Figure 2.1: Squared coefficients of a natural image patch x (N = 256) in an ONB U(t)

and in ONB U(t+1) due to an N -OSC update.

From Theorem 1 follows directly

Corollary 1. Given an ONB U. Applying an N -OSC learning step subject to an

arbitrary x leads to an U′ such that for each K = 1, ..., N

−
K∑

k=1

(u′Thkx)2 ≤ −
K∑

k=1

(uThkx)2

⇔ ‖x‖22 −
K∑

k=1

(u′Thkx)2 ≤ ‖x‖22 −
K∑

k=1

(uThkx)2

⇔ Ex,K(U′) ≤ Ex,K(U) . (2.41)

This means that an N -OSC learning step reduces the costs (2.21) that the presented

sample contributes to the total costs (2.17).

Unfortunately, this result does not imply thatN -OSC minimizes cost function (2.17)

for the entire training data set X. However, in general such a global descent cannot

be proven for online learning algorithms as each update blinds out the costs of all the

other training data samples.

Theorem 1 and Corollary 1 are useful to realize that N -OSC performs a stochastic

descent of cost function (2.17) similar to a stochastic gradient descent. N -OSC con-

verges to an ONB U which yields on average small costs for each training data sample

due to the online learning scheme and the cooling learning rate.

From an experiment with natural image patches (see Section 2.10), Figure 2.2 illus-

trates for a complete N -OSC learning phase the K-sparse approximation error (2.17)
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Chapter 2. Orthogonal Dictionary Learning for Sparse Coding

subject to ONB U(t) as a function of the number of ONB updates. It can be seen that

OSC performs a stochastic descent of the cost function (2.17).

2 · 106 4 · 106 6 · 106 8 · 106

0.1
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Number of ONB updates t
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(t
))

K = 4
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Figure 2.2: K-sparse approximation error 1
LEX,K(U(t)) as a function of t, the number

of ONB updates by N -OSC for a learning phase on the NSSiVS data set.

2.7.5 Computational Complexity

Drawing a training data sample x, setting residual vector xres (line 4) and sorting the

coefficients (line 5) requires O(N) and O(N logN) flops, respectively. The loop in lines

7-17 iterates over all N atoms uhk . The Gram-Schmidt steps for each uhk (lines 8-10)

have a complexity of at most O(N2). A single Hebbian update of a uhk (line 12), the

length normalization of uhk (line 14), and the update of xres (line 15) require O(N)

flops. Altogether, the dominating term of the computational complexity of an ONB

update by OSC is O(N3).

2.8 Geodesic Flow Orthogonal Sparse Coding (GF-OSC)

Geodesic Flow Orthogonal Sparse Coding (GF-OSC) is an online learning procedure

to minimize P(2.8), the joint optimization problem of the constrained K-sparse model

[Schütze et al., 2015]. Analogous to OSC, each ONB update is done subject to a ran-

domly selected sample x from the training data set. GF-OSC reduces the cost function

(2.17) via stochastic gradient descent using alternating minimization, i.e. updating the

sparse coefficient vector a of the selected sample while the ONB U is fixed and con-

versely, updating U while a is fixed.
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2.8. Geodesic Flow Orthogonal Sparse Coding (GF-OSC)

2.8.1 Dictionary Update

GF-OSC updates U rotationally via a multiplication with another ONB ∆U. The

update is equivalent to a gradient descent step within the N(N−1)
2 -dimensional space of

free ONB parameters and is derived from the geodesic flow optimization framework.

Geodesic Flow Optimization Framework

In general, minimizing a scalar-valued cost function with respect to a square N × N
matrix is an optimization problem in anN2-dimensional search space. If, in addition, an

orthonormality constraint is incorporated, the search space can be considerably reduced

because any orthonormal N × N matrix has merely N(N−1)
2 degrees of freedom. For

this kind of optimization problems, Plumbley proposed the geodesic flow framework

[Plumbley, 2004] which exploits the reduced search space. Suppose the corresponding

cost function is differentiable, then the geodesic flow approach allows to derive its

gradient within the reduced space of free parameters, and therefore gradient based

optimization techniques can be deployed to minimize the cost function.

The geodesic flow approach is restricted to the subgroup SO(N) as it is not pos-

sible to go smoothly from SO(N) to SO(N) or vice versa. SO(N) forms a Lie group

with an associated Lie algebra given by the set of skew-symmetric matrices, so(N) =

{B ∈ RN×N | BT = −B} and the Lie bracket given by the matrix commutator

[Q,R] = QR − RQ. Since SO(N) is a matrix Lie group, the matrix exponential

exp (B) =
∑∞

n=0
Bn

n! provides a surjective mapping from so(N) to SO(N) and we have

UUT = exp (B) (exp (B))T = exp (B) exp (−B) = IN . Let Ex,K : RN×N → R be the

differentiable cost function that is to be optimized under the orthogonality constraint.

By using the gradient ∇UEx,K , the gradient of Ex,K with respect to the Lie algebra

so(N) is derived as follows:

∇BEx,K = (∇UEx,K) UT −U (∇UEx,K)T . (2.42)

The geodesic flow approach starts with some initial U(0) and optimizes U(t) sequen-

tially according to the iteration variable t = 1, ..., tmax. For the most recent U(t−1)

an adaptation within so(N) into the steepest descent direction ∆B = −ε∇BEx,K is

determined by (2.42), where ε is a sufficiently small learning rate. This adaptation

within so(N) is mapped to SO(N) by the matrix exponential, i.e., ∆U = exp (∆B).

Subsequently, the adaptation within SO(N) is applied rotationally to U(t−1), thus pro-

viding the new orthogonal matrix U(t) = (∆U) U(t−1). This iterative scheme enables

the minimization of a scalar-valued cost function subject to the SO(N) and is based

on a gradient descent in so(N), which is the space of the underlying degrees of free-

dom. Each gradient descent step yields naturally a new ONB U(t). As a consequence,

reimposing the orthogonality constraint separately is dispensable.
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Derivation of the Update Rule

Suppose x is the current training data sample randomly selected from X and sparsity

level K is given. In order to derive the ONB update rule using the geodesic flow

framework, we first derive the gradient of the cost function Ex,K(U) given by (2.21)

which measures the K-sparse approximation error of x subject to U:

∇UEx,K =
∂

∂U

(
‖x‖22 − xTUDUTx

)
(2.43)

= − ∂

∂U
xTUDUTx (2.44)

= −2xxTUD . (2.45)

Subsequently, we insert (2.45) into (2.42) to obtain the desired gradient ∇BEx,K of

the cost function (2.21) with respect to the Lie algebra so(N). Note that the derived

∇BEx,K is the key ingredient of our GF-OSC algorithm and that it can be simplified

as follows:

∇BEx,K ∝ x̂xT − xx̂T , (2.46)

where x̂ = Ua∗ = USK(UTx) = UDUTx is the optimal K-term approximation of the

sample x subject to U.

2.8.2 Complete Learning Algorithm

Algorithm 3 lists GF-OSC in pseudo code.

Algorithm 3 GF-OSC

Input: Training data set X = (x1, ..., xL) ∈ RN×L
Total number of online ONB updates tmax

Sparsity level K
Initial ONB U(0) (optional)

Output: ONB U ∈ SO(N) minimizing P(2.8)

1: Initialize ONB U(0) ∈ SO(N) randomly if not supplied
2: for all t = 1, ..., tmax do
3: Select a sample x from X randomly
4: Compute x̂, the optimal K-term approximation of x subject to U(t−1)

5: Compute ∇BEx,K according to (2.46)
6: Select a suitable learning rate εt
7: ∆B← −εt∇BEx,K

8: ∆U← exp (∆B)
9: U(t) ← (∆U) U(t−1)

10: end for
11: U← U(tmax)
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Selecting Learning Rate εt

To update U by GF-OSC, different strategies can be chosen for selecting learning rate

εt. It seems natural to apply a dynamic learning rate which cools down from a large

initial value εinit to a small final value εfinal over the number of applied ONB updates.

We propose, similar to the learning rate of OSC, an exponential decay of the form

εt ← εinit

(
εfinal

εinit

) t
tmax

. (2.47)

In principle, any suitable technique for selecting the step length during a gradient

descent can be used. We observed, for instance, that the convergence of GF-OSC can be

improved for synthetic noise free data if the learning rate εt is adaptively calculated via

backtracking line search based on the Armijo-Goldstein condition [Armijo, 1966]. For

natural image patches, however, a cooling learning rate yields better results. Note that

sophisticated line search techniques increase the computational load as each additional

evaluation of the cost function requires a mapping from so(N) to SO(N).

2.8.3 Computational Complexity

Selecting training data sample x (line 3), computing its optimal K-sparse approxi-

mation x̂ subject to U(t−1) (line 4) via partial sorting [Chambers, 1971], calculating

∇BEx,K (line 5) and ∆B (line 7) requires O(N2) flops. Applying the matrix expo-

nential on ∆B to get ∆U (line 8) and performing the rotational update (∆U) U(t−1)

requires O(N3) flops [Moler and Loan, 2003]. Thus, the total complexity of a single

GF-OSC update is O(N3) +O(select εt) flops.

2.8.4 Remarks on a GF-OSC Batch Update Rule

Formulating a GF-OSC batch update rule is straight forward. The gradient ∇BEX,K

of the batch cost function (2.17) is given by summing (2.46) over all the training data

samples xi:

∇BEX,K ∝
L∑

i=1

x̂ix
T
i − xix̂

T
i . (2.48)

Fixing the sparse coefficient matrix A∗ = SK(UTX), expanding (2.17) directly

using the definition of the Frobenius norm and the Frobenius inner product as well as

deploying ∂
∂Utr(XTUA∗) = −2XA∗T yields, analogous to (2.46), more compactly

∇BEX,K ∝ X̂XT −XX̂T . (2.49)

We experimented with the batch variant of GF-OSC as well as a corresponding mini

batch variant on synthetic noiseless data. We observed that these variants were inferior
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to the proposed online variant of GF-OSC.

2.9 ONB Recovery from Synthetic Data

In this section we investigate the performance of the proposed learning methods at

the task to recover a reference ONB from synthetic data sets obeying the constrained

K-sparse model. We study both a noiseless scenario, where data samples are strictly

K-sparse, as well as a noisy scenario, where K-sparse data samples are contaminated by

additive isotropic Gaussian noise. To analyze ONB recovery performance, we measure

the similarity between a learned ONB with the reference ONB which was used to

generate the synthetic data sets. Furthermore, we will investigate the cost descent in

terms of the number of learning epochs.

An inevitable degree of ambiguity is inherent to the problem. Since ONB U and

coefficient matrix A are unknown in the problem formulation P(2.8), their estimation

cannot be unique regarding the atom order or the atom signs. Any permutation or

sign switch, simultaneously applied to both the columns of U as well as the rows of A,

yields the same data matrix X = UA. Thus, a correspondence matching is necessary

to align the atoms of the estimated ONB with the reference ONB, which enables an

automated performance analysis (see Section 2.9.3 below).

We compare

• K-SVD [Aharon et al., 2006]

• OCA [Mishali and Eldar, 2009]

• CA [Schütze et al., 2015, Schütze et al., 2016] (see Algorithm 1 and also [Rusu

and Thompson, 2017, Lesage et al., 2005])

• OSC [Schütze et al., 2013, Schütze et al., 2016] (see Algorithm 2)

• GF-OSC [Schütze et al., 2015] (see Algorithm 3)

All these learning methods comply with the ONB learning task P(2.8) of the constrained

K-sparse model, except for K-SVD which is an algorithm for learning non-orthogonal

(commonly overcomplete) dictionaries and does therefore not exploit the orthogonality

condition. A comparison with K-SVD is nonetheless justifiable for two reasons. First,

K-SVD does not rely by design on M > N , hence, a complete dictionary can be learned

instead of an overcomplete one. Second, orthogonality is a good-natured scenario for

K-SVD, because the mutual coherence of the reference dictionary is minimal. To each

synthetic data set, OSC is applied in two variants. In one case, user parameter K is

set to the true generating sparsity level, which is called K-OSC in the following. In the

other case, the true sparsity level is assumed to be unknown and user parameter K is

set to N , which is called N -OSC in the following.
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2.9. ONB Recovery from Synthetic Data

Figure 2.3: The orthogonal non-standard 2D Haar wavelet basis (N = 256), the refer-
ence ONB for the recovery experiments. Each basis vector is visualized as a 16 × 16
patch. For display purposes, the entries of each basis patch (except the DC component)
are shifted to have zero mean and are subsequently scaled to unit supremum norm.

2.9.1 Noiseless Synthetic K-Sparse Data

For signal dimensionality N = 256 and sample size L = 1000, synthetic data sets

were generated for various sparsity levels K ∈ {2, 6, ..., 58, 62}. Each data sample was

generated to have a strictly K-sparse representation in the reference ONB. We selected

the orthogonal non-standard 2D Haar wavelet basis as the ground truth. The attribute

“2D” refers to the fact that the original domain of the data has two spatial dimensions,

i.e. dictionary atoms and synthetic data samples can be reshaped and visualized as

16× 16 patches. The reference ONB is illustrated in Figure 2.3.

First, for each sample to be synthesized the support pattern of its coefficient vector

was generated, i.e., the K locations of non-zero coefficients were selected uniformly at

random. Second, the K non-zero coefficients were drawn randomly from a standard

Gaussian distribution. The data samples were synthesized by multiplying the K-sparse

coefficient vectors with the reference ONB. Figure 2.4 illustrates exemplarily synthetic

(a) K = 6 (b) K = 18 (c) K = 30 (d) K = 42

Figure 2.4: Synthetic data samples beingK-sparse in the non-standard 2D Haar wavelet
basis (N = 256), noiseless scenario. Locations of non-zero coefficients are uniformly
distributed, values of non-zero coefficients are standard Gaussian distributed. Each
sample is visualized as a 16× 16 patch. For display purposes, the entries of each patch
are shifted to have zero mean and are subsequently scaled to unit supremum norm.
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data samples of different sparsity levels for the noiseless scenario. For each sparsity

level we created 10 different data sets to be able to measure deviations of recovery

results over multiple runs. In total, 160 data sets were generated for the ONB recovery

experiment. Furthermore, we generated for each data set an initial random ONB U(0),

such that each learning method starts the optimization from the same initial point.

2.9.2 Noisy Synthetic K-Sparse Data

To investigate the robustness of the learning methods at the ONB recovery task, we

contaminated the 160 data sets, generated as described in Section 2.9.1, by 5 dB additive

isotropic Gaussian noise. To this end, we computed for each data set X the average

spatial variance σ2
X. Subsequently, a noise matrix G ∈ RN×L was generated with

entries randomly drawn i.i.d. from the Gaussian distribution N (0, σG), where σG =√
σ2

X · 10−
1
2 . The noisy data set was obtained by adding G to X. Figure 2.5 illustrates

exemplarily synthetic data samples of different sparsity levels for the noisy scenario.

(a) K = 6 (b) K = 18 (c) K = 30 (d) K = 42

Figure 2.5: Synthetic data samples beingK-sparse in the non-standard 2D Haar wavelet
basis (N = 256), noisy scenario (5 dB additive Gaussian noise). Locations of non-
zero coefficients are uniformly distributed, values of non-zero coefficients are standard
Gaussian distributed. Each sample is visualized as a 16×16 patch. For display purposes,
the entries of each patch are shifted to have zero mean and are subsequently scaled to
unit supremum norm.

2.9.3 Performance Measures

Prior to measuring the ONB recovery performance for a synthetic data set, we apply

a correspondence matching to align the atoms of the estimated ONB with the atoms

of the reference ONB. We determine the best matching pairs of atoms between the

two dictionaries using the following greedy strategy. First, all overlaps of all N2 pos-

sible atom pairs are sorted in descending order. Subsequently, the N best matching

pairs were assigned according to that sequence such that each atom is assigned ex-

actly once. Thus, the atoms of the learned ONB and the atoms of the reference ONB

obey a one-to-one assignment. The overlaps of the N matched atom pairs (matched

overlaps) reflect the similarity between the learned and the reference ONB in terms of
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the cosine of angles. The reference ONB is perfectly recovered iff all matched overlaps

are equal to one. For a single learned ONB, the most detailed assessment of recovery

performance can be made by inspecting the distribution of the N matched overlaps

by a histogram. Alternatively, a scalar-valued recovery performance measure is given

by computing either the mean matched overlap (MMO), or by counting the relative

number of matched overlaps exceeding a particular threshold (recovery rate). Note

that the described procedure also allows to measure the ONB recovery performance for

a non-orthogonal dictionary, e.g. resulting from the K-SVD algorithm, as long as it has

the same size as the reference ONB.

2.9.4 Choices of User Parameter Values

For each learning method (except for the N -OSC variant), user parameter K was

set to the true generating sparsity level, and 1000 learning epochs were allowed to

be iterated. However, learning was terminated prematurely as soon as the smallest

matched overlap exceeded 0.99. For K-SVD, we set the number of atoms M = N to

learn a complete dictionary. For OSC, the learning rate decreases exponentially from an

initial value εinit to a final value εfinal. As we could not exclude a priori a dependence of

OSC on appropriately chosen values for εinit and εfinal, we examined OSC convergence

empirically for several combinations on one independently generated noiseless data set

with sparsity level K = 18. The investigated set of learning rate combinations spanned

a wide range of scales: (εinit, εfinal) ∈ {101, 100, 10−1, 10−2} × {10−2, 10−3, 10−4, 10−5}.
We observed different slopes of the cost descent. The final costs were similarly small

for most combinations, given εfinal was sufficiently small (see Figure 2.6). We selected

the combination εinit = 10−1 and εfinal = 10−4 as it yields the steepest initial slope with

almost the smallest final cost value among the tested combinations, while the decay still

is spread over all learning epochs without saturations. This OSC learning parameter

combination was adopted for all the other synthetic data sets, too. OSC was applied

to each synthetic data set in two variants. In one variant, user parameter K is set to

the true generating sparsity level (K-OSC). In the other variant, the true sparsity level

is assumed to be unknown and user parameter K is set to N (N -OSC). The GF-OSC

learning rates were selected via backtracking line search based on the Armijo-Goldstein

condition, where c = τ = 1
2 as proposed in [Armijo, 1966], and α = 5. We did not

validate the latter parameter as it appeared to be a conservative upper bound for the

learning rate. The OSC and GF-OSC parameters were used unaltered also for the noisy

synthetic data sets.

2.9.5 Results for the Noiseless Scenario

For the rather high sparsity levelK = 18 (≈ 7% non-zero coefficients) and the rather low

sparsity level K = 42 (≈ 16.4% non-zero coefficients) we provide a detailed empirical
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Figure 2.6: Validation of initial and final learning rate combinations (εinit, εfinal) ∈
{101, 100, 10−1, 10−2} × {10−2, 10−3, 10−4, 10−5} for a K-OSC learning phase on a
synthetic data set with sparsity level K = 18. The K-sparse approximation error
EX,K(U(t)) is plotted as a function of t/L, the number of (completed) learning epochs.

ONB recovery performance analysis. Respectively, Figure 2.7 – Figure 2.10 illustrate for

each learning method (rows) three characteristics of the optimization process (columns).

First, the convergence is shown empirically in terms of the K-sparse approximation

error (the costs) as a function of the number of learning epochs (left column). Each

of the ten black curves corresponds to one of the ten data sets with the same sparsity

level. For the noiseless scenario, recovering the reference ONB perfectly implies a cost

function value of zero. Second, for the first of the ten data sets per K, the atoms of the

learned dictionary are visualized as patches (middle column). To facilitate comparisons

with the reference ONB, the learned atoms are shown in the same order as in Figure 2.3

due to the correspondence matching. Third, for the same dictionary, the distribution

of the N matched overlaps is illustrated (right column). Each histogram consists of

50 bins covering the interval [0, 1]. Thus, each bin has a width of 0.02. The more

accurate the reference ONB is recovered, the more concentrated is the distribution of

matched overlaps on the right hand side. If all matched overlaps are contained in the

most right bin, the reference ONB is (close to) perfectly recovered since the smallest

matched overlap then is at least 0.98.

Detailed Recovery Performance Analysis, K = 18 (≈ 7% Non-Zero Coeffi-

cients)

K-SVD reduces the costs to the global minimum, where a major leap from an inter-

mediate cost level to the final cost level occurs between learning epochs 100 and 400

(see Figure 2.7a). As the K-SVD dictionary is not orthogonal, Optimized Orthogonal
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Matching Pursuit (OOMP) [Rebollo-Neira and Lowe, 2002] is used to derive the K-

0 100 101 102 103
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

·104

# Learning Epochs

T
o
ta
l
C
o
st
s

(a) K-SVD, 10 data sets (b) K-SVD, 1st data set

0 0.2 0.4 0.6 0.8 1

32

64

96

128

160

192

224

256

Overlap of Matched Atoms

A
b
so
lu
te

F
re
q
u
en

cy

(c) K-SVD, 1st data set

0 100 101 102 103
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

·104

# Learning Epochs

T
o
ta
l
C
o
st
s

(d) OCA, 10 data sets (e) OCA, 1st data set

0 0.2 0.4 0.6 0.8 1

32

64

96

128

160

192

224

256

Overlap of Matched Atoms

A
b
so
lu
te

F
re
q
u
en

cy

(f) OCA, 1st data set

0 100 101 102 103
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

·104

# Learning Epochs

T
o
ta
l
C
o
st
s

(g) CA, 10 data sets (h) CA, 1st data set

0 0.2 0.4 0.6 0.8 1

32

64

96

128

160

192

224

256

Overlap of Matched Atoms

A
b
so
lu
te

F
re
q
u
en

cy

(i) CA, 1st data set

Figure 2.7: Detailed ONB recovery performance analysis for the noiseless synthetic
K-sparse data of sparsity level K = 18 (≈ 7% non-zero coefficients). The results
obtained by K-SVD, OCA and CA are shown row-wise. In the left column, the K-
sparse approximation error is plotted for the 10 data sets as a function of the number
of learning epochs. In the middle column, the dictionary learned on the 1st of the 10
data sets is visualized according to the correspondence matching with the reference
ONB. In the right column, a histogram shows the resulting distribution of matched
overlaps.
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sparse approximations of the training data samples. The learned K-SVD dictionary,
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Figure 2.8: Detailed ONB recovery performance analysis for the noiseless synthetic
K-sparse data of sparsity level K = 18 (≈ 7% non-zero coefficients). The results
obtained by K-OSC, N -OSC and GF-OSC are shown row-wise. In the left column,
the K-sparse approximation error is plotted for the 10 data sets as a function of the
number of learning epochs. In the middle column, the dictionary learned on the 1st
of the 10 data sets is visualized according to the correspondence matching with the
reference ONB. In the right column, a histogram shows the resulting distribution of
matched overlaps.
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although it is not orthogonal, resembles the reference ONB. However, most of the K-

SVD atoms reveal, beside the dominating appearance of one reference atom, additional

shadows of further reference atoms as well. This indicates that mixtures of reference

atoms are learned by K-SVD. Despite this non-perfect recovery of the reference ONB,

the training data samples can be well approximated by K-sparse combinations from

the K-SVD dictionary as the final costs are close to zero. The bulk of matched overlaps

is larger than 0.94, but a few are quite small (less than 0.7).

OCA decreases the costs only by a small amount. Even after one thousand learning

epochs, the cost function value of the dictionary is far away from the global minimum.

OCA, particularly its support estimation stage, appears to require much higher sparsity

levels to succeed. Only a few atoms of the reference ONB are accurately recovered by

OCA. The remaining atoms seem to be either mixtures of multiple reference atoms or

look entirely noisy, which might indicate that they remain at their initial random state

and are not sufficiently involved during the learning phase. The matched overlaps are

distributed over the entire interval [0, 1]. Only 25 of the 256 reference atoms seem to

be accurately recovered with matched overlaps in the interval [0.8, 1]. A large bulk

of matched atoms is centered at 0.2, which corresponds to the atom patches showing

random structure.

CA accomplishes a steep monotonic descent of the cost function, and achieves costs

at the global minimum after only 12 learning epochs. The ONB estimated by CA looks

indeed identical to the reference ONB. All atom patches are free of noise-like patterns

or shadows from additional reference atoms. The matched overlaps fall entirely into the

most right bin, and thus are all in [0.98, 1]. Hence, the ONB recovery result is highly

accurate.

The costs during OSC learning have a clear descending trend, although the cost de-

scent is not exclusively monotonic on a fine scale. An online update is specific only to a

single training data sample. Hence, short sequences of such online updates do not nec-

essarily improve the costs for the entire training data set. Nevertheless, a considerable

cost reduction is achieved on the long run. OSC does not reach the global minimum of

the cost function. The learned ONB, however, distinctly resembles the reference ONB

without any shadow patterns from multiple reference atoms. However, minor inhomo-

geneous patterns are visible on the learned atom patches, which are likely responsible

for the final cost residuals. The distribution of matched overlaps is noticeably localized

and centered at 0.94. All overlaps are contained in the interval [0.9, 0.98]. Remarkably,

these results are obtained for both OSC variants, K-OSC and N -OSC.

GF-OSC globally minimizes the costs in about ten learning epochs. Despite its

online update scheme, the total cost descent is monotonic and steep, indicating that

short update sequences reduce the costs for the entire training data set. the ONB

learned by GF-OSC looks indeed identical to the reference ONB. The corresponding

matched overlaps fall into the most right bin, and thus are all in [0.98, 1].

37



Chapter 2. Orthogonal Dictionary Learning for Sparse Coding

Detailed Recovery Performance Analysis, K = 42 (≈ 16.4% Non-Zero Coeffi-

cients)

For the challenging recovery setting, where the sparsity level is rather low (K = 42), the

ONB recovery is impaired for some of the methods. In this setting, K-SVD, OCA, and

even CA reduce the costs only poorly. While K-SVD and CA at least halve the costs

compared to the initial cost value, OCA persists at the initial cost level. Furthermore,

the atom patches of the corresponding dictionaries look entirely noisy with nearly

no identifiable structure from the reference ONB. In line with this observation is the

distribution of matched overlaps around the value 0.2.

The poor performance by OCA is caused by the inferior outcome of its support esti-

mation stage. Due to the low sparsity of the data, the support is mistakenly estimated

to be maximally dense rather than K-sparse, which results in a dense coefficient ma-

trix as well. Thus, a zero approximation error is achieved due to the dense coefficients,

which prevents any change of the ONB by solving the OPP. Consequently, coefficients

and ONB remain at their initial state and cause the costs to be constant over the whole

learning phase.

The deficient recovery performance by CA is much more surprising since both sub-

problems, the dictionary update and the coefficient update, are solved optimally. The

reason might be that the initial ONB is generated randomly and does not provide a

suitable starting point. While CA achieves optimal performance for high sparsity lev-

els, more challenging settings with less sparse data could imply more local minima of

the cost function, in which CA gets stuck easier. For low sparsity levels, CA might rely

on a sufficiently good initial ONB.

OSC performs remarkably well for the challenging recovery setting. Although OSC

recovery performance was not perfect at the easy setting (K = 18), it has not changed

noticeably at the difficult one (K = 42). However, it takes more learning epochs for

OSC to initiate the descent of the costs. For the first 100 learning epochs, the costs

remain coarsely at a rather high level. The primary amount of cost reduction takes place

during the subsequent part of the learning phase. The final residual costs are higher

for K = 42 than for K = 18. Interestingly, the recovered atom patches look quite

similar in both settings. Accordingly, the distribution of matched overlaps is similar,

but localized in the interval [0.88, 0.96]. Note that the mean matched overlap is slightly

decreased. Again, the K-OSC variant and the N -OSC variant yield equivalent results.

The results indicate that OSC recovers the underlying ONB robustly in terms of the

sparsity level.

In the challenging recovery setting, GF-OSC is the only learning method that re-

duces the costs to the global minimum. In contrast to the easy recovery setting, the

cost descent by GF-OSC is not monotonic on a fine scale. During the first 50 learning

epochs, the costs remain at a rather high level. Subsequently, a major leap to the zero

level occurs between learning epoch 80 and 150. The recovered ONB looks identical
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to the reference ONB up to two atom patches showing a mutual shadow. Accordingly,
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Figure 2.9: Detailed ONB recovery performance analysis for the noiseless synthetic
K-sparse data of sparsity level K = 42 (≈ 16.4% non-zero coefficients). The results
obtained by K-SVD, OCA and CA are shown row-wise. In the left column, the K-
sparse approximation error is plotted for the 10 data sets as a function of the number
of learning epochs. In the middle column, the dictionary learned on the 1st of the 10
data sets is visualized according to the correspondence matching with the reference
ONB. In the right column, a histogram shows the resulting distribution of matched
overlaps.
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the mutual overlaps are entirely contained in the most right bin, confirming that the
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Figure 2.10: Detailed ONB recovery performance analysis for the noiseless synthetic
K-sparse data of sparsity level K = 42 (≈ 16.4% non-zero coefficients). The results
obtained by K-OSC, N -OSC and GF-OSC are shown row-wise. In the left column,
the K-sparse approximation error is plotted for the 10 data sets as a function of the
number of learning epochs. In the middle column, the dictionary learned on the 1st
of the 10 data sets is visualized according to the correspondence matching with the
reference ONB. In the right column, a histogram shows the resulting distribution of
matched overlaps.
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Figure 2.11: ONB recovery performance for the noiseless synthetic K-sparse data. The
MMO is plotted as a function of sparsity level K. The error bar plot shows average
and standard deviation of the MMO over the 10 data sets given for each K. Each data
set contained L = 1000 training samples being K-sparse in the non-standard 2D Haar
wavelet basis (N = 256). For each method, the total number of learning epochs was
limited to 1000.

ONB recovery task is accurately solved.

Condensed Recovery Performance Analysis for K ∈ {2, 6, . . . , 62}

Figure 2.11 provides for each sparsity level K ∈ {2, 6, . . . , 62}, for which synthetic data

sets were generated, a condensed overview of the ONB recovery performance. For K-

SVD, OCA, CA, K-OSC, N -OSC and GF-OSC, the mean matched overlap (MMO)

after 1000 learning epochs is plotted as a function of sparsity level K. The plotted

curves illustrate the average MMO over the 10 data sets that are given for each K, and

error bars respectively indicate the standard deviation of the MMO. Except for OSC,

each method has a sparsity limit in the investigated range of sparsity levels, which

we define as the smallest value K ∈ {2, 6, . . . , 62} for which the average MMO drops

immediately from a high level to a minimal baseline level.

K-SVD attains for K ∈ {2, 6, . . . , 18} a high average MMO of at least 0.96 with

a standard deviation that it less than 0.014. For K ∈ {6, 10}, the ONB recovery

performance has a maximum with an average MMO of at least 0.998. The sparsity

limit of K-SVD is given by K = 22.

OCA achieves accurate ONB recovery with an average MMO of at least 0.999, but
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only if the sparsity level is very high, i.e. for K ∈ {2, 6}. The average MMO decreases

significantly for K ∈ {10, 14, . . . , 22}, and is at the minimum level for K ≥ 22.

CA attains for K ∈ {2, 6, . . . , 30} very high ONB recovery performance with an

average MMO of at least 0.997 and standard deviations less than 0.002. Sparsity level

K = 34 indicates a tipping point, where the reference ONB is for 1 of the 10 data

sets not recovered correctly, which explains the large standard deviation of 0.214. The

sparsity limit of CA is given by K = 38.

OSC shows an average MMO which is high but not as close to the maximum as

that of, e.g. CA or GF-OSC. But on the other hand, there is no sparsity limit within

the investigated range of sparsity levels. Instead, the average MMO decreases slightly

with a small linear slope from 0.98 to 0.89 for K ∈ {2, 6, . . . , 62}. The results obtained

by K-OSC and N -OSC are not identical but very similar, their differences vanish. This

comes as a surprise, as for N -OSC the true sparsity level of the data does apparently not

need to be known, which is a great benefit in comparison with all the other methods.

Furthermore, the standard deviation of the MMO vanishes for both OSC variants,

regardless of K. For any K ∈ {2, 6, . . . , 62}, the standard deviation of the MMO is

very small, less than 0.0017.

GF-OSC achieves for K ∈ {2, 6, . . . , 50} very high ONB recovery performance with

an average MMO of at least 0.996. The MMO standard deviation is less than 7 · 10−5

for K ∈ {2, 6, . . . , 34}, and less than 0.002 for K ∈ {34, 38, . . . , 50}. The sparsity limit

of GF-OSC is given by K = 54.

2.9.6 Results for the Noisy Scenario

In the noisy scenario we, narrow our analysis of the ONB recovery experiment down to

the condensed recovery performance analysis.

Condensed Recovery Performance Analysis for K ∈ {2, 6, . . . , 62}

In complete analogy to Figure 2.11, Figure 2.12 provides a condensed overview of

the ONB recovery performance when 5 dB isotropic Gaussian noise is added to the

synthetic data. Note that OCA had to be excluded in the noisy scenario as the support

estimation stage relies on strictly K-sparse data [Mishali and Eldar, 2009]. Altogether,

the additive noise impairs the maximal MMO the methods can obtain. Furthermore,

the method-specific sparsity limits, the value of K at which the average MMO breaks

down, are reduced by the noise. Hence, in the presence of noise all methods require

higher sparsity of the data in order to successfully recover the reference ONB.

K-SVD attains a relatively high average MMO, which increases from 0.88 to 0.91

for K ∈ {2, 6, 10}. The MMO standard deviation for these values of K are less than

0.015. Compared to the noiseless scenario, the sparsity limit reduces from K = 22 to

K = 14.
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CA obtains for K ∈ {2, 6, . . . , 18} the highest average MMO on a rather constant

level within [0.96, 0.97]. In this range, the standard deviation of the MMO is also small,

less than 0.0022. Compared to the noiseless scenario, the sparsity limit reduces from

K = 38 to K = 22.

On the noisy data, OSC learned with the same learning rates as for the noiseless

data, i.e. εinit = 10−1, εfinal = 10−4. In contrast to the noiseless scenario, OSC reveals

a sparsity limit when noise is present. Unlike the other methods, the drop of the

average MMO does not occur abruptly but rather continuously. For K = 2, 6, . . . , 38,

the average MMO decays from 0.95 to 0.83 with a small linear slope. For K = 38, the

average MMO has a knee, where the slope of the MMO decay increases considerably.

Up to that point, i.e. for any K ∈ {2, 6, . . . , 34}, the standard deviation of the MMO

is small, less than 3 · 10−3. Both OSC variants K-OSC and N -OSC yield very similar

results.

On the noisy data, GF-OSC learned with the same learning rates as for the noiseless

data, i.e. c = τ = 1
2 and α = 5. GF-OSC attains the smallest average MMO compared

to the other methods. The ONB recovery performance is considerably degraded. This

comes as a surprise as GF-OSC is more than competitive in the noiseless scenario. The

average MMO increases from 0.64 to 0.85 for K ∈ {2, 6, 10} with standard deviation

less than 0.038. As for K-SVD, the sparsity limit of GF-OSC is given by K = 34.
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Figure 2.12: ONB recovery performance for the noisy synthetic K-sparse data. The
MMO is plotted as a function of sparsity level K. The error bar plot shows average
and standard deviation of the MMO over the 10 data sets given for each K. Each data
set contained L = 1000 training samples being K-sparse in the non-standard 2D Haar
wavelet basis (N = 256). For each method, the total number of learning epochs was
limited to 1000.
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2.10 Sparse Coding ONBs Learned from Natural Image

Patches

We applied our orthogonal dictionary learning methods to learn sparse coding ONBs

from a real world data set containing natural image patches. In this section we in-

vestigate the resulting ONBs and analyze their sparse encoding performance on test

data.

2.10.1 The NSSiVS Data Set

We extracted image patches from the first set of the Nature Scene Collection [Geisler

and Perry, 2011] containing images of nature scenes without man made objects or

people. The uncompressed RGB images have a size of 2844 × 4284 pixels. The color

channels are linearly scaled, each with a depth of 16 bits per pixel (bpp). As the

images looked unnatural due to the linear scaling of the color channels, we converted

them to a logarithmic scale to achieve a more natural appearance. Accordingly, to each

color channel we applied pixel-wise the operation log2 (·+ 1) and divided subsequently

by 16 to map the intensity values into the double precision floating point range [0, 1].

Subsequently, the color images were converted to grayscale images. From the entire set

of 308 images, we randomly selected 250 training images. From each training image,

we extracted 400 patches of size 16× 16 pixels at random positions. These 105 image

patches were exclusively used for training. Analogously, a test data set with 23200

patches was generated from the remaining 58 images. Data preprocessing comprised

the sample-wise subtraction of the DC component and of the sample mean vector.

Figure 2.13: Data samples of the NSSiVS data set containing natural image patches.
The entries of each sample are shifted to have zero mean and are subsequently scaled
to unit supremum norm.

Figure 2.13 shows exemplarily samples of the NSSiVS data sets before DC compo-

nent and mean vector are subtracted.
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2.10.2 K-Sparse Approximation Performance for the NSSiVS Data

Set

Figure 2.14 illustrates for the NSSiVS test data set, the K-sparse approximation per-

formance of different bases as measured by the average signal-to-noise-ratio (SNR). On

the one hand, we include ONBs of static transforms, i.e. of the 2D DCT and of the

non-standard 2D Haar basis, into the comparison as they are known to provide sparse

representations of natural image data [Ahmed et al., 1974, Pennebaker and Mitchell,

1992, Talukder and Harada, 2007]. On the other hand, we include bases derived from

learning on the NSSiVS training data set. We include non-orthogonal complete dictio-

naries learned by K-SVD as well as ONBs resulting from PCA and from the orthogonal

dictionary learning methods CA, K-OSC, N -OSC and GF-OSC. The sparse coding

methods, i.e. K-SVD, CA, OSC and GF-OSC learned for 100 epochs, which corre-

sponds to tmax = 107 online ONB updates, starting with an initial random ONB U(0).

GF-OSC was applied with a cooling learning rate as it yields better results. The initial

and final learning rates used by OSC were set to εinit = 10 and εfinal = 10−2, those

used by GF-OSC were set to εinit = 1 and εfinal = 10−3 as a result of a parameter val-

idation on an independently generated validation data set. With PCA, the K-sparse

approximations are derived based on the K leading PCs. With K-SVD, the K-sparse

approximations are obtained using Batch OMP [Rubinstein et al., 2008]. Note that
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Figure 2.14: Average K-sparse approximation performance of the NSSiVS test data set
containing natural image patches (N = 256). The SNR is plotted as a function of the
relative sparsity level K/N .
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OCA could not be included in the comparison, because its support recovery stage

requires that the data are strictly K-sparse.

For the 2D DCT, the non-standard 2D Haar basis, the PCA and N -OSC only one

single ONB is respectively available, independent from sparsity level K. For each of

these methods, we computed the K-sparse approximation performance densely subject

to K = 1, 2, . . . , 230. The corresponding results are illustrated in Figure 2.14 by one

curve for each ONB. K-SVD, CA, K-OSC, and GF-OSC, on the other hand, learn the

sparse coding basis dependent on K. Thus, the K-sparse approximation performance

is computed subject to bases specifically learned for individual sparsity levels in the

range K ∈ {4, 8, 16, 32} ∪ {64, 96, . . . , 224}. The corresponding results are illustrated

in Figure 2.14 by markers.

First of all, note that the single ONB learned by N -OSC yields the same K-sparse

approximation performance as the ONBs which were learned by K-OSC specifically

for the individual sparsity levels K. Apparently, the universality of N -OSC is not

only limited to artificial data, but also holds for natural image data as well. For

K ∈ {4, 8, 16, 32}, the non-orthogonal dictionaries learned by K-SVD achieve a higher

SNR than the orthogonal ones. For K ∈ {4, 8, 16}, the ONB of the DCT, and the ONBs

learned by CA, OSC, and GF-OSC have nearly equal approximation performance. For

K = 32, the ONBs learned by OSC and GF-OSC are slightly superior compared to the

ONBs of DCT and CA. For K ∈ {64, 96}, the sparse coding ONBs learned by OSC

and GF-OSC attain the highest K-sparse approximation performance outperforming

K-SVD, and increasing the SNR difference to DCT and CA. For even lower sparsity

levels K ∈ {128, 160, 192, 224} the ONBs by OSC show exclusively the highest K-sparse

approximation performance with increasing difference to GF-OSC and still distinct

difference to the remaining bases.

We investigated the stability of N -OSC by fixing the initial and final learning rates

and by applying N -OSC in multiple runs. In each of the 20 runs, a different initial

random ONB and a different random sequence of training sample was used. On the

test data set, we computed the K-sparse approximation performance for each resulting

N -OSC basis. We found, that the standard deviation of the K-term approximation

performance was less than 0.081 dB for any K ≤ 254, and even less than 0.017 dB for

any K ≤ 230, which indicates that the sparse encoding performance of an ONB learned

by N -OSC is stable.

In the following subsection some of the learned sparse coding ONBs resulting from

CA, OSC and GF-OSC are illustrated and discussed.

2.10.3 CA, OSC and GF-OSC on the NSSiVS Data Set

Figure 2.15 - Figure 2.17 illustrate the sparse coding ONBs learned by OSC, CA and

GF-OSC on the NSSiVS training data set which contains natural image patches. The

visualized ONBs were also used for the K-sparse approximation performance analysis
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provided in Section 2.10.2. The ONBs of CA, K-OSC and GF-OSC are shown for the

high sparsity level K = 8 and the low sparsity level K = 64. The atoms are sorted in

decreasing order of encoding relevance (column-major order) as ranked by the average

signal energy of the dense coefficients of the training data samples.

N -OSC learns a sparse coding ONB whose atoms have a remarkable structure. The

atom patches have regular grating patterns of particular frequencies, orientations, and

(a) N -OSC

(b) K-OSC, K = 8 (c) K-OSC, K = 64

Figure 2.15: Sparse coding ONB learned byN -OSC andK-OSC on the NSSiVS training
data set containing natural image patches (N = 256). The training phase included 100
learning epochs. Each atom is visualized as a 16 × 16 patch. The atom patches are
sorted in decreasing order of encoding relevance (column-major order). For display
purposes, the entries of each atom patch (except the estimated DC component) are
shifted to have zero mean and are subsequently scaled to unit supremum norm.
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spatial localizations. Furthermore, the atoms appear to be organized over multiple

scales and some seem to be a hybrid of regular non-local sinusoidal gratings which

are known from the 2D DCT basis, on the one hand, and spatially localized edge-

detectors of different scales known from the 2D DWT, on the other hand. These

analytic orthonormal bases with their sophisticated transform schemes were manually

designed to sparsely encode natural image data. Hence, it makes sense that a learning

method with the objective to maximize sparsity evolves atoms with similar properties

purely driven from natural image data. Due to the relevance sorting, the following

correlation can be observed: the larger the encoding relevance of an atom patch, the

lower is its frequency and the larger is its spatial support. Three main orientations can

be found among the atom patches: horizontal (0◦), vertical (90◦), and diagonal (45◦)

orientations. Among the atoms of intermediate to high frequency and localization a

small set of basis functions is repeatedly found in different oriented and shifted versions.

Figure 2.15b and 2.15c show, for K = 8 and K = 64, the ONB learned by K-

OSC on the NSSiVS training data set. Note that the sparse coding ONB learned by

K-OSC is by visual inspection very similar to the sparse coding ONB learned by N -

OSC. Apparently, OSC is consistent in terms of learning on the same data set similar

sparse coding ONBs for quite various values of K, including K = N . In that sense,

N -OSC is robust as it learns a universal sparse coding ONB analogous to the ONB

(a) CA, K = 8 (b) CA, K = 64

Figure 2.16: Sparse coding ONB learned by CA on the NSSiVS training data set
containing natural image patches (N = 256). The training phase included 100 learning
epochs. Each atom is visualized as a 16 × 16 patch. The atom patches are sorted in
decreasing order of encoding relevance (column-major order). For display purposes, the
entries of each atom patch (except the estimated DC component) are shifted to have
zero mean and are subsequently scaled to unit supremum norm.
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recovery experiments. This is a great benefit, particularly for real world data sets for

which an ideal sparsity level is a priori unknown, or in applications where the sparsity

level cannot be assumed to be constant. The similarity of the learned ONBs is in line

with the similar K-term approximation performance between K-OSC and N -OSC, cf.

Figure 2.14.

According to Figure 2.14, CA has inferior K-sparse approximation performance

compared to OSC. A priori one might expect that CA achieves a sparser data represen-

tation as the two subproblems of the alternating iteration are optimally solved. Figure

2.16 allows an explanation. It shows that CA learns atoms which are in principle sim-

ilar to those learned by OSC. In contrast to OSC, however, CA does not manage to

evolve the full repertoire of atom features at once. Instead CA atoms show subsets of

those features, depending on parameter K. This might explain the inferior K-sparse

approximation performance.

For small values of K, atoms with low to intermediate localization and frequency

emerge, similar to OSC. However, highly localized atoms of high frequencies do not

emerge. Instead, CA develops atoms that show a non-local structure resembling ran-

dom noise. Since these atoms are among the least encoding relevant ones, they might

be rarely involved in the learning process and thus remain to a large extent at their

initial random state. For large values of K, atoms with intermediate to high localiza-

(a) GF-OSC, K = 8 (b) GF-OSC, K = 64

Figure 2.17: Sparse coding ONB learned by GF-OSC on the NSSiVS training data set
containing natural image patches (N = 256). The training phase included 100 learning
epochs. Each atom is visualized as a 16 × 16 patch. The atom patches are sorted in
decreasing order of encoding relevance (column-major order). For display purposes, the
entries of each atom patch (except the estimated DC component) are shifted to have
zero mean and are subsequently scaled to unit supremum norm.
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tion and frequency emerge similar to OSC, whereas the most encoding relevant atoms

reveal an irregular and indifferent structure, distinct to the localized monodirectional

low frequency gratings that OSC develops. Extensively increasing the number of CA

learning epochs marginally expands the repertoire of atom features for some K, but

does not prevent the issue.

Figure 2.17 shows that GF-OSC learns an ONB of atoms which have in principle

a similar structure as the atoms learned by OSC and CA. Similar to CA, the reper-

toire of emerging features depends on user parameter K. For small values of K, the

most encoding relevant atoms develop monodirectional gratings of low to intermediate

frequency and localization. The less encoding relevant features, on the other hand,

show merely a random noise structure. With increasing K the atoms with low to

intermediate frequency and localization become increasingly irregular and indifferent,

whereas atoms with intermediate to high frequency and localization emerge. Figure

2.17b shows the ONB learned for K = 64, where a tipping point of the phenomenon

can be observed. It can be seen that the more encoding relevant features already lost

a small degree of regularity in comparison to Figure 2.17a. For K = 64, the two types

of atom features seem to be slightly more balanced by GF-OSC than by CA. However,

further increasing user parameter K leads to a similar situation as depicted in Figure

2.16b for CA.

2.11 Sparse Coding ONBs Learned from Image Data of

Handwritten Digits

According to the results presented in Section 2.10.2, a learned sparse coding ONB can

provide sparser encodings than the ONB of a static transform. On natural image data,

differences between the learned ONBs and the ONBs of a static transform are compar-

atively small, as such transforms were manually optimized to sparsely encode natural

image data. Other types of image data, for which specialized analytic transforms are

not available, should allow larger improvements relative to general transforms. The

orthogonal dictionary learning methods we propose are adaptive and should extract

relevant structures from the data, which are a priori inaccessible, and should exploit

them in order to obtain superior sparse coding ONBs.

We applied our orthogonal dictionary learning methods to learn sparse coding ONBs

from real world data sets containing image data of handwritten digits. In this section

we investigate the resulting ONBs and analyze their sparse encoding performance on

test data.

50



2.11. Sparse Coding ONBs Learned from Image Data of Handwritten Digits

(a) MNIST variant 1 (b) MNIST variant 2 (c) MNIST variant 3

Figure 2.18: Data samples for the three variants of the MNIST data set. The entries
of each sample are shifted to have zero mean and are subsequently scaled to unit
supremum norm.

2.11.1 Three Variants of the MNIST Data Set

The MNIST data set [LeCun et al., 1998] contains a training set of 6 · 104 as well as a

test set of 104 grayscale images of size 28 × 28 with a gray-level depth of 8 bit. Each

image shows a centered handwritten digit composed of black pen strokes on a white

background. We used 3 different variants of the MNIST data:

• MNIST variant 1: downscaled MNIST images of size 16× 16

• MNIST variant 2: MNIST images of original size 28× 28

• MNIST variant 3: patches of size 16× 16 extracted at random positions from

the original MNIST images

To compose the data sets for all variants, we first transformed the original MNIST

images to the double precision floating point range [0, 1]. For MNIST variant 1, we

rescaled each image to size 16 × 16 using bicubic interpolation. We did that rescaling

in order to reduce the data dimensionality and to relieve the computational load for

the learning methods as well as to enable comparisons with the non-standard 2D Haar

wavelet basis. For MNIST variant 3, we selected 104 MNIST training images uniformly

at random and extracted for each selected image 5 patches of size 16 × 16 at interior

random positions. The training data set of MNIST variant 3 contained 5 · 104 samples

in total. For each MNIST variant, we subtracted the DC component from the resulting

data samples as well as, subsequently, the mean vector of the training data set.

Figure 2.18 shows exemplarily samples of the MNIST data sets before DC compo-

nent and mean vector are subtracted.

2.11.2 K-Sparse Approximation Performance for the MNIST Variant

1 Data Set (Downscaled MNIST Images)

Analogous to Section 2.10.2, we studied the average K-sparse approximation perfor-

mance of several bases with respect to the test set of MNIST variant 1, i.e. down-

scaled MNIST test images of size 16× 16, in terms of the average signal-to-noise-ratio
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Figure 2.19: Average K-sparse approximation performance of the MNIST variant 1
test data set containing images of (downscaled) handwritten digits (N = 256). The
SNR is plotted as a function of the relative sparsity level K/N .

(SNR). Figure 2.19 illustrates the corresponding results. The sparse coding meth-

ods, i.e. K-SVD, CA, OSC and GF-OSC learned for 600 epochs, which corresponds

to tmax = 3.6 · 107 online ONB updates, starting with an initial random ONB U(0).

Similar to the experiment based on the NSSiVS data set, GF-OSC was applied with a

cooling learning rate as it yields better results. The initial and final learning rates used

by OSC were set to εinit = 2.8 and εfinal = 2.8 · 10−3, those used by GF-OSC were set

to εinit = 0.1 and εfinal = 10−5.

The ONBs of the static transforms, i.e. 2D DCT and the 2D Haar basis, and the

PCA show for K ≤ 96 inferior K-sparse approximation performance compared to

any dictionary learned by K-SVD, CA, OSC and GF-OSC. However, the ONB of the

Haar transform and the PCA attain for lower sparsity levels a higher approximation

performance than the dictionaries learned by K-SVD and CA. For high sparsity levels

K ∈ {4, 8, 16, 32} the non-orthogonal dictionary learned by K-SVD yields a higher K-

sparse approximation performance than any learned or static ONB. For these sparsity

levels the ONBs learned by CA, OSC, and GF-OSC encode comparably well with a

SNR difference of approximately 2 − 3 dB to the K-SVD dictionary. For K = 32,

the K-sparse approximation performance by GF-OSC is the second best and is 0.77 dB

higher than by CA and 1.23 dB higher than by OSC. That difference in sparse encoding

performance increases for lower sparsity levels. For K ∈ {64, 96, 128, 160} the ONBs

learned by GF-OSC attain distinctly higher K-sparse approximation performance than
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the ONBs learned by K-SVD, OSC and CA. The SNR difference between GF-OSC and

OSC is for these K between 3.8 dB and 11.3 dB. For K ≥ 96 the ONBs learned by

OSC attain the second best K-sparse approximation performance. Furthermore, the

K-sparse approximation performance of CA saturates for K ≥ 128 and is no longer

competitive as the SNR difference relative to OSC and GF-OSC decreases significantly.

Note that the ONBs learned by K-OSC and N -OSC yield again a similar encoding

performance for almost all investigated values for K.

In the following subsection some of the learned sparse coding ONBs resulting from

CA, OSC and GF-OSC are illustrated and discussed.

2.11.3 CA, OSC and GF-OSC on the MNIST Variant 1 Data Set

Figure 2.20 - 2.22 illustrate the sparse coding ONBs learned by CA, OSC and GF-

OSC on the MNIST variant 1 data set which contains downscaled MNIST images of

size 16 × 16. The visualized ONBs were also used for the K-sparse approximation

performance analysis provided in Section 2.11.2. The ONBs of CA, K-OSC and GF-

OSC are shown for the high sparsity level K = 8 and the low sparsity level K = 64.

The atoms are sorted in decreasing order of encoding relevance (column-major order)

as ranked by the average signal energy of the dense coefficients of the training data

(a) CA, K = 8 (b) CA, K = 64

Figure 2.20: Sparse coding ONB learned by CA on the MNIST variant 1 training
data set containing (downscaled) images of handwritten digits (N = 256). The train-
ing phase included 600 learning epochs. Each atom is visualized as a 16 × 16 patch.
The atom patches are sorted in decreasing order of encoding relevance (column-major
order). For display purposes, the entries of each atom patch (except the estimated
DC component) are shifted to have zero mean and are subsequently scaled to unit
supremum norm.
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samples.

As observed previously for synthetic data sets and natural image data sets, the

ONBs learned by K-OSC and N -OSC are comparatively similar. For CA and GF-

OSC, the repertoire of atom features depends on the sparsity parameter K, whereas

OSC does not seem to depend noticeably on that parameter. For small values of

(a) N -OSC

(b) K-OSC, K = 8 (c) K-OSC, K = 64

Figure 2.21: Sparse coding ONB learned by N -OSC and K-OSC on the MNIST variant
1 training data set containing (downscaled) images of handwritten digits (N = 256).
The training phase included 600 learning epochs. Each atom is visualized as a 16× 16
patch. The atom patches are sorted in decreasing order of encoding relevance (column-
major order). For display purposes, the entries of each atom patch (except the esti-
mated DC component) are shifted to have zero mean and are subsequently scaled to
unit supremum norm.
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(a) GF-OSC, K = 8 (b) GF-OSC, K = 64

Figure 2.22: Sparse coding ONB learned by GF-OSC on the MNIST variant 1 training
data set containing (downscaled) images of handwritten digits (N = 256). The train-
ing phase included 600 learning epochs. Each atom is visualized as a 16 × 16 patch.
The atom patches are sorted in decreasing order of encoding relevance (column-major
order). For display purposes, the entries of each atom patch (except the estimated
DC component) are shifted to have zero mean and are subsequently scaled to unit
supremum norm.

K, CA and GF-OSC learn sparse coding ONBs which contain a significant number

of atoms that look rather unstructured and noisy, seemingly due to residues of the

random initialization which might persist as these atoms are barely involved in the

learning process. For large values of K, the most encoding relevant atoms learned by

CA contain rather large blobs in the center without any interpretable structure.

Overall, the methods learn comparable types of features. On the one hand, atoms

emerge that resemble prototypes of particular digits or digit combinations which reflects

the fact that during the learning an adaptation of the sparse coding ONB to the image

content, i.e. the handwritten digits takes place. For CA and GF-OSC, these atoms

emerge as the most encoding relevant atoms, but only if the parameter K is set to a

small value, i.e. for high sparsity levels. OSC learns these atom features as well, but

independent of K. Another kind of atom features, which frequently appears, seems to

induce a sensitivity to various stroke patterns and arch shapes which are localized and

also typical for the handwritten digits. For CA and GF-OSC, such atoms are learned

also for small values of K and appear among the more (but not necessarily the most)

encoding relevant atoms. A sparse coding ONB learned by OSC does also develop

such stroke-like features. However, they sometimes tend to be accompanied by some

additional grating structure. A large set of atoms resembles edge-detectors of rather

high but different degrees of localization. For CA that kind of atoms develop for low
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sparsity levels as intermediate to less encoding relevant atoms. In contrast, GF-OSC

learns for large values of K almost exclusively highly localized edge-detectors with a

high encoding relevance, which might explain the superior encoding performance for the

large values of K compared to CA and OSC. Furthermore, a few atoms show grating

patterns in the center with intermediate localization and mixed directions. Commonly,

the least encoding relevant atoms are similar to canonical basis vectors (only one non-

zero pixel) or show an indifferent noise-like structure which is concentrated at the image

border.

2.11.4 OSC on the MNIST Variant 2 Data Set

Figure 2.23 illustrates a sparse coding ONB learned by N -OSC on the MNIST variant

2 data set which contains MNIST images of original size 28×28. Figure 2.23a show the

complete ONB with all N = 784 atoms. Figure 2.23b depicts the 256 most encoding

relevant atoms and Figure 2.23c the least encoding relevant ones. The atoms are sorted

in decreasing order of encoding relevance (column-major order) as ranked by the average

signal energy of the dense coefficients of the training data samples. Starting with an

initial random ONB, N -OSC performed tmax = 2 · 106 updates of the ONB, which

corresponds to ≈ 16.7 learning epochs. The number of learning epochs was selected

rather small in order to relieve the computational load as the computational complexity

of OSC grows polynomially by data dimensionality N . The initial and final learning

rate were set to εinit = 10−1 and εfinal = 10−3.

It can be seen that for N = 784 (MNIST variant 2) similar atom features emerge

as for N = 256 (MNIST variant 1). In the high dimensional scenario, however, the

described repertoire of atom features appears to be more diverse among the most en-

coding relevant atoms. On the other hand, many of the least encoding relevant atoms

seem to be unstructured as they show noise-like patterns at the image border and are

otherwise zero, which might be due to an insufficient number of ONB updates.

2.11.5 OSC on the MNIST Variant 3 Data Set

Figure 2.24 illustrates a sparse coding ONB learned by N -OSC on the MNIST variant

3 data set which contains patches of MNIST images of size 16 × 16. The atoms are

sorted in decreasing order of encoding relevance (column-major order) as ranked by the

average signal energy of the dense coefficients of the training data samples. Starting

with an initial random ONB, N -OSC performed tmax = 2 · 107 updates of the ONB,

which corresponds to 400 learning epochs. The initial and final learning rate were set

to εinit = 1.5 · 10−1 and εfinal = 1.5 · 10−3.

Similar to the ONBs learned on natural image patches (cf. Section 2.10.3), N -

OSC learns as well a sparse coding ONB with atoms revealing consistent structural

properties. The atom features resemble contour detectors and grating structures of
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(a) Complete sparse coding ONB

(b) 256 most encoding relevant atoms (c) 256 least encoding relevant atoms

Figure 2.23: Sparse coding ONB learned by N -OSC on the MNIST variant 2 training
data set containing images of handwritten digits (N = 784). The training phase in-
cluded ≈ 16.7 learning epochs. Each atom is visualized as a 28× 28 patch. The atom
patches are sorted in decreasing order of encoding relevance (column-major order). For
display purposes, the entries of each atom patch (except the estimated DC component)
are shifted to have zero mean and are subsequently scaled to unit supremum norm.
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Figure 2.24: Sparse coding ONB learned by N -OSC on the MNIST variant 3 training
data set containing patches of handwritten digits (N = 256). The training phase
included 400 learning epochs. Each atom is visualized as a 16 × 16 patch. The atom
patches are sorted in decreasing order of encoding relevance (column-major order). For
display purposes, the entries of each atom patch (except the estimated DC component)
are shifted to have zero mean and are subsequently scaled to unit supremum norm.

different frequencies, orientations and localizations. With decreasing encoding relevance

of the atoms the frequency and the spatial localization increases. A relatively small

set of basis functions can be observed occurring repeatedly in differently oriented and

shifted versions. Interestingly, these basis functions do not always have a single straight

direction but are curved for some of the atoms. This is reasonable because the strokes

of many digits are also curved and the sparse coding ONB adapts to that property of

the data.

2.12 Applications

To study applications for orthogonal dictionary learning methods, we made image com-

pression and image denoising experiments.

2.12.1 Image Compression

We conducted image compression experiments with an OSC codec that is based on

the JPEG baseline codec [Pennebaker and Mitchell, 1992], for which the 8×8 DCT

was replaced by an 8×8 N -OSC basis which was learned on the NSSiVS data set as

described in Section 2.10.3. We used gray level images (8 bit gray level depth) of a freely

available benchmark data set [Becker et al., 2014] containing 15 large uncompressed

images. We divided the data set into two parts, i.e. 9 training images and 6 test images.

A JPEG encoder processes the quantized AC coefficients of each image tile in a
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zig-zag pattern, which defines an ordering of the DCT basis functions by decreasing

encoding relevance. It was required to generate analogously an ordering for the 8×8 N -

OSC basis. We determined an equivalent ordering by measuring the encoding relevance

of each atom. This was done by counting how often, on average over all training data

samples, each N -OSC basis vector occurred among the N/2 largest squared coefficients.

This yielded a ranking histogram, which was not only used to derive the ordering but

also to generate the AC quantization table for the quality level 50 (on a scale from

1 to 100). The obtained ranking histogram was rescaled to have the same minimal

and maximal quantization value as the JPEG luminance quantization table for the AC

coefficients at that quality level. Quantization values for any other quality level are

derived from this table as defined in the JPEG baseline standard. We also applied a

zero run-length encoding of the AC coefficients and generated a Huffman code from

patches, which were extracted from the 9 training images2.

For each test image we computed a rate distortion plot by varying the quality

level. To measure reconstruction performance, we computed the Multi-Scale Structural

Similarity Index (MS-SSIM) [Wang et al., 2003] which is plotted as a function of the

bitrate (bpp), i.e., the file size of the compressed image (in bits) divided by the number

of pixels. The comparison to the JPEG codec was done by applying the command

line tool pnmtojpeg, which uses the Independent JPEG Group’s JPEG library. The

used parameters were: -grayscale, -dct=float, and -quality=n. For the sake of a

broader assessment, we also provide rate distortion curves for the JPEG2000 codec,

although it is not based on an ONB but on biorthogonal Cohen-Daubechies-Feauveau

(CDF) wavelets and operates in terms of a full image transform instead of processing

disjoint image patches. We used the Open JPEG command line tool image to j2k

with default parameters.

2Note that the 9 training images of the benchmark data set [Becker et al., 2014] were only used for
the Huffman code and not for learning the N -OSC basis

(a) Original crop (b) JPEG2000 (c) N -OSC (d) JPEG

Figure 2.25: An image region of size 120 × 120 extracted from different compressed
versions of test image cathedral.pgm. The compressed images were obtained by the
JPEG2000 codec, the OSC codec, and the JPEG baseline codec for a compression rate
of 0.29 bpp.
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Figure 2.26: Rate distortion analysis for different test images.

Usually, we observed that the MS-SSIM for all three codecs converges to a common

rate distortion curve as the bitrate exceeds an image dependent value around 0.5 bpp.

Figure 2.26 shows that for low bitrates a higher compression performance is obtained

with the OSC codec than with the JPEG baseline standard. The JPEG2000 codec is,

nevertheless, superior at low bitrates. Note, however, that it benefits from the multi-
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σ 2 5 10 15 20 25 50

Image cameraman (512× 512)

K-SVD 46.07 40.31 36.52 33.89 31.75 30.00 24.37
CA 46.36 40.64 36.57 33.72 31.46 29.74 23.68

N -OSC 46.32 40.69 36.56 33.71 31.42 29.61 23.77

Image house (512× 512)

K-SVD 48.07 42.83 38.33 36.12 34.66 33.31 27.18
CA 48.31 42.62 38.09 35.93 34.34 32.84 25.88

N -OSC 48.30 42.41 37.95 35.74 34.11 32.58 26.58

Image lena (512× 512)

K-SVD 42.25 37.50 34.50 32.76 31.35 30.13 25.07
CA 43.40 38.23 34.88 32.75 31.17 29.83 24.29

N -OSC 43.25 38.24 35.00 32.88 31.28 29.88 24.57

Image peppers (512× 512)

K-SVD 40.84 35.23 33.03 31.77 30.59 29.48 24.83
CA 42.68 36.57 33.32 31.66 30.35 29.17 23.88

N -OSC 42.53 36.48 33.38 31.75 30.39 29.16 24.20

Image barboon (512× 512)

K-SVD 44.06 37.23 32.49 29.89 28.02 26.55 21.64
CA 44.28 37.77 32.90 30.05 28.03 26.48 21.37

N -OSC 44.46 37.88 32.86 29.98 27.94 26.39 21.46

Image pirate (512× 512)

K-SVD 41.31 36.15 32.23 30.31 28.94 27.79 23.62
CA 43.15 37.17 32.97 30.59 28.92 27.62 23.10

N -OSC 43.08 37.18 32.96 30.56 28.87 27.56 23.25

Image barbara (512× 512)

K-SVD 38.74 35.64 32.11 29.74 27.94 26.50 22.02
CA 43.24 37.55 33.34 30.90 29.06 27.55 21.91

N -OSC 43.20 37.64 33.54 31.07 29.17 27.63 22.17

Image boat (512× 512)

K-SVD 40.74 35.52 32.13 30.19 28.81 27.61 23.27
CA 42.92 36.81 33.00 30.72 28.96 27.60 22.80

N -OSC 42.78 36.76 33.01 30.73 28.98 27.60 22.93

Image fingerprint (512× 512)

K-SVD 42.57 35.61 31.78 29.56 27.90 26.51 20.11
CA 42.79 36.29 31.93 29.49 27.76 26.32 19.29

N -OSC 42.72 36.30 31.96 29.48 27.68 26.18 19.78

Table 2.1: Image denoising results based on sparse approximations of overlapping image
patches of size 16 × 16. The denoising performance, as measured by the PSNR (dB)
between original image and denoised estimate, was averaged over 5 runs.

scale representation of images in the wavelet domain. Both, the JPEG and OSC codecs

are patch based and suffer from blocking artifacts at very low bitrates. This might be

one reason for their inferior compression performance compared to JPEG2000.

2.12.2 Image Denoising

We made experiments to assess the applicability of N -OSC for image denoising and

followed the denoising framework proposed in [Elad and Aharon, 2006]. We used sparse

coding ONBs as well as non-orthogonal overcomplete sparse coding dictionaries learned
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on the NSSiVS data set containing natural image patches (see Section 2.10.1). First,

we distorted 9 standard test images of size 512× 512 with additive isotropic Gaussian

noise using standard deviations σ ∈ {2, 5, 10, 15, 20, 25, 50}. The noisy images were

subsequently clipped to the range [0, 255]. From each noisy image, we extracted over-

lapping patches of size 16 × 16 from all possible locations such that no patch exceeds

the image border. Subsequently, the patches were sparsely approximated using OMP.

The objective function minimized by OMP does not only take the reconstruction error

of all the extracted image patches into account but also incorporates the reconstruction

error of the whole image, which is reobtained by fusing the approximated patches, in

form of a regularization term. Note that for orthogonal dictionaries a sparse approx-

imation computed by OMP is equivalent to (2.11) and thus optimal. The denoised

image estimate is constructed by fusing the sparsely approximated patches. The gray

value of each denoised image pixel is averaged from all its overlapping patches. For the

entire image denoising procedure we used the ompdenoise2.m function of the KSVD-

Box v13 in combination with OMPBox v10 [Rubinstein et al., 2008] with parameters

as proposed in [Elad and Aharon, 2006].

We compared image denoising performance between dictionaries learned by K-SVD,

CA and N -OSC for 100 epochs on the NSSiVS training data set. For CA, we report

results obtained with user parameter K∗ = 28, because it yields the best results for the

investigated parameters K ∈ {20, 24, 28, 32}. For K-SVD, we report results obtained

with user parameter3 combination (K∗,M∗) = (16, 1024), because it yielded the best

results of the investigated parameter combinations (K,M) ∈ {4, 8, 12, 16}×{512, 1024}.
The denoising performance as measured by the PSNR (dB) is listed in Table 2.1 and

was averaged over 5 runs. For each combination of image and noise level, the dictio-

nary providing the highest PSNR is highlighted in bold face. The experimental results

show that K-SVD, CA, and N -OSC dictionaries perform comparably well. The op-

timal dictionary for the denoising task depends on the chosen combination of image

and noise level. For the small noise levels σ ∈ {2, 5, 10} the ONBs learned by CA and

N -OSC achieve superior denoising performance compared to the overcomplete dictio-

nary learned by K-SVD. For the large noise levels σ ∈ {25, 50} the situation reverses.

However, for K-SVD and CA, the denoising performance also depends on the user pa-

rameters, i.e. codebook size (only K-SVD) and sparsity level K, while N -OSC does not

require the optimization of these parameters.

Figure 2.27 shows the denoised test image Lena which is obtained by using an

overcomplete sparse coding dictionary learned by K-SVD in comparison to using sparse

coding ONBs learned by CA and N -OSC for the noise level σ = 10. In the depicted

run, the denoised image derived by the N -OSC ONB yields a PSNR of 35.0 dB which is

approximately 0.4 dB higher than the denoised image derived by the K-SVD dictionary

and approximately 0.1 dB higher than the reconstruction derived by the CA ONB.

3Recall that M is the user parameter for the dictionary size, i.e. the number of atoms.
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(a) Original image Lena

(b) Noisy image Lena, σ = 10 (c) Denoised by K-SVD, PSNR: 34.58

(d) Denoised by CA, PSNR: 34.90 (e) Denoised by N -OSC, PSNR: 35.00

Figure 2.27: Comparison of image denoising results between a non-orthogonal over-
complete dictionary learned by K-SVD and ONBs learned by CA and N -OSC for the
test image Lena.
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3 Adaptive Hierarchical Sensing

This chapter is organized as follows. In Section 3.1 we formally introduce the sensing

problem to sample a signal by collecting only few linear measurements. We briefly

distinguish between conventional non-adaptive Compressed Sensing (CS) and adaptive

hierarchical sensing (AHS), the central sensing approach proposed in this chapter. Sec-

tion 3.2 gives an overview of related literature which also proposes adaptive sensing

schemes. In Section 3.3 we introduce CS, outline how a signal is recovered from the

collected set of non-adaptive linear measurements and cite exemplarily a condition for

obtaining reconstruction guarantees. Section 3.4 summarizes the key principle of AHS.

The sensing tree, the essential data structure supplying the collection of sensing vectors

for AHS, is introduced in Section 3.5. In Section 3.6 we emphasize the simplicity of

the direct signal recovery that comes naturally with AHS. We furthermore investigate

if the AHS signal recovery performance can be improved by exploiting particular mea-

surements more efficiently. Section 3.7 presents the τ -AHS algorithm and analyzes the

number of measurements in the case of k-sparse signals. Likewise, Section 3.8 presents

and analyzes the K-AHS algorithm. In Section 3.9 we study a greedy approach to opti-

mize the sensing tree structure for improving AHS performance based on a training data

set that represents a signal population of interest. The usefulness of this structuring

approach is demonstrated for natural image patches and different sparse coding bases.

Section 3.10 is dedicated to the theoretical analysis of K-AHS in terms of recovering

the most significant signal coefficients. A sufficient optimality condition for K-AHS is

derived, which enables to infer sufficient conditions on the parameters of different signal

models. A theoretical analysis of K-AHS is also given from a probabilistic perspective.

Upper bounds are derived for the probability that K-AHS fails to collect the K largest

coefficients. In Section 3.11, we validate the K-AHS performance for the signal models

by numeric simulations. In Section 3.12, we apply K-AHS for sensing real-world images

and compare the results to τ -AHS and a standard CS approach.

65



Chapter 3. Adaptive Hierarchical Sensing

3.1 Sensing Problem

3.1.1 Signal Sparsity/Compressibility Assumption

Suppose x ∈ RN is an unknown signal that we intend to sample. The main precon-

dition for both Compressed Sensing (CS) and Adaptive Hierarchical Sensing (AHS)

is, that x has a sparse or compressible representation a in a linear transform basis

Ψ = (ψ1, . . . , ψN ) ∈ RN×N . In other words, the representation a = Ψx itself is un-

known, but we suppose that it has only few entries that are substantially distinct from

zero. Furthermore, let Ψ
T

= Ψ−1 ∈ RN×N be the corresponding inverse transform ba-

sis which transforms the representation a back to the original signal x = Ψ
T
a. We call

Ψ analysis transform (analysis basis) and Ψ
T

synthesis transform (synthesis basis).1

For instance, Ψ can be an ONB (with the implication Ψ = Ψ) such as the Discrete

Cosine Transform (DCT) or a Daubechies wavelet basis. Alternatively, the pair Ψ and

Ψ can be a biorthonormal basis such as a Cohen-Daubechies-Feauveau wavelet basis.

3.1.2 Collecting O(K log N
K
) Linear Measurements

The goal of CS and AHS is to collect only few, i.e. less than N linear measurements of

the unknown signal x, particularly less than N , and to recover the sparse representation

of the signal from that collection. Such a linear measurement is defined as the inner

product of x with a selectable sensing vector ϕ, i.e. it has the form y = 〈x, ϕ〉, and is

in practice realized by particular sensing hardware (see e.g. Section 3.1.3). The desired

number of measurements, M , is ideally of order O(K log N
K ), where K is the number

of significant coefficients (e.g. the number of non-zero coefficients of a sparse signal).

This class of measurement bounds has been shown to be near-optimal in the context of

CS in order to accurately reconstruct the signal [Candes and Tao, 2006, Candès et al.,

2006]. For most CS applications, single measurements are collected sequentially over

time: yt = 〈x, ϕt〉, where t = 1, . . . ,M are discrete time steps.

3.1.3 Examples of Imaging Hardware

CS and AHS imaging is applicable whenever the involved sensing hardware enables to

compute linear measurements in form of inner products between the scene of interest

and controllable sensing vectors. In the following, we give two examples of hardware

setups that have been used for CS imaging and could also be used for AHS imaging

implementing a minor modification.

In 2006, the architecture of a one pixel camera implementing the CS principle has

been proposed [Takhar et al., 2006, Wakin et al., 2006a, Wakin et al., 2006b]. Instead

1The completeness assumption regarding Ψ and Ψ does primarily occur in the CS literature and is
made here as well. However, there are also theoretical CS results showing that `1-analysis optimization
is capable of dealing with overcomplete dictionaries Ψ, see e.g. [Candès et al., 2010].
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(a) Imaging based on light modulation by a digital
micromirror. The image is taken from [Herman
et al., 2015]

(b) Imaging based on active illumination via
structured light emitted by a digital light projec-
tor. The image is taken from [Welsh et al., 2013].

Figure 3.1: Two examples of hardware setups for implementing compressive imaging
with a single photo detector.

of a high-definition image sensor that measures the light intensity for each pixel, such

a camera consists of only one single photo detector and a controllable array of micro

mirrors (DMD). With such an architecture a measurement is collected as follows: the

light reflected from the scene is projected through a lens onto the DMD which is con-

trolled externally and causes a micro mirror-wise modulation of the light according to a

control pattern. The control pattern corresponds to the sensing vector. The modulated

light is reflected by the DMD, bundled by a second lens and integrated by the single

photo detector to a scalar measurement value. In order to sample an image, multiple

measurements need to be taken sequentially using distinct control patterns. However,

the total number of measurements that is required for accurately reconstructing the

image is commonly much lower than the dimensionality of the “discretized scene”, i.e.

the number of micro mirrors.

Alternatively, CS based single pixel imaging can be realized by emitting structured

light patterns into the scene and integrating the light reflected from the scene by a

single photo detector [Welsh et al., 2013]. An advantage is that this approach does not

require optical lenses. However, the fact that active illumination is the light modulating

component of this approach limits its applicability in real world scenarios to a certain

extend. This active illumination approach using structured light has also been used to

realize 3D imaging based on two photo detectors [Sun et al., 2013].

Figure 3.1 illustrates the two described CS imaging hardware setups. For AHS imag-

ing a simple additional feedback of the collected measurements, i.e. the A/D converter

output, to the processing unit is required such that measurements can be compared for

selecting new sensing vectors (i.e. control patterns).
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3.1.4 Brief Distinction Between CS and AHS

AHS will be proposed as an alternative adaptive approach to solve sensing problems

suited to CS. However, there are a few distinctions to CS which are outlined in the

following.

CS makes non-adaptive measurements using sensing vectors which obey some ran-

dom structure and which are independent from the signal and from the measurements

collected throughout the sampling process. In a separate reconstruction stage, the sig-

nal is recovered from the collected measurements by inverse optimization, for which

a suitable transform pair Ψ and Ψ is selected. CS obeys the principle sample first,

reconstruct later.

In contrast to CS, AHS requires to select Ψ prior to sampling as it uses sensing

vectors which are linear combinations of analysis basis vectors. Based on simple decision

rules, upcoming AHS sensing vectors are selected depending on relative comparisons of

previously observed measurements. Thus, a feedback about collected measurements is

required. Fortunately, AHS directly tracks down relevant transform coefficients of the

signal in the analysis basis and does not require a reconstruction stage based on inverse

optimization.

3.2 Literature Review

Adaptive sensing schemes have been proposed before and can be quite diverse in nature.

The most of them have in common that sensing vectors are selected or generated based

on information about the signal which is gathered by previous measurements through-

out the sampling process. The objective is to optimize the gain of new information.

Coulter at al. proposed the neural network model Adaptive Compressed Sensing

(ACS), which is a sparse coding neural network with a synaptic learning scheme that is

embedded into the compressed sensing framework. Motivated by neurobiological find-

ings, encoding and weight adaptation stages of their ACS network have limited access

to the original data. They showed that with these networks smooth and biologically

realistic receptive fields, also known from sparse coding models, emerge despite the

fact that the sensory input is subsampled and mixed by the feedforward connectivity

[Coulter et al., 2010].

Burciu et al. proposed Hierarchical Manifold Sensing (HMS), an adaptive hierar-

chical sensing scheme to solve classification tasks for images that are distributed on a

non-linear manifold [Burciu et al., 2016]. By hierarchically decomposing the training

data into partitions using PCA and k-means clustering, HMS infers the class of an

input image based on only few linear measurements. Their approach, however, has

limitations as it requires to have instances in the training set which are similar to the

unknown signal that is to be classified.
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Deutsch et al. proposed Adaptive Direct Sampling (ADS) to directly sample rele-

vant wavelet coefficients of an image in a selective hierarchical manner [Deutsch et al.,

2009]. The set of potential sensing vectors matches with the wavelet basis. First,

ADS samples all transform coefficients in all sub-bands within a limited number of the

coarsest levels. Subsequently, a heuristic based on the Lipschitz exponent is applied to

iteratively decide at which image locations and for which sub-bands the coefficients of

the next finer scale will be sampled or omitted. Their approach, however, is limited to

the wavelet domain.

Aldroubi et al. proposed an adaptive compressed sampling approach to sample

sparse signals based on a Huffman tree [Akram Aldroubi and Zarringhalam, 2011]. The

Huffman tree is derived from probabilities assigned to sets of non-zero locations, which

reflect statistics of the signal population. In a way, such a Huffman tree is related to

the sensing tree that is used by K-AHS (see Section 3.5 below) as it is traversed during

sampling and each visited node corresponds to a linear measurement of the signal with

a sensing vector that yields the sum of a subset of signal components. On average,

their method has a sampling complexity of k logN + 2k measurements to find k non-

zero locations. In contrast to K-AHS, their sampling scheme traverses the Huffman

tree multiple times (one run for each non-zero component), and requires furthermore

to recalculate sensing vectors after each run, depending on already identified non-zero

locations. However, the authors do not address the issue that unfavorable constellations

of significant coefficients can cancel each other. Furthermore, their method was not

tested on real world signals.

A further class of adaptive sensing approaches is inspired by group testing or ex-

perimental design.

Group testing, in general, is a strategy to identify few elements with particular

properties in a large set by performing tests on subsets, rather than on individual

elements [Du and Hwang, 2000]. Applications are given, for instance, by the false coin

problem or by medical screening problems, where the task is to effectively identify a

small amount of infected people in a large population by conducting as few tests as

possible on pooled samples [Dorfman, 1943, Hwang, 1972]. In [Iwen and Tewfik, 2012]

an adaptive group testing approach is presented for sensing sparse signals by collecting

as few noisy measurements as possible. The considered measurement model deals with

Gaussian background noise, also known as “clutter noise” in radar applications. Two

algorithms are presented. One is designed to detect the only non-zero component of

a 1-sparse signal using a binary search procedure. The second algorithm is designed

to detect all non-zero components of a k-sparse signal by performing a partitioning

that isolates each significant signal component with high probability and applies the

first algorithm to the obtained subsets. Theoretical bounds for the required number

of measurements are developed and it is shown that the adaptive sensing requires

asymptotically less samples than non-adaptive sensing.
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Experimental design is an information theoretic framework addressing the problem

of optimally designing a sequence of experiments in order to gain knowledge about the

true state of the world. The outcome of each experiment can reduce the experimenters

uncertainty about the state by providing new bits of information. The experimenters

objective is to exploit the information of previous experiments and design the subse-

quent experiment in a way that maximizes the expected information gain [DeGroot,

1962, Lindley, 1956]. Bayesian adaptive sensing is inspired by this concept and de-

signed for sensing an unknown sparse signal using a sequence of random sensing matri-

ces. These sensing matrices are drawn from a probability distribution that is gradually

adjusted throughout the sensing process, i.e. shaped by the distribution of observed

measurements such that the expected information gain is maximized. This is in con-

trast to non-adaptive CS, where only a single sensing matrix is used whose entries are

drawn i.i.d. from a symmetric distribution. The information obtained from previous

measurements is utilized to adequately place probability mass on the columns of the

sensing matrix such that sensing energy is focussed onto locations for which it is likely

that significant signal coefficients are contained and away from locations for which it is

unlikely. For each sensing step the sensing matrix is drawn from the updated distribu-

tion that maximizes the Kullback-Leibler divergence between the posterior distribution

of the signal given the measurements and the prior distribution of the signal [Haupt and

Nowak, 2012]. Bayesian Adaptive Sensing can outperform non-adaptive CS in noisy

settings in terms of the reconstruction error relative to the number of measurements

[Castro et al., 2008, Ji et al., 2008, Seeger, 2008, Seeger and Nickisch, 2008].

Another adaptive sensing approach based on Bayesian adaptive sensing is given by

distilled sensing (DS) [Haupt et al., 2011]. It is a quasi-Bayesian approach as it merely

approximates the focusing described above, and thus allows a theoretical analysis that

is otherwise difficult due to inherent statistical dependencies [Haupt and Nowak, 2012].

In [Haupt et al., 2011], a component-wise measurement-model with additive Gaussian

noise is considered for the DS framework. For each component-wise measurement, a

portion of a globally given measurement budget is taken to modulate the variance of

the additive noise. DS aims to identify the few non-zero components of the signal by

iteratively reducing the set of candidate non-zero locations (starting with the full set

of locations) via non-negative thresholding of the noisy measurements. As for each

measurement the global measurement budget is divided by the number of retained

candidate non-zero locations, each reduction increases sensing accuracy. However, the

DS approach proposed in [Haupt et al., 2011] is not compressive as it performs O(N)

measurements [Haupt and Nowak, 2012].

A corresponding extension, Compressive Distilled Sensing (CDS), is proposed in

[Haupt et al., 2009]. Similar to DS, a set of candidate non-zero locations of the signal

is iteratively reduced. In each iteration multiple measurements of the signal are col-

lected by an undercomplete sensing matrix. The measurement model includes additive
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standard Gaussian noise. The entries in the columns which correspond to candidate

non-zero locations are drawn i.i.d. from a zero-mean Gaussian distribution whose vari-

ance increases as the number of candidate non-zero locations decreases. The remaining

entries are set to zero which results in discarding the corresponding locations. In each

iteration an estimate of the signal is computed by multiplying the transposed of the

sensing matrix with the vector of measurements that was derived by the sensing matrix.

Subsequently non-negative thresholding is performed on the signal estimate in order to

reduce the set of candidate non-zero locations.

Note that the theoretical analysis of DS and CDS is done for the limiting case

N → ∞. It is furthermore concentrated on the support recovery of signals whose

non-zero components are equal (the amplitude is assumed to be some function of N).

Malloy and Nowak proposed Compressive Adaptive Sense and Search (CASS) [Mal-

loy and Nowak, 2014]. It is conceptually equivalent to our K-AHS algorithm. Both

methods were independently developed. They are based on the idea to iteratively bi-

section the signal and to collect each measurement of the signal due to a sensing vector

that essentially sums up signal components within a partition. Measurements resulting

from equally sized partitions are compared. A fix number of the most promising par-

titions yielding the largest measurement magnitudes are further bisected whereas the

least promising partitions are discarded. The theoretical analysis in [Malloy and Nowak,

2014] is focussed on sensing k-sparse signals while additive Gaussian measurement noise

is present and the total sensing energy is constrained in form of a measurement budget.

The authors provide sufficient conditions in terms of lower bounds on the number of

measurements (which are of order O(k logN)) as well as lower bounds on the ampli-

tudes of the non-zero components. Two cases are differentiated regarding these bounds:

(i) recovery of the full support of the signal dependent on a minimum target recovery

probability given the signal is non-negative and (ii) average recovery of a fix fraction of

the support given the signal contains both positive and negative entries. The conditions

depend on the signal dimensionality, the sparsity level, the measurement budget and,

depending on the case, on either a minimum target recovery probability or a fraction

of the support to recover.

The impact of adaptivity for sensing is judged controversially by the sensing com-

munity. On the one hand, works, proposing adaptive sensing schemes, demonstrate

improvements over non-adaptive CS, particularly when measurement noise is present.

On the other hand, contrary findings have been made indicating that an adaptive sens-

ing strategy cannot be substantially better than a non-adaptive one, no matter how

sophisticatedly the collected measurements are exploited [Arias-Castro et al., 2013].
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3.3 Non-Adaptive Compressed Sensing Principle

3.3.1 Sensing Matrix

Standard CS measurements are non-adaptive, which means that a sensing vector ϕt

does not depend on y1, . . . , yt−1. Thus, collecting all the measurements can be concisely

written as a matrix-vector product y = Φx, where Φ ∈ RM×N is the sensing matrix

consisting row-wise of M sensing vectors. Assume that x is sparse in some synthesis

ONB Ψ. By using the synthesis transform basis, one can also write y = ΦΨa = Θa.

Scientific contributions in the area of Compressed Sensing are manifold. It has

been intensively studied for which conditions sparse or compressible signals can be

successfully recovered from linear measurements. Moreover, several signal recovery

algorithms have been proposed. Here, we give a brief insight into the CS framework by

selecting a few important aspects.

3.3.2 Signal Recovery

Recovering a sparse or compressible signal x from the linear measurements y = Φx

implies to solve an optimization problem of the form

P(3.1) : a∗ = arg min
a

‖a‖p , s.t. a ∈ BΘ(y) , (3.1)

where BΘ(y) = {a : Θa = y} (noiseless recovery) or BΘ(y) = {a : ‖Θa− y‖2 ≤ ε}
(noisy recovery) and p ∈ {0, 1}. For p = 0, the objective function is non-convex and

difficult to solve exactly. In fact, the optimization problem is in general NP-hard [Boche

et al., 2015]. Commonly, the `0 minimization problem (p = 0) is approached by greedy

algorithms, see e.g. [Blumensath et al., 2012, Boche et al., 2015, Blanchard and Tanner,

2015] for a survey. A popular alternative strategy is to solve P(3.1) for p = 1. This

`1 minimization approach relaxes the non-convex problem to a convex one such that

tractable optimization algorithms can be deployed to find optimal solutions. Indeed,

conditions have been elaborated which guarantee `0/`1 equivalence, which means that

a solution to P(3.1) for p = 1 coincides with a solution for p = 0 [Donoho, 2005, Candès

et al., 2006, Donoho and Elad, 2003].

3.3.3 Restricted Isometry Property

One central property which is frequently used for theoretical CS results is given by:

Definition 11 (Restricted Isometry Property). A matrix Θ satisfies the restricted

isometry property (RIP) of order k if there exists a 0 ≤ δk ≤ 1 such that

(1− δk) ‖a‖22 ≤ ‖Θa‖22 ≤ (1 + δk) ‖a‖22 (3.2)
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holds for all a : ‖a‖0 ≤ k.

The RIP states that matrix Θ approximately preserves the distances between any

pair of k-sparse vectors [Davenport et al., 2012].

3.3.4 Example of a RIP Based Recovery Result

To give a prototypical example of a RIP based signal recovery result with `0/`1 equiv-

alence, we cite the following theorem:

Theorem 2 (Theorem 1.1 of [Candes, 2008]). Suppose that Θ satisfies the RIP of

order 2k with δ2k <
√

2 − 1 and we obtain measurements of the form y = Φx = Θa,

then the solution a∗ to P(3.1) for p = 1 and BΘ(y) = {a : Θa = y} obeys

‖a∗ − a‖2 ≤ C0
‖a− Sk(a)‖1√

k
, (3.3)

where Sk(a) is the optimal k-sparse approximation2 of a. In particular, if a is k-sparse,

the recovery is exact.

Theorem 2 bounds the approximation error of the recovered signal due to an `1

minimization for the noiseless scenario. In [Candes, 2008], Theorem 1.2 states a similar

condition for the noisy scenario, where BΘ(y) = {a : ‖Θa− y‖2 ≤ ε}.
Finally, we outline that the number of measurements required for a successful re-

covery of a sparse signal, i.e. the required number of rows for the sensing matrix, can be

very small if the sensing matrix consists of randomized entries. For instance, a sensing

matrix composed of M = O(k log(N/k)/δ2
2k) rows, drawn from a sub-Gaussian distri-

bution, will satisfy the RIP of order 2k with probability at least 1 − 2exp(−C1δ
2
2kM)

[Davenport et al., 2012].

In practice, CS measurements are made essentially independent from the analysis

domain. Thus, the collected measurements y = Φx can be stored and a suitable

transform Ψ does not need to be selected until it comes to recovering the signal.

3.4 Adaptive Hierarchical Sensing Principle

For AHS, the transform pair Ψ,Ψ is selected prior to sampling. This is required,

because the sensing vectors are composed of analysis basis vectors. AHS partially

traverses a so called sensing tree (see Section 3.5) and collects for each visited node,

one linear measurement of the signal with a node-specific sensing vector. During the

traversal of the sensing tree, decisions based on previously observed measurements,

are made whether to descend or not to descend subtrees rooted at individual nodes.

2The optimal k-sparse approximation of a is obtained by setting all but the k largest absolute entries
of a to zero.
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The sensing scheme is adaptive as a sensing operation, except for the initial level,

is only made if large measurements are collected at corresponding ancestor nodes.

Furthermore, AHS operates hierarchically. The transition from high level nodes (near

the root) to low level nodes (near the leaves) corresponds to a gradual refinement

of initially coarse measurements towards a set of significant signal coefficients in the

analysis transform basis Ψ.

3.5 Sensing Tree

Suppose signal dimensionality N is a power of 2. The key data structure underlying

AHS is a so called sensing tree. It is a perfect binary tree of height log2N with 2N − 1

nodes. Each node of the tree is indexed by a tuple (l, n) and is associated with a sensing

vector ϕl,n, where l = 0, . . . , log2N is the index of the tree level (starting at the bottom

level), and n = 1, . . . , N2−l is the index of the node within level l.

Sensing Vector Composition for Signal Dimensionalities N = 2N0

The sensing vectors of the bottom level correspond to elements of analysis basis Ψ =

(ψ1, . . . , ψN ) in which x is assumed to have a sparse representation, i.e.

ϕ0,n = ψn, n = 1, . . . , N . (3.4)

In a bottom-up manner, the sensing vector of each internal node is the sum of sensing

vectors assigned to its two direct descendant nodes, i.e. for any l ∈ {1, ..., log2N}

ϕl,n = ϕl−1,2n−1 + ϕl−1,2n, n = 1, . . . , N2−l . (3.5)

Note that by construction, ϕl,n can also be written directly as the sum of a subset

of basis vectors from Ψ:

ϕl,n =

n2l∑

i=(n−1)2l+1

ψi . (3.6)

The set of analysis basis vectors that forms ϕl,n corresponds to the leaves of the subtree

with root node (l, n). Figure 3.2 illustrates the sensing tree schematically.

For each node (l, n) that is visited, one linear measurement is collected by the

sensing operation 〈x, ϕl,n〉, i.e. by the inner product between the unknown signal x and

the node specific sensing vector ϕl,n. Note that due to (3.6) and the bilinearity of the

inner product for real vector spaces, a sensing operation implicitly computes the sum
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ϕlog2N,1

ϕlog2
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ϕ1,1 ϕ1,N
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ϕ0,1︸︷︷︸
ψ1

ϕ0,2︸︷︷︸
ψ2

ϕ0,N−1︸ ︷︷ ︸
ψN−1

ϕ0,N︸︷︷︸
ψN

Figure 3.2: Schematic illustration of the AHS sensing tree. To each node (l, n) a sensing
vector ϕl,n is assigned. The first index l ∈ {0, ..., log2N} indicates the tree level starting
with l = 0 at the bottom level. The second index n ∈ {1, ..., N2−l} is the node index
for level l. Each analysis basis vector is assigned to exactly one leaf node.

of signal coefficients in the sparse transform domain Ψ, i.e.

〈x, ϕl,n〉 =
n2l∑

i=(n−1)2l+1

ai . (3.7)

Sensing Vector Composition for Arbitrary Signal Dimensionalities N 6= 2N0

To handle a signal dimensionality N which is not a power of 2, we propose to expand

the analysis basis Ψ by Ñ − N additional zero vectors, where Ñ = 2dlog2Ne. The

expanded analysis basis Ψ̃ ∈ RN×Ñ is then given by

Ψ̃ =
(
Ψ,0N×(Ñ−N)

)
.

The size of the sensing tree, i.e. the number of nodes will be increased due to the addi-

tional zero vectors. However, the vast majority of additional nodes will be automatically

discarded very early during sensing as they provide merely zero measurements. For the

reconstruction, only the N original dimensions will be used. The artificial Ñ − N

components of â will be zero and can be discarded such that the original synthesis

transform Ψ is used for the reconstruction as described in Section 3.6.
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3.6 Signal Recovery

AHS does not require a sophisticated recovery procedure for the sparse representation of

the signal. At the bottom level of the sensing tree, AHS directly measures some entries

of a, namely one coefficient for each visited leaf node. These coefficients are used to

build â ∈ RN as the estimation of a. The remaining entries of â, which correspond to

unvisited leaf nodes, are set to zero. Let H ⊆ {1, ..., N} be the index set of all visited

leaf nodes. Then,

âh =




ah = 〈x, ψh〉 , if h ∈ H
0, otherwise .

(3.8)

Finally, the approximated signal is obtained by x̂ = Ψ
T
â. Note that AHS differs

in an important point from CS as no inverse optimization problem, such as P(3.1), has

to be solved to obtain â.

3.6.1 Exploitation of Internal Measurements

AHS measurements collected at internal nodes are utilized solely for the decisions to

descend or to omit the subtree of a node. For the reconstruction, only the measurements

of the leaf nodes are taken into account. Intuitively, measurements of internal nodes

should contain (at least a small amount of) additional information about the signal. It

is thus natural to investigate to which extent the signal recovery can be improved by

use of these internal measurements. We study two modifications of the direct signal

recovery as described in Section 3.6, which we denote AHS Modification A and AHS

Modification B, respectively.

AHS Modification A A straight forward approach to improve the standard AHS

reconstruction (3.8) by the additional use of internal measurements is to evenly divide

the observed measurement of each non-winner node, whose rooted subtree is omitted,

over all its corresponding leaf components. Thus, the estimate of a does not necessarily

have zero entries for these unvisited leaf nodes. We show in the following that, if Ψ is

an ONB, the reconstructed signal has a smaller approximation error.

Remark. Suppose y =
∑

j∈J aj is an insignificant measurement from an internal node

whose rooted subtree is not further processed. Let J ⊆ {1, . . . , N} be the corresponding

set of discarded leaf nodes. Suppose â is the standard AHS estimate of a according

to (3.8) and ã is a modified AHS estimate with the same entries as â for j ∈ J , but

different entries for j ∈ J . If Ψ is an ONB, then setting for j ∈ J

ãj =
y

|J | as opposed to âj = 0 (as for standard AHS) (3.9)

yields a better approximation of signal x, i.e.
∥∥ΨT ã− x

∥∥2

2
≤
∥∥ΨT â− x

∥∥2

2
.
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Proof. Due to orthonormality of Ψ, we have
∥∥ΨT ã− x

∥∥2

2
≤
∥∥ΨT â− x

∥∥2

2
⇔ ‖ã− a‖22 ≤

‖â− a‖22. Thus, it is sufficient to exclusively consider the coefficients. It is even suf-

ficient to consider only the reduced coefficient vectors subject to index set J , i.e. ãJ
and âJ , as they are otherwise equal. Hence,

‖ãJ − aJ ‖22
!
≤ ‖aJ ‖22 (3.10)

⇔
∑

j∈J

(
y

|J | − aj
)2 !

≤
∑

j∈J
a2
j (3.11)

⇔
∑

j∈J

(
y2

|J |2 − 2
y

|J |aj + a2
j

)
!
≤

∑

j∈J
a2
j (3.12)

⇔
∑

j∈J

y2

|J |2
!
≤ 2

y

|J |
∑

j∈J
aj (3.13)

⇔ y2

|J | ≤ 2
y2

|J | . (3.14)

Note that y 6= 0⇒ ‖ã− a‖22 < ‖â− a‖22.

Observe that this remark takes only one omitted subtree, represented by J , into

account. However, the argument can be simultaneously applied to all omitted subtrees

J1,J2, . . . because the corresponding coefficient subsets are disjoint.

AHS Modification B A second approach to improve the standard AHS reconstruc-

tion (3.8) by the additional use of internal measurements would be to solve an inverse

optimization problem such as P(3.1) for p = 1. The sensing matrix Θ would consist

row-wise of all the sensing vectors ϕl,n corresponding to visited leaf nodes (l = 0) as

well as internal nodes whose subtrees are omitted and y would contain the correspond-

ingly observed measurements. Of course, this approach undermines the AHS principle

of directly sensing signal coefficients in the analysis domain which is a primary selling

point of AHS. However, by this modification we can more intuitively grasp what can

ideally get out of the (usually discarded) non-winner measurements.

Figure 3.3 illustrates a comparison of the sensing performance between AHS modi-

fication A, AHS modification B and the standard AHS reconstruction (3.8) as obtained

by K-AHS (a variant of AHS introduced in Section 3.8) for the test image Camera-

man (see Figure 3.13). It can be seen that the PSNR increases slightly due to the

modifications. Although the gain of approximation performance is not overwhelming,

the PSNR difference increases with the number of measurements. The PSNR by AHS

Modification B is the highest. However, the PSNR difference between AHS Modifica-

tion B and AHS Modification A is smaller than between AHS Modification A and the

standard reconstruction (3.8). Interestingly, the K-AHS approximation performance

due to AHS Modification A is also improved for the biorthogonal CDF97 basis which
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Figure 3.3: K-AHS sensing performance comparison for test image Cameraman (N =
218) between the standard AHS reconstruction (3.8) and the two AHS modifications A
and B as described in Section 3.6.1. The PSNR is plotted as a function of the relative
number of measurements.

is not covered by the above remark.

3.7 τ-AHS Algorithm

In the following we present the τ -AHS algorithm [Schütze et al., 2014], which selectively

traverses the sensing tree in a pre-order fashion. For each visited node the magnitude

of the collected measurement is compared to a threshold τ . If the magnitude of the

measurement exceeds the threshold, the subtree is further traversed, i.e. the direct

descendant nodes are going to be visited. Otherwise, the subtree of that node is omitted

and remains unvisited. If a subtree is omitted or a leaf node is reached, the next

candidate node is processed. To account for different partition sizes, threshold τ is

adjusted depending on the level index of the node, i.e. τ =
√

2lτ0, where τ0 represents a

canonical threshold, a user parameter. This parameter allows to control implicitly how

many signal coefficients are going to be identified. The τ -AHS pseudo code is listed

in Algorithm 4. Note that the use of the stack data structure s results in a selective

pre-order traversal. Basically, any other tree traversal scheme can be used alternatively.

An adequate choice of τ0 is crucial for detecting relevant signal coefficients. A too

small value τ0 can result in a large number of measurements and a non-sparse estimate

â, e.g. if the representation a is not strictly k-sparse but compressible. A too large
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3.7. τ -AHS Algorithm

value τ0, on the other hand, implies a strict omission policy and can result in the trivial

estimate â = 0N which is obtained if no leaf node is reached.

The initial tree level L is an optional user parameter. Its default value L = log2N

causes τ -AHS to collect the first measurement at the root node. For smaller values L,

all nodes of the corresponding initial level have to be processed.

Algorithm 4 Adaptive Hierarchical Sensing (τ -AHS)

Input: Sensing tree {ϕl,n},
Canonical threshold τ0 ≥ 0,
Initial sensing tree level L ∈ {0, . . . , log2N} (optional, default: L = log2N)

Output: Approximation â of a
1: Initialize â← 0N

2: Initialize empty stack s
3: for all nodes of level L: n = 1, . . . , N2−L do
4: Collect measurement y ← 〈ϕL,n,x〉
5: Push tuple (L, n, y) to stack s
6: end for
7: while stack s is not empty do
8: Pop tuple (l, n, y) from stack s
9: if l = 0 then

10: ân ← y
11: else
12: Set threshold according to size of subtree: τ ←

√
2lτ0

13: if |y| > τ then
14: Collect measurement for left child node: y ← 〈ϕl−1,2n−1,x〉
15: Push tuple (l − 1, 2n− 1, y) to stack s
16: Collect measurement for right child node: y ← 〈ϕl−1,2n,x〉
17: Push tuple (l − 1, 2n, y) to stack s
18: end if
19: end if
20: end while

3.7.1 Measurement Bound for k-Sparse Signals

In the noiseless scenario, where signal representation a is k-sparse, the canonical thresh-

old should be set to τ0 = 0. Furthermore, suppose there is no subset of non-zero coeffi-

cients that sums up to zero, which holds almost surely if the non-zero coefficients stem

from a continuous probability distribution. In this particular setting the signal can be

perfectly sensed by τ -AHS and we are able to determine upper and lower bounds on

the number of measurements.

For k = 1 and L = log2N , τ -AHS requires 2 log2N + 1 measurements in order to

track down the only non-zero coefficient. For k > 1 we have two limiting cases which

yield the lower bound and the upper bound respectively.

Lower Bound

The lowest number of τ -AHS measurements arises, if all k non-zero coefficients are

most tightly clustered within one subtree. Such a subtree has at least k leaves, and

within this subtree, at least 2k − 1 nodes need to be visited. In addition we have to
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visit the nodes on the way from the root of the AHS tree to the root of the subtree.

Note that the latter need to be counted twice, because one additional measurement

per node is required in order to decide to omit all other subtrees. Hence, the lower

bound on the required number of measurements for perfectly sensing a k-sparse signal

is 2 log2(N/k) + 2k − 1.

Upper Bound

The highest number of τ -AHS measurements arises, if the k non-zero coefficients are

maximally scattered over the leaves. This leads to k disjoint subtrees of equal size,

each carrying exactly one non-zero coefficient. The number of leaves of each of these

k subtrees is at most N/k. Consequently, the number of measurements within each

subtree is at most 2 log2(N/k) + 1. Starting from the root of the AHS tree, k − 1

measurements are required to reach the roots of these subtrees. Hence, the upper

bound on the number of measurements is 2k log2(N/k) + 2k − 1.

3.8 K-AHS Algorithm

In the following we present K-AHS [Schütze et al., 2017], which selectively traverses

the sensing tree level by level based on relative comparisons of measurements collected

in a level. The K-AHS algorithm has a user parameter K. This parameter allows to

explicitly control how many signal coefficients are going to be identified. Furthermore,

it determines how many nodes K-AHS takes into consideration when it transitions

from one level to the next. The direct descendants of the nodes corresponding to the

K largest3 measurements are visited in the next iteration. Thus, there are 2K sensing

operations for the new level from which again the nodes coinciding with the K largest

measurements are further processed. This iterative scheme is continued until 2K leaf

nodes are reached. The K-AHS pseudo code is listed in Algorithm 5. The idea is that,

by this procedure, the K largest entries of a = Ψx are collected. For instance, if a has

at most K non-zero entries (without any subset summing up to exactly zero, e.g., when

drawn from a continuous probability distribution), then the signal is completely sensed

and can be perfectly reconstructed. In Section 3.10 we investigate further models of

compressive signals.

3.8.1 Initial Sensing Tree Level

In order to avoid unnecessary sensing operations, K-AHS does not start with the first

measurement at the root node of the sensing tree but at a suitable initial level L. This

initial level has to be sensed completely in order to identify the K nodes providing the

largest measurements for processing the next level. At each subsequent level l < L,

3In the following, for K-AHS measurements the relation larger and smaller is exclusively meant in
terms of their magnitude.
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Algorithm 5 Adaptive Hierarchical Sensing (K-AHS)

Input: Sensing tree {ϕl,n},
Target sparsity level K < N

4

Initial sensing tree level L ∈ {0, . . . , log2N} (optional, default: L = log2N − blog2Kc − 2)
Output: Approximation â of a, where ‖â‖0 ≤ 2K
1: Set YL ← ∅
2: for n = 1 . . . , N2−L (all nodes in level L) do
3: yL,n ← 〈x, ϕL,n〉
4: YL ← YL ∪ {(n, yL,n)}
5: end for
6: for l = L− 1, ..., 0 (all subsequent levels) do
7: Let n1, ..., nK be the subscripts of the K largest measurements in Yl+1

8: Set Yl ← ∅
9: for j = 1, ...,K (the K largest measurements of level l + 1) do

10: collect the measurements of the two child nodes of (l + 1, nj)

yl,2nj−1 ←
〈
x, ϕl,2nj−1

〉
yl,2nj ←

〈
x, ϕl,2nj

〉
Yl ← Yl ∪

{
(2nj − 1, yl,2nj−1), (2nj , yl,2nj )

}
11: end for
12: end for
13: for n = 1, . . . , N (all signal coefficient indices) do
14: Set

ân ←

{
y0,n if contained in Y0

0 otherwise

15: end for

only 2K measurements are collected. Regarding the total number of measurements the

optimal initial tree level depends on the user parameter K and is given by

L = log2N − blog2Kc − 2 . (3.15)

L is the highest level l ∈ {0, . . . , log2N/4} that contains more than 2K nodes. For

example, for K = 1 we start with the level L = log2N/4 which contains 4 nodes. For

N/4 ≤ K ≤ N/2 we obtain L = 0 and N measurements, a trivial scenario where each

coefficient is sensed individually. This shows that K-AHS makes sense only for small

values of K, i.e., sparse signals.

3.8.2 Measurement Bound

K-AHS has a sampling complexity of the same order as Compressed Sensing.

Theorem 3. Let x ∈ RN and 1 ≤ K < N/4. For M , the total number of K-AHS

measurements, the following bound holds

M ≤ 2K log2

N

K
. (3.16)

Proof. According to Algorithm 5, K-AHS entirely processes the initial level L of the

sensing tree, which results in N2−L measurements. There are L subsequent levels, each
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adds 2K measurements. Hence,

M = N2−L + 2KL . (3.17)

Plugging (3.15) into (3.17) yields

M = 2blog2Kc+2 + 2K(log2N − blog2Kc − 2) (3.18)

≤ 2log2K+2 + 2K(log2N − log2K − 2) (3.19)

≤ 2K log2

N

K
.

For (3.19), we have used the inequality

2blog2Kc+2 − 2K blog2Kc ≤ 2log2K+2 − 2K log2K .

Equality in (3.16) holds if K ∈ {1, 2, 4, 8, . . . }.

3.9 Optimizing Sensing Tree Structure

3.9.1 Introducing Weights

According to (3.5), the sensing vector of an internal node of the sensing tree is con-

structed by the sum of the sensing vectors assigned to its direct descendant nodes. It

might be useful to generalize (3.5) such that the direct sum becomes a weighted sum:

ϕl,n = αl,n ϕl−1,2n−1 + βl,n ϕl−1,2n , (3.20)

where αl,n and βl,n are real non-zero weights. Suppose we intend to sense signals

from a class with particular statistical properties. It might be possible to optimize

these weights in order to improve AHS performance. For instance, if the measurements

provided by two sibling nodes ϕl,2n−1 and ϕl,2n are strongly anti-correlated, it would

be advantageous to choose weights αl,n and βl,n with opposite signs as this increases

the magnitude of the observable measurement. In this setting a sensing vector ϕl,n can

be written as a weighted sum of analysis basis vectors, analogous to (3.6):

ϕl,n =

n2l∑

i=(n−1)2l+1

(
l∏

l′=0

α
l′,
⌊

i

2l
′
⌋
)
ψi . (3.21)

3.9.2 Reordering Analysis Basis

Furthermore, a suitable order of analysis basis vectors can improve the AHS perfor-

mance. For instance, if the most significant coefficients (with equal signs) are sibling
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nodes at the bottom level, then measurements can be saved to find them (τ -AHS) or,

if the number of measurements is fix (K-AHS), other significant coefficients can be re-

vealed. Hence, it is desirable to cluster analysis basis vectors, which are likely to yield

co-occurring coefficients of large magnitude within small subtrees.

3.9.3 Greedy Approach to Optimize Sensing Tree Structure

Suppose we intend to sample signals of a particular signal class using AHS and we have

given a training data set representing that population. What is a suitable strategy to

build up the sensing tree? It is natural to construct the sensing tree in a bottom up

fashion. Thus, to compose level l = 1, we look at first for the pair ψi, ψj of analysis basis

vectors such that its optimally weighted linear combination yields the sensing vector

αiψi + βjψj that maximizes the expectation of a large measurement magnitude. We

repeat this step for the remaining nodes of level l = 1 subject to the residual analysis

basis vectors which were not yet selected. Subsequently, we continue with the next

level l = 2 but now subject to the collection of the recently composed sensing vectors

for level l− 1. We proceed analogously for the remaining levels until the sensing vector

of the root node is combined.

Suppose Pl−1 is the set of available sensing vectors of level l − 1 from which the

next optimal pair can be selected to compose a new sensing vector for level l. We start

with l = 1 and P0 = {ψ1, . . . , ψN}. The optimization problem we have to solve is given

by

P(3.22) : arg max
ϕi,ϕj∈Pl−1,
ϕi 6=ϕj

max
α,β :

α2+β2=1

E
[
〈x, αϕi + βϕj〉2

]
, (3.22)

where the expectation value is taken subject to the training data set X. Let α∗ϕi∗ +

β∗ϕj∗ be the solution to P(3.22). This optimally combined new sensing vector is added

to Pl and ϕi∗ , ϕj∗ are removed from Pl−1. This procedure is continued until Pl−1 is

empty. The energy of the weighting coefficients is constrained by α2 +β2 = 1 to ensure

that all sensing vectors of one level have the same energy.

Given a fix pair of indices i, j, the inner subproblem of P(3.22) can be rewritten as

follows

max
α,β

E
[
〈x, αϕi + βϕj〉2

]
s.t. α2 + β2 = 1 (3.23)

⇔ max
α,β

(α, β)

(
ci ci,j

ci,j cj

)

︸ ︷︷ ︸
Q

(α, β)T s.t. α2 + β2 = 1, (3.24)

where ci = E
[(

xTϕi
)2]

, cj = E
[(

xTϕj
)2]

and ci,j = E
[(

xTϕi
) (

xTϕj
)]

. This op-

timization problem has a quadratic form as well as a unit energy constraint on the
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variables. Hence, the solution is given by the eigenvector of the largest eigenvalue of

matrix Q.

(a) Subtree of node (4, 1)

(b) Subtree of node (4, 2)

(c) Subtree of node (4, 3)

(d) Subtree of node (4, 4)

Figure 3.4: Sensing vectors of an AHS sensing tree with optimized structure as described
in Section 3.9.3. The structure is learned for the non-standard 2D Haar wavelet basis
(N = 256) and based on the NSSiVS training data set containing natural image patches
(see Section 2.10.1).
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3.9.4 Optimized Sensing Tree Structure for Natural Image Patches

Consider the problem of sensing natural image patches by AHS subject to a particu-

lar basis, e.g. the 2D Haar wavelet basis. Figure 3.4 illustrates which sensing vectors

emerge by applying the proposed structural optimization procedure for this task. The

training data set X was obtained as described in Section 2.10.1, where N = 64 and

L = 105. Due to limited space for picturing the whole structured sensing tree, Figure

3.4 illustrates all subtrees of level l = 4. Observe that the minimization of P(3.22) indeed

clusters basis functions of the same orientation selectivity in common subtrees, see e.g.

the disjoint subtrees of ϕ3,n, n ∈ {1, 2, 6, 7, 8} and ϕ2,n, n ∈ {6, 7, 8, 9, 10}. Moreover,

notice that the localized basis functions, that have adjacent support (same frequency

and orientation), are combined to assemble sensing vectors which form extended edge

detectors: ϕ2,n, n ∈ {2, 4, 7, 8, 10, 11, 12} or regular grid-like structures: ϕ4,4. Interest-

ingly, the proposed procedure chooses weights with opposite signs which yields more
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(b) DCT basis
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(c) N -OSC basis

Figure 3.5: K-AHS sensing performance comparison between a random sensing tree
structure and an optimized sensing tree structure for the NSSiVS test data set con-
taining natural image patches (N = 256). The PSNR is plotted as a function of the
absolute number of measurements. Error bars indicate the standard error.
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regular structures, see e.g. ϕ2,9, ϕ2,10 or ϕ4,4. While the magnitudes of the weights are

rather equal when those regular structures are composed, in some cases one weight has

a significant higher magnitude than the other, which thus enhances the sensing vector

structure of one child node whereas the other is muted for the combination, see e.g.

ϕ2,3.

To demonstrate that minimizing P(3.22) indeed yields a tree structure that improves

AHS performance, we conducted sensing experiments with K-AHS on natural image

patches subject to three different sparse coding ONBs. Adaptive sensing with an opti-

mized AHS tree structure is compared to a random AHS tree structure, for which unit

weights are used and the leaf nodes are randomly shuffled. We used 8 bit gray level

variants (with centered intensity values) of the training and test data sets described in

Section 2.10.1. The patches of the training data set were used to optimize the sensing

tree structure and the patches of the test data set were sensed by K-AHS subject to the

structured and randomized tree. Figure 3.5 illustrates the average PSNR of the sensed

image patches from the NSSiVS test data (N = 256, L ≈ 2.3 · 104). For each of the

three sparse coding bases (Haar, DCT, N -OSC), the optimized sensing tree structure

yields consistently a higher sensing performance compared to the random sensing tree.

The improvements of the PSNR are 0.24− 1.05 dB for the Haar basis, 0.32− 1.24 dB

for the DCT basis, and 0.14− 0.74 dB for the N -OSC basis.

3.10 Analyzing K-AHS Sensing Performance

In this section we investigate the sensing performance of K-AHS theoretically.

When a signal x is sensed by K-AHS, the best result one can expect is that the K

largest entries of the signal representation a are collected. Whether this optimal result

is achieved depends on the constellation of the coefficients within the individual parti-

tions. More precisely, there are situations in which the magnitude of a measurement

is small although the corresponding partition contains significant coefficients. Due to

e.g. unfavorable sign constellations such significant coefficient can cancel each other

and could get lost. In the following we study K-AHS from a theoretical perspective in

order to provide an insight when it performs reliably.

We consider the problem from two different perspectives, i.e. a deterministic per-

spective, for which a success scenario is guaranteed, and a probabilistic perspective, for

which a success scenario arises with a high probability. We do not restrict the support

of the sparse signal representation a. We assume that the magnitudes of the signal

coefficients have some sufficiently strong decay, which can be grasped as dealing with

compressible signals.

In the deterministic consideration, we derive a sufficient optimality condition, i.e. a

condition which guarantees that K-AHS finds the k signal coefficients with the largest

magnitudes. Locations and signs of the signal coefficients can be arbitrary in this
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setting. We introduce a few signal models which define some particular decay of the

coefficient magnitudes dependent on a model parameter. Our sufficient condition is

applied to these signal models, which allows to deduce sufficient optimality conditions

for K-AHS depending on the model parameter. In the probabilistic setting, we relax

the deterministic condition and take the assignment of coefficients into account. The

probability of a fail scenario is bounded by the probability that a critical number of sig-

nificant coefficients is exceeded for any initial partition. In this setting, we additionally

assume that the locations of the signal coefficients are uniformly distributed.

We assume a noise free measurement model, which is equivalent to being able to

increase the measurement budget such that any noise level can be compensated.

3.10.1 Sufficient Condition for K-AHS to Succeed Collecting the k

Largest Coefficients

Here, we elaborate a sufficient condition which guarantees that K-AHS finds the k

largest coefficients of the unknown signal x in analysis basis Ψ, where k ≤ K.

Recall that due to (3.7), a sensing operation 〈x, ϕl,n〉 computes the sum of a partition

of a. Similarly, any sensing operation
〈
x, ϕl,n′

〉
at any other node (l, n′) of the same

level calculates a sum of another disjoint partition of a. For any tree level l, the size

of such a partition (number of summands) is 2l. Merely the K nodes with the largest

measurements (the largest sums) are further processed. Consequently, the magnitude

of measurements, which include large coefficients, should not become too small. In

particular, large coefficients should not cancel each other within a sum.

Suppose K = {ah1 , . . . , ahk} is the set of the k largest coefficients we want to collect.

We call them significant coefficients, in the following. We define u as the smallest

absolute value that can possibly occur by summing up any non-empty subset of these

significant coefficients:

u = min
A∈2K, |A|>0

∣∣∣∣∣
∑

an∈A
an

∣∣∣∣∣ . (3.25)

The following theorem states a sufficient optimality condition for K-AHS in terms of

collecting all k significant coefficients.

Theorem 4. Let k ≤ K, L the initial tree level, Π = 2L the initial partition size (the

number coefficients summed up by a measurement in level L), and

r =
2Π−1∑

n=k+1

|ahn | . (3.26)

K-AHS will collect all significant coefficients an ∈ K, if

u > r . (3.27)
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Proof. (reductio ad absurdum) If not all significant coefficients are found by K-AHS,

then there is at least one measurement containing significant coefficients, which is

smaller or equal than a measurement containing only non-significant coefficients. Let A
be the coefficient set of such a measurement containing significant coefficients (A∩K 6=
∅), and B be the set of coefficients of the measurement containing only non-significant

coefficients (B ∩ K = ∅). Then the following inequality

∣∣∣∣∣
∑

an∈A
an

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

an∈B
an

∣∣∣∣∣ (3.28)

holds. This can be written as

∣∣∣∣∣∣
∑

an∈A∩K
an +

∑

an∈A\(A∩K)

an

∣∣∣∣∣∣
≤

∣∣∣∣∣
∑

an∈B
an

∣∣∣∣∣ , (3.29)

from which follows

∣∣∣∣∣
∑

an∈A∩K
an

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

an∈B
an

∣∣∣∣∣+

∣∣∣∣∣∣
∑

an∈A\(A∩K)

an

∣∣∣∣∣∣
(3.30)

≤
∑

an∈B
|an|+

∑

an∈A\(A∩K)

|an| (3.31)

≤ r . (3.32)

Since u is smaller or equal than the left hand side, this contradicts (3.27).

With Theorem 4 we can analyze the K-AHS sensing quality for the following signal

models.

3.10.2 Signal Models

The following signal models characterize the decay of signal coefficients. Let h1, ..., hN

be a sequence of indices which sorts the entries of a in descending order of their mag-

nitudes, i.e., |ah1 | ≥ |ah2 | ≥ ... ≥ |ahN |. Each signal model assumes certain properties

regarding |ahn |, n = 1, . . . , N .

k-Sparse Model

A k-sparse signal, denoted by ‖x‖0 = k, has the property

|ahn |




> 0, if n ≤ k
= 0, otherwise .

(3.33)
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Commonly, the number of non-zero coefficients is very small compared to the signal

dimensionality, i.e. k � N . We furthermore assume that the k non-zero coefficients

come from a continuous probability distribution, e.g. ahn ∼ N (0, 1), n = 1, . . . , k.

Exponential Model

The decay of the coefficient magnitudes can be modeled by an exponential law

|ahn | = Rq−n+1 , (3.34)

where base q > 1 is the model parameter and R > 0 is a scaling constant.

Power Law Model

Similar to [Candes and Tao, 2006], the decay of the coefficient magnitudes can be

modeled by a power law

|ahn | = Rn−α , (3.35)

where exponent α > 1 is the model parameter and R > 0 is a scaling constant. It has

been shown that many natural signal classes are consistent with this model [Candes

and Tao, 2006, DeVore, 1998, Donoho et al., 1998, Mallat, 2008].

3.10.3 Sufficient Optimality Condition for K-AHS Depending on the

Parameter of the Signal Models

Application of Theorem 4 to the k-Sparse Model

For signals obeying the k-sparse model, where the k non-zero coefficients are drawn from

a continuous probability distribution (see Eq. (3.33)), condition (3.27) of Theorem 4

holds almost surely for any k ≤ K, since r = 0 and u > 0 with overwhelming probability.

Application of Theorem 4 to the Exponential Model

For signals obeying the exponential model (see Eq. (3.34)), condition (3.27) of Theorem

4 holds for any k ≤ K, if model parameter q ≥ 2. For the left hand side of (3.27), we

have u ≥ Rq−k. For the right hand side of (3.27), we have

r =
2Π−1∑

n=k+1

|ahn | <
∞∑

n=k+1

|ahn | = Rq−k
1

q − 1
(3.36)

< Rq−k ≤ u .
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Figure 3.6: Relevance of the most significant coefficient ah1 for signals obeying the
power law model (see Section 3.10.2).

Application of Theorem 4 to the Power Law Model

For signals obeying the power law model (see Eq. (3.35)), Theorem 4 cannot be applied

unrestrictedly for arbitrary k ≤ K. Nevertheless, it allows to state conditions on model

parameter α for the case k = 1, meaning that the detection of ah1 , the most significant

coefficient, is guaranteed. This can be useful since the bulk of the signal energy lies in

this coefficient. Figure 3.6a illustrates, for signals of the power law model, the energy

ratio between optimal 1-term approximation of the signal and the complete signal as a

function of model parameter α. An increase of α considerably concentrates the signal

energy on ah1 such that this coefficient contributes nearly exclusively to the entire

energy of the signal. A similar illustration is provided by Figure 3.6b in terms of the

mean squared error (MSE).

Independence of Initial Partition Size For k = 1, condition (3.27) of Theorem 4

holds if α > α∗, with α∗ being defined by

∞∑

n=2

n−α
∗

= ζ(α∗)− 1 = 1 , (3.37)

where ζ(·) denotes the Riemann zeta function. The value of α∗ is about 1.73. Since

k = 1, we have u = R and furthermore r < R, due to (3.37). Hence, if α > α∗, we can

guarantee, according to Figure 3.6a, that K-AHS captures more than 88% of the signal

energy. Note that this finding does not depend on the initial partition size Π and the

initial sensing tree level L.
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Figure 3.7: Sufficient upper bound (3.38) of the initial partition size Π and the initial
sensing tree level L as a function of model parameter α for detecting the most prominent
signal coefficient ah1 for signals of the power law model. The triangular markers indicate
values of α for which the integer valued partition size Π has to be modified.

Dependence on Initial Partition Size By taking the initial partition size Π into

account, the detection of ah1 can be guaranteed for even smaller values of α. By

increasing user parameter K, the initial sensing tree level L is decreased by which

the initial partitions are getting smaller. This allows for a small improvement. (Note

that, on the other hand, the number of measurements is increased.) By using integral

approximations of the partial sum (3.26), we obtain

r =

2Π−1∑

n=2

n−α

≤ 2−α +

2Π− 1
2∫

5
2

x−αdx

≤ 2−α +
1

1− α

((
2Π− 1

2

)1−α
−
(

5

2

)1−α)
(3.38)

If we choose L such that we start with a value Π for which the right hand side of

(3.38) is smaller than 1, then the most significant coefficient ah1 is definitely captured

by K-AHS. Figure 3.7 plots the sufficient upper bound of Π, according to (3.38), as a

function of α.
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3.10.4 Probabilistic Bounds for K-AHS to Fail Collecting the k Largest

Coefficients

In the following, we are interested when (3.27) holds with high probability. As we know

from our proof of Theorem 4, significant coefficients can get lost, if there are non-empty

subsets C ⊆ K such that

∣∣∣∣∣
∑

an∈C
an

∣∣∣∣∣ ≤ r , (3.39)

where r is given as in (3.26). Let

s = min
C∈2K,|C|>0

|C| s.t.

∣∣∣∣∣
∑

an∈C
an

∣∣∣∣∣ ≤ r (3.40)

be the minimal number of significant coefficients that is necessary to occur within a

measurement such that (3.39) is satisfied.

In other words, whenever ≤ s−1 significant coefficients are contained in each initial

partition, K-AHS will succeed in terms of collecting all significant coefficients K. What

is the probability for such a situation? The answer follows from the following combi-

natorial problem: in how many ways can k distinct objects (significant coefficients) be

distributed into B distinct bins (initial partitions) such that at most s− 1 objects fall

into each bin, where 1 < s ≤ k < B. This number of restricted distributions relative

to Bk, the number of all unrestricted distributions, is the desired probability, which

we denote in the following by pk,B,s−1. However, pk,B,s−1 cannot be written in closed

form except by a formula which involves a generating function, see e.g. [Flajolet and

Sedgewick, 2009, Heubach and Mansour, 2009]:

pk,B,s−1 =
1

Bk

∑

λ1+λ2+···+λB=k
0≤λi≤s−1

k!

λ1!λ2! · · ·λB!
. (3.41)

Calculating pk,B,s−1 requires to iterate over all weak integer compositions of the number

k into B parts with restricted part size 0 ≤ λi ≤ s − 1, e.g. by a procedure proposed

in [Page, 2013]. Each of these compositions (λ1, ..., λB) corresponds to a good-natured

distribution of significant coefficients into the B measurements and thereby to a safe

situation for K-AHS. Each summand of the sum can be grasped as a multinomial

coefficient that counts all permutations of K satisfying the absolute frequencies given by

λ1, ..., λB, where reordering within each measurement is compensated by the factorials

in the denominator.

Let pk,B,s−1 = 1 − pk,B,s−1 be the complementary probability, i.e. the probability

that in at least one partition of the initial sensing tree level > s−1 significant coefficients

are contained. Note that pk,B,s−1 is an upper bound of the probability that K-AHS
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Figure 3.8: Upper bounds of the probability that K-AHS fails to detect the whole set
of significant coefficients K = {ah1 , ..., ahk} as predicted by Theorem 5. The bounds
are plotted as a function of s, the size of the smallest subset of significant coefficients
satisfying (3.39), and are illustrated for k = 8 and B = 32 (meaning K is chosen such
that L = 5).

fails in terms of missing significant coefficients from K.

By the following theorem we provide two upper bounds of pk,B,s−1 and thus of the

K-AHS fail probability. The bounds have a closed form and it can be seen that they

rapidly decrease as s increases.

Theorem 5. Let B = N2−L be the number of K-AHS measurements of the initial

sensing tree level L and K = {ah1 , ..., ahk} the set of significant signal coefficients.

Given that the locations of the signal coefficients are uniformly distributed, then the

probability that K-AHS fails (in terms of not capturing all coefficients K) is bounded

as follows

pfail ≤
(
k

s

)
1

Bs−1
≤ ks

s!

1

Bs−1
, (3.42)

where s is given by (3.40) and 1 < s ≤ k < B.

Proof. There are k = |K| significant coefficients. Each appears in one of the B initial

measurements. The K-AHS fail probability pfail is bounded from above by

pfail ≤ pk,B,s−1 = 1− pk,B,s−1 ,

where pk,B,s−1 is defined in (3.41).

pk,B,s−1 is bounded as follows

pk,B,s−1 ≤
1

Bk
B

(
k

s

)
Bk−s , (3.43)
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where B
(
k
s

)
Bk−s is the absolute number of ways to select one of the B partitions, select

s of the k significant coefficients, insert these s selected coefficients into that selected

partition and distribute the remaining k − s significant coefficients arbitrarily (with-

out restrictions) into the B partitions. This is an upper bound since (3.43) counts a

small number of constellations more than once. The normalizing factor 1/Bk repre-

sents the number of ways to arbitrarily distribute the k significant coefficients (without

restrictions) into the B partitions.

The proof is complete with

(
k

s

)
=

k!

s! (k − s)! =
k(k − 1) · · · (k − s+ 1)

s!
≤ ks

s!
.

Note that by pk,B,s−1 the concrete “unsuccessful” subsets C, which satisfy (3.39),

are not taken into account, only the cardinality of the smallest one. From this point of

view the bound is pessimistic and the true probability is even smaller.

Figure 3.8 illustrates that the bound of the K-AHS fail probability has a strong

decay even in moderate scenarios.

3.11 K-AHS Results for Synthetic Signals

We simulated sensing using K-AHS for synthetic signals of the models introduced in

Section 3.10.2. To complement our theoretical findings of Section 3.10, we empirically

assess the performance of K-AHS to detect significant coefficients depending on the

model parameters. For each tested parameter value we generated 105 signals of di-

mensionality N = 1024. First, the magnitudes of coefficients were computed as given

by the model. Second, locations and signs of the coefficients were assigned uniformly

at random. Subsequently, we applied K-AHS to each signal by setting the user pa-

rameter to K = 4, and calculated the empirical detection probability for the principal

coefficient ranks, i.e. ah1 , . . . , ah16. Ideally, the empirical probability for each coefficient

ah1 , ..., ahK is equal or close to 1. Figure 3.9 to 3.11 show, subject to the three different

signal models, the empirical detection probability of the 16 most significant coefficients.

Figure 3.9 illustrates K-AHS simulation results for the k-sparse signal model (see

Eq. (3.33)). While the number of non-zero coefficients is given by model parameter

k, their values were drawn from a standard Gaussian distribution. The values of the

model parameter that we investigated were k ∈ {2, 4, 8}. In the cases k = 2 and

k = 4 all non-zero coefficients were identified correctly. This is in accordance with our

theoretical finding in 3.10.3 which predicts perfect recovery, almost surely, if K ≥ k.

In the case k = 8, we have the situation K < k and the empirical detection probability

is decreased. However, it is still above 0.8 for each ah1 , ..., ahK despite the fact that the

number of non-zero coefficients of the signal is considerably underestimated.
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Figure 3.9: Empirical probability to detect significant coefficients of signals obeying the
k-sparse model when sensed by K-AHS. For model parameter k ∈ {2, 4, 8}, 105 signals
of dimensionality N = 1024 were generated. The detection probability of the 16 most
significant coefficients is plotted as a function of their rank. K-AHS was applied with
user parameter K = 4. As long as K ≥ k, all k non-zero coefficients are identified
correctly.

Figure 3.10 illustrates K-AHS simulation results for the exponential model (see Eq.

(3.34)). The values of the model parameter that we investigated were q ∈ {1.2, 1.6, 2}.
It can be seen that an increase of base q (steeper decay of coefficients) leads to an
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Figure 3.10: Empirical probability to detect significant coefficients of signals obeying
the exponential model when sensed by K-AHS. For model parameter q ∈ {1.2, 1.6, 2},
105 signals of dimensionality N = 1024 were generated. The detection probability
of the 16 most significant coefficients is plotted as a function of their rank. K-AHS
was applied with user parameter K = 4. As soon as q ≥ 2, the K most significant
coefficients are identified correctly.

95



Chapter 3. Adaptive Hierarchical Sensing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.2

0.4

0.6

0.8

1

Coefficient Rank n

E
m

p
ir

ic
a
l

P
ro

b
a
b
il
it

y
to

D
et

ec
t
a
h
n α=1.0

α=1.5
α=2.0
α=5.0

Figure 3.11: Empirical probability to detect significant coefficients of signals obeying
the power law model when sensed by K-AHS. For model parameter α ∈ {1, 1.5, 2, 5},
105 signals of dimensionality N = 1024 were generated. The detection probability of
the 16 most significant coefficients is plotted as a function of their rank. K-AHS was
applied with user parameter K = 4. The most significant coefficient ah1 is almost
always detected, even if α < α∗.

increase of the empirical detection probability for ah1 , ..., ahK . All of the K most

prominent coefficients are identified correctly in the scenario q = 2, which is predicted

by our theoretical finding in 3.10.3.

Figure 3.11 illustrates K-AHS simulation results for the power law model (see Eq.

(3.35)). As for the exponential model, a larger parameter value α results in a steeper

decay of coefficients and increases the detection probability for significant coefficients.

As opposed to the exponential model, a single threshold of model parameter α does

not guarantee the detection of the most prominent coefficients for all values of K. On

the other hand, the signal energy rapidly focuses on ah1 as α increases, see Figure

3.6a. Therefore, we additionally illustrate for the power decay model the relative signal

energy obtained by K-AHS dependent on K. Figure 3.12 shows that, for various values

of α, the reconstruction performance in terms of captured signal energy increases as K

is set to higher values.

3.12 AHS Results for Natural Images

We made experiments simulating compressive imaging with τ -AHS, K-AHS and `1-

based CS on standard test images (Cameraman, Lena, Pirate) with a size of 512× 512

pixels and a gray level depth of 8 bit (see Figure 3.13). For the individual test images,

we assessed the reconstruction performance by the peak-signal-to-noise ratio (PSNR)

as a function of the relative number of measurements M/N .

We selected the user parameters such that M , the number of measurements, takes
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Figure 3.12: Relative signal energy captured from signals obeying the power law model
when sensed by K-AHS. For model parameter α ∈ {1, 1.5, 2, 5}, 105 signals of dimen-
sionality N = 1024 were generated. The signal energy is plotted as a function of user
parameter K.

(a) Test image Cameraman. (b) Test image Lena. (c) Test image Pirate.

Figure 3.13: Original test images used for the compressive imaging experiments (size
512× 512, 8 bit gray level depth).

values 0.02N, 0.04N, . . . , 0.3N . For CS, we deployed sensing matrices with the corre-

sponding number of rows. For τ -AHS, we gradually changed the canonical threshold

τ0. For K-AHS, we rearranged Eq. (3.18).

3.12.1 Comparison τ-AHS and K-AHS

Firstly, Figure 3.14 illustrates the difference between τ -AHS and K-AHS in terms of re-

construction performance as measured by the peak-signal-to-noise ratio (PSNR) for the

three test images Cameraman, Lena and Pirate. The non-standard 2D Haar wavelet

basis was selected as analysis basis Ψ. For all test images and any M > 0.04N , K-AHS

yields a higher PSNR than τ -AHS. We observed that the τ -AHS performance is rather

sensitive to the order of the ψi and report the sensing performance results subject to the
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canonical order of the Haar basis (cf. Figure 2.3 for N = 256, column-major order) as

it yields superior results compared to a random permutation. A shortcoming of τ -AHS

is that a fix canonical threshold τ0 can lead to different M , given two different permu-

tations. The reason is that τ -AHS decisions for descents and omissions of subtrees are

based on absolute measurements as opposed to K-AHS for which such decisions are

based on relative comparisons of the measurements in a level. K-AHS is more stable.

A fix combination of the parameters K and L yields always the same M . Furthermore,

K-AHS is robust in terms of reconstruction performance for different random permu-

tations. In Figure 3.14, we report the mean and the standard deviation (indicated by

the error bars) of the PSNR over 10 trials with different random permutations of the
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(a) Test image Cameraman.
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(b) Test image Lena.
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(c) Test image Pirate.

Figure 3.14: Image sensing performance comparison between τ -AHS and K-AHS for
three test images. The PSNR is plotted as a function of the relative number of mea-
surements.
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ψi.

3.12.2 Comparison K-AHS and CS

We compare furthermore K-AHS and CS. We investigate two different sparse trans-

forms Ψ: (i) the orthogonal non-standard 2D Haar wavelet basis and (ii) the biorthogo-

nal Cohen-Daubechies-Feauveau 9/7 (CDF97) wavelet basis, which is part of the JPEG

2000 standard [Taubman and Marcellin, 2013].

The CS results were obtained by an `1-norm minimization approach, i.e. by solving

P(3.1) for p = 1 subject to the same sparse coding transforms and the same values of

M . The CS measurements of the images were collected by sensing vectors that were

randomly drawn (without replacement) from the real valued noiselet transform. The

random noiselet measurement ensemble was chosen in favor of CS due to its low coher-

ence to the Haar basis [Tuma and Hurley, 2009] and to the CDF97 basis [Pereira et al.,

2014]. A low coherence between measurement ensemble Φ and sparse transform Ψ

assures that `1-norm minimization recovers the original signal accurately [Candes and

Romberg, 2007]. In our classical CS experiments we addressed the following optimiza-

tion problem In order to solve P(3.1), we used the NESTA [Becker et al., 2011] Matlab

package, an `1-recovery toolbox suited for solving large-scale compressed sensing recon-

struction problems. NESTA is a cutting-edge first-order optimization procedure that

exploits ideas from Nesterov [Nesterov, 2005] such as accelerated descent methods and

smoothing techniques.

Figure 3.15, 3.16 and 3.17 illustrate K-AHS and CS results for the test images

Cameraman, Lena, and Pirate.

For each image, Figure 3.15(a), 3.16(a), and 3.17(a) illustrate the rate distortion

analysis showing reconstruction performance as measured by the peak signal-to-noise

ratio (PSNR) as a function of the (relative) number of collected measurements. Each

curve corresponds to one of the four compressive imaging variants described above.

Both approaches, K-AHS and CS, achieve consistently higher PSNR with the CDF97

wavelet basis than with the Haar wavelet basis. This can be explained by the fact that

natural images have generally sparser representations by smooth CDF97 basis functions

than by ternary, discontinuous Haar basis functions. For measurements up to 25% of

the number of dimensions N (usually M � N), the PSNR of K-AHS reconstructions is

higher than the PSNR of CS reconstructions for both Haar and CDF97 wavelets. That

difference is larger with the CDF97 basis than with the Haar basis. The reason might

be that noiselets and Haar wavelets have minimal mutual coherence [Tuma and Hurley,

2009] as opposed to the combination of noiselets and CDF97 wavelets for which the

mutual coherence is small but not minimal [Pereira et al., 2014]. Therefore, it is more

difficult for K-AHS to achieve higher reconstruction accuracy than CS. The larger the

number of collected measurements, the smaller the PSNR difference between K-AHS

and CS. For really large numbers of measurements, where M 6� N , CS reconstructions
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Figure 3.15: Image sensing performance comparison between K-AHS and `1-based
CS for test image Cameraman (N = 218). (a) The PSNR dependent on the relative
number of measurements. (b) CS reconstruction from M = 0.2N random noiselet mea-
surements, Haar basis, PSNR: 27.27. (c) K-AHS reconstruction from M = 0.2N adap-
tive measurements, Haar basis, PSNR: 27.86. (d) CS reconstruction from M = 0.2N
random noiselet measurements, CDF97 basis, PSNR: 29.69. (e) K-AHS reconstruction
from M = 0.2N adaptive measurements, CDF97 basis, PSNR: 30.85. For visualization,
reconstructed images were clipped to [0, 255].
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Figure 3.16: Image sensing performance comparison between K-AHS and `1-based CS
for test image Lena (N = 218). (a) The PSNR dependent on the relative number of
measurements. (b) CS reconstruction from M = 0.2N random noiselet measurements,
Haar basis, PSNR: 26.45. (c) K-AHS reconstruction from M = 0.2N adaptive mea-
surements, Haar basis, PSNR: 27.15. (d) CS reconstruction from M = 0.2N random
noiselet measurements, CDF97 basis, PSNR: 28.38. (e) K-AHS reconstruction from
M = 0.2N adaptive measurements, CDF97 basis, PSNR: 29.71. For visualization,
reconstructed images were clipped to [0, 255].
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Figure 3.17: Image sensing performance comparison between K-AHS and `1-based CS
for test image Pirate (N = 218). (a) The PSNR dependent on the relative number of
measurements. (b) CS reconstruction from M = 0.2N random noiselet measurements,
Haar basis, PSNR: 24.31. (c) K-AHS reconstruction from M = 0.2N adaptive mea-
surements, Haar basis, PSNR: 25.26. (d) CS reconstruction from M = 0.2N random
noiselet measurements, CDF97 basis, PSNR: 25.10. (e) K-AHS reconstruction from
M = 0.2N adaptive measurements, CDF97 basis, PSNR: 26.57. For visualization,
reconstructed images were clipped to [0, 255].
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have higher PSNR than K-AHS reconstructions.

For each image, Figure 3.15(b)-(c), 3.16(b)-(c), and 3.17(b)-(c) illustrate CS and

K-AHS reconstructions from M = 0.2N measurements using the Haar wavelet domain.

Each reconstructed image shows blocking artifacts, due to the discontinuity of the

Haar wavelet basis. While both approaches restore edges and contours satisfactory, CS

seems slightly more accurate at image regions containing slight edges. On the other

hand, CS reconstructions suffer considerably from high frequency noise which is evenly

distributed over the entire image and perhaps causes the inferior PSNR. K-AHS shows

at some image regions slightly coarser block structures than CS but recovers overall

homogeneous image regions more accurately. Furthermore, K-AHS does not suffer from

high frequency noise.

For each image, Figure 3.15(d)-(e), 3.16(d)-(e), and 3.17(d)-(e) illustrate CS and

K-AHS reconstructions from M = 0.2N measurements using the CDF97 wavelet do-

main. In accordance with the rate distortion analysis, the images reconstructed in

the CDF97 wavelet domain look, for both approaches, visually more pleasant than the

images reconstructed in the Haar wavelet domain. Some contours of the K-AHS recon-

structions show minor ringing artifacts whereas image regions with constant luminance

and small luminance variation are more accurately recovered compared to CS. Again,

images reconstructed by CS suffer from evenly distributed high frequency noise.

The results presented in Section 3.12.2 indicate that K-AHS successfully collects

significant coefficients of natural images. In order to deepen the intuition to what extent

the top K coefficients captured by K-AHS deviate from the K largest coefficients,

we provide a corresponding comparison for one of the test images. For the image
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Figure 3.18: Comparison between the K largest CDF97 wavelet coefficients of test
image Cameraman (N = 218), and the K largest CDF97 wavelet coefficients found by
K-AHS (K = 4506⇒M ≈ 0.2N).
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Cameraman, Figure 3.18 illustrates the magnitude of the K largest coefficients in the

CDF97 wavelet domain, as well as the K largest coefficients that are sensed by K-AHS,

where K = 4506 (M = 0.2N). The direct comparison shows that K-AHS collects

a considerable amount of the most significant CDF97 coefficients of the image. The

length, q, of the largest gapless sequence of successfully identified coefficient magnitudes

|ah1 | ≥ · · · ≥ |ahq | varies depending on the order of the wavelet basis vectors in the

bottom level of the sensing tree. Over 1000 runs with different random permutations

of the basis vectors, the average of the largest gapless sequence length is q = 454.90

(with a standard deviation of 188.02). Although not all of the K largest coefficients are

identified, it is apparent that those coefficients found, have only a comparably small

deviation from the optimal ones. For the run illustrated in Figure 3.18, the difference

of the magnitudes between the K-th largest image coefficient and the K-th largest

coefficient found by K-AHS is less than 12.8.

Spatial Sensing Maps

The spatial regions at which K-AHS senses can be visualized if the analysis basis

vectors are localized, like in the case of a wavelet domain. For each sensing tree level

that is processed by K-AHS, we identified the sensing vectors which provided the K

largest measurements, and replaced each entry by its absolute value. Subsequently, we

calculated the sum of these K rectified “winner sensing vectors” to obtain a spatial

sensing map. This spatial sensing map indicates which image regions are sensed to

which extent by the K “winner sensing vectors” of the corresponding level. Since the

K winner determine in particular, by which branches of the sensing tree the sensing

proceeds, they also determine, which regions shall be refined. Figure 3.19 shows a

sequence of spatial sensing maps from the initial level to the bottom level of the sensing

tree while the image Cameraman is sampled by K-AHS setting K = 212 − 1 = 4095.

The value of K is chosen such that six spatial sensing maps are obtained.

At the initial level L, the spatial sensing map is diffuse, i.e. image regions which

are sampled by the “winner sensing vectors” of that level are evenly distributed. Note

that the image content is barely perceptible from the first and the second sensing map.

However, as K-AHS descends to lower levels of the tree, the spatial sensing maps reveal

more and more image structures. From the spatial map of the bottom level, the image

content, in this case the depicted cameraman with the tripod, is well recognizable.

Apparently, regions at which K-AHS focuses the sensing are successively refined and

lead to salient regions of the image such as distinct contours, edges and corners.
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(a) Initial level L = 5. (b) Level l = 4.

(c) Level l = 3. (d) Level l = 2.

(e) Level l = 1. (f) Bottom level l = 0.

Figure 3.19: Spatial sensing maps obtained as the test image Cameraman (N = 218)
is sensed by K-AHS in the CDF97 wavelet domain (K = 212 − 1). The spatial sensing
maps indicate, for each level of the sensing tree, how intensively each region of the
image is sensed by the K “winner sensing vectors”, i.e. where the sensing load is focused
(see Section 3.12.2). Each spatial sensing map is normalized. White regions indicate
minimal sensing activity, whereas black regions indicate maximal sensing activity.
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4 Conclusion and Discussion

In this chapter, we conclude the contributions presented in this thesis. We summarize

the main results and discuss properties of the proposed algorithms. Moreover, it is

outlined how future research might advance the reported findings and which further

experiments could yield new insights or might answer open questions.

4.1 Orthogonal Dictionary Learning

We have addressed the problem of learning a complete orthogonal dictionary, i.e. an

ONB, from training data to accomplish sparse data encodings based on the constrained

K-sparse model. We introduced CA, the modification of a base line approach to match

with that model, as well as OSC and GF-OSC, two novel online learning methods which

yield sparse coding ONBs that outperform static orthogonal transforms and dictionaries

from alternative batch learning approaches in terms of higher encoding accuracy for a

wide range of representation sparsity.

For the task to recover a reference ONB from synthetic sparse data, GF-OSC demon-

strates for the noiseless setting superb recovery performance up to quite low levels of

sparsity. However, when noise contaminates the data, GF-OSC fails to recover the

ONB. In contrast, OSC recovers the ground truth from noisy samples much more ro-

bustly. Admittedly, OSC leaves on the synthetic data sets minor residuals in terms of

the mean matched overlap (MMO), the applied recovery error measure. The cause of

these small residuals remains yet unexplained. On the other hand, OSC converges re-

markably close to the reference ONB in cases in which all the other methods completely

fail, i.e. for very low sparsity or when noise is present. This is one facet of stability that

OSC entails.

Moreover, a further and very useful stability property of OSC has revealed in the

course of our experiments: the true or optimal sparsity level does not need to be known.

By setting the user parameter for the target sparsity level to K = N , OSC learns a

sparse coding ONB which is as good as if K were set to the true or optimal value.

According to our experiments, this property holds consistently for all applied data sets

including synthetic and real data sets.

On real world image data our proposed orthogonal sparse coding methods OSC and
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GF-OSC learn atoms that are highly adapted to the data and resemble a multifarious

set of features. A selectivity of the dictionary atoms subject to particular frequen-

cies, orientations and localizations emerges for natural image patches. For images of

handwritten digits, atoms emerge which contain prototypical digit combinations or lo-

calized “stroke detectors”. OSC consistently acquires the entire repertoire of those

features (independent of the chosen user sparsity parameter), whereas other learning

methods resemble different subsets of those features depending on the choice of the

user sparsity parameter. Although for both types of data, a complete non-orthogonal

dictionary achieves slightly sparser encodings for the highest sparsity levels, an ONB

learned by OSC (in the case of natural image patches) or GF-OSC (in the case of

handwritten digits) achieves the sparsest encodings for the remaining range of sparsity

levels, compared to static transforms (2D DCT, non-standard 2D Haar DWT), PCA,

K-SVD and the baseline approach CA.

Unfortunately, the improvement of the cost function minimization by OSC and GF-

OSC entails an increased computational load. Both online learning methods perform

one dictionary update for each presented training data sample, which facilitates to over-

come local minima. Such an update requires O(N3) operations whereas the equivalent

“per sample complexity” of the base line batch learning method CA is O(N2). On

the other hand, the numbers of learning steps required by OSC and GF-OSC can be

considerably reduced if the initial and final learning rate are adequately chosen. Our

numerical experiments have been carried out on a computer cluster with heterogeneous

architectures and partially active processing load and are based on implementations

by different programming languages, which prevents a balanced runtime comparison.

Future studies should address a fair comparison of the absolute time consumption for

the individual learning methods.

Another practice-oriented aspect of future research could be the parallelization of

OSC and GF-OSC. For instance, a GF-OSC learning step involves several matrix mul-

tiplications, which should allow considerable accelerations. While such parallel oper-

ations are realized by multithreaded implementations, one could consider to achieve

further runtime reductions by GPU-based implementations. A parallelization of OSC

does not seem to be straight-forward but should be investigated.

A disadvantage of online learning schemes is that a monotonic descent on the cost

function or local convergence is commonly difficult to prove because each update blinds

out all but one training data sample. Stochastic gradient descent, as implemented by

GF-OSC, is a strategy which is largely accepted in the area of machine learning and

which assures local convergence on expectation, given the step sizes are sufficiently

small. However, OSC is not a pure gradient based method due to the entangled or-

thogonalization steps. Therefore, we have proven that the non-trivial ONB update by

N -OSC reduces the costs for the presented sample, given the learning rate is sufficiently

small. It that sense, one can deduce that N -OSC performs a stochastic descent.
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We have formulated the dictionary learning methods for the constrained K-sparse

model. We studied the encoding performance of the learned dictionaries in terms of the

associated cost function of that model. Redesigning our learning methods to comply

with the unconstrained regularized model is straight forward and has been outlined in

Section 2.4. Based on a spot-check, we can confirm that equivalent performance prop-

erties hold when the learning methods are modified for the alternative unconstrained

model. However, a thorough experimental comparison is not provided in this thesis

and remains as a future task.

In the scope of this thesis, we have focussed on the complete setting, i.e. the ONB

learning task. However, there are scenarios (e.g. high data dimensionality) for which

it might be reasonable to learn instead an undercomplete orthogonal sparse coding

dictionary consisting of M < N atoms. Note that particular methods such as BOCA

[Dobigeon and Tourneret, 2010] are specifically defined for this setting. It would be

interesting to adapt our methods accordingly for the sake of a comparison. At least for

CA and OSC a corresponding extension is straight forward. In the case of CA, the OPP

P(2.27) has to be solved subject to a non-square matrix, which implies to replace line 5

of Algorithm 1, i.e. U(t) ← VWT by U(t) ← VIN×MWT , where IN×M ∈ {0, 1}N×M
is a non-square diagonal matrix with entries 1 on the diagonal. In the case of OSC, the

number of iterations of the loop starting in line 7 of Algorithm 2 has to be adapted to

the dictionary size, i.e. N is replaced by M . In the case of GF-OSC, a corresponding

modification is not equally straight-forward. Analogous to the Geodesic-Flow frame-

work, a differentiable parameterization of undercomplete orthogonal dictionaries, i.e.

orthonormal M -frames in RN , would be required. The Stiefel manifold StM,N is a

manifold object containing all such M -frames and can be seen as the counterpart of

the orthogonal group O(N) which contains all ONBs in RN . Developing a learning

algorithm could be based, e.g. on the Cayley transform, and might be supported by

approaches proposed in [Fraikin et al., 2007, Edelman et al., 1999].

With our ONB recovery experiments, we studied carefully how the data sparsity

level influences the ability of the individual methods to recover the reference ONB,

while the data dimensionality and the sample size was fix. Similar to [Lesage et al.,

2005], a way to further stress our findings would be to extend the experimental setup

by systematically varying the fixed parameters N , L as well as the noise level in order

to investigate their role regarding a successful recovery.

Most recently, new methods [Rusu et al., 2016, Rusu and Thompson, 2017] have

been proposed to solve the learning task we have considered here. While the authors of

[Rusu and Thompson, 2017] are aware of our work [Schütze et al., 2016], a corresponding

experimental comparison with OSC, and also with GF-OSC, is yet missing and should

be done in the future in order to complement the big picture of orthogonal dictionary

learning algorithms.
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4.2 Adaptive Hierarchical Sensing

Furthermore, we have addressed the problem of sampling an unknown signal, which

has an unknown sparse or compressible representation in a known transform basis, by

collecting only a small number of adaptive linear measurements. We introduced the

sensing scheme adaptive hierarchical sensing (AHS) as an alternative to non-adaptive

Compressed Sensing (CS). The main differences are that for AHS (i) the analysis

transform basis is chosen prior to sensing because the sensing vectors depend on the

transform, (ii) the sensing vectors are adaptively selected by computationally perfor-

mant decision rules (applied to previously collected measurements), and (iii) the sparse

signal representation is obtained without solving an inverse optimization problem.

We proposed two sensing algorithms: τ -AHS and K-AHS. τ -AHS selects the sensing

vectors based on absolute comparisons of the measurements with an adaptive thresh-

old, whereas K-AHS makes that selection based on relative comparisons. For strictly

k-sparse signals, τ -AHS collects at most 2k(log2N/k + 1) measurements. For other

signals, the number of τ -AHS measurements and the sparsity of the resulting signal

representation depends on the choice of a canonical threshold parameter τ0. K-AHS, on

the other hand, entails a much better control regarding the number of measurements.

The user parameter K determines the target sparsity of the signal representation. An

additional parameter controls the number of measurements. Its default value leads for

any signal to at most 2K log2N/K measurements.

Experiments, in which sensing is simulated based on natural test images, revealed

that K-AHS outperforms τ -AHS and that K-AHS is highly competitive with a common

non-adaptive CS approach (based on `1-norm minimization) in terms of reconstruction

accuracy as measured by the peak-signal-to-noise ratio (PSNR). Particularly for the

relevant case of small numbers of measurements, K-AHS achieves even higher PSNRs

than the standard CS approach using a noiselet measurement ensemble that is highly

incoherent to the wavelet transform domains we have considered. The superiority of

K-AHS in this scenario is noticeable by the fact that the resulting images do not suffer

from high-frequency noise as opposed to the images recovered by CS.

Our image sensing experiments are designed with the intention to make the com-

parison between K-AHS and CS as fair as possible, i.e. images are assumed to be

compressible in the sparse transform domain and the locations of the coefficients are

assumed to be uniformly distributed. Note, however, that CS based on `1-norm min-

imization is not necessarily the optimal recovery strategy for compressively sensing

large-scale image data. Perhaps, better compressive imaging results could be obtained

by more sophisticated recovery approaches, which additionally exploit e.g. (i) spatial

smoothness properties during the optimization procedure (e.g. minimizing the TV-

norm of the reconstructed image [Pant et al., 2013] rather than the `1-norm of the

sparse image representation) or (ii) exploit structural properties of the sparse model
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such as the wavelet tree, see e.g. [Baraniuk et al., 2010]. Future research could investi-

gate the possibility of AHS extensions that similarly exploit such domain specific signal

properties to allow for a corresponding comparison.

K-AHS could be easily implemented using existing CS (imaging) hardware. Only

minor modifications are necessary to realize a feedback of the acquired measurements,

meaning that the processing unit which controls the spatial patterns of the sensing

vectors requires memory access to essentially the 2K most recent measurements. Ev-

ery 2K-th sensing operation a partial sorting of the 2K most recent measurements is

required, which implies only few additional computations. For τ -AHS the situation is

equally simple. Complementary experiments should investigate to what extent the AHS

performance of our simulations can be obtained with real sensing hardware. Practice-

oriented aspects of sensing, such as measurement noise, might be a relevant factor and

its role should be assessed.

The collection of potential AHS sensing vectors can be entirely precomputed and

stored in the memory. Thus, each sensing vector requested by AHS does not have to be

computed during the sensing process but can be instantly loaded on demand. This kind

of precaching saves computational resources and time and is an advantage compared to

other adaptive sensing approaches. On the other hand, precaching consumes memory

of the order O(N2), which can be limiting in certain applications. If memory of that

size is unavailable, then each sensing vector requested by AHS can be alternatively

computed on demand, which takes the computational time of one analysis transform

of an auxiliary vector containing the weights. If the analysis basis is a fast transform

(e.g. the Discrete Cosine Transform (DCT) or the Fast Wavelet Transform (FWT))

the computational demand would be equivalent to state-of-the art CS realizations with

measurement ensembles based on fast transforms (e.g. the Fast Fourier Transform

(FFT) or the Fast Noiselet Transform (FNT)).

Based on a heuristic for increasing the sensing performance, we proposed an ap-

proach to learn the weights of the linear combinations of the AHS sensing vectors and

their placement within the sensing tree. We demonstrated for natural image patches

that the proposed learning scheme not only leads to meaningful spatial structures of the

sensing vectors but that it indeed increases sensing accuracy for signals of a test data

set. It would be interesting to investigate by future experiments if this approach works

similarly well for higher dimensional image data, i.e. mid-scale or large-scale images.

In a future study, one could try to derive a structuring approach which combines the

learning of the weights with the learning of the analysis transform basis.

We analyzed the sensing quality of K-AHS theoretically and studied scenarios in

which the k (k ≤ K) most significant coefficients of a (not necessarily strictly sparse)

signal are detected. We derived a sufficient optimality condition which deterministically

guarantees sensing success in that regard. The premise of that condition is that the

smallest magnitude among all subset sums of the k significant coefficients is sufficiently
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large compared to the sum of magnitudes of a particular number of the principal non-

significant coefficients. We extended the accessibility of our result and applied the

condition to three signal models and obtained sufficient conditions depending on the

model parameters. Sensing experiments with synthetic signals randomly generated

according to these models confirmed our theoretical predictions. The applicability of

the condition is limited for the power law model as we can use it merely for the case

k = 1, i.e. for detecting the most significant coefficient. The empirical AHS performance

for that model is however satisfactory.

For our probabilistic analysis, the deterministic condition is relaxed by considering

the cardinality of problematic subsets of the most significant coefficients and by deriving

a combinatorial bound. We assumed that the locations of the significant coefficients

are uniformly distributed. Uniformity is assumed for technical reasons, and can not be

necessarily applied in particular cases, e.g. an optimized sensing tree structure. Note

also that both the deterministic and the probabilistic analyses assume that all sensing

vectors of the same sensing tree level are combined by the same constant weight. An

extension of the theoretical analysis for heterogeneous weights seems challenging and

remains as a future task.
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In Villa, A. E., Duch, W., Érdi, P., Masulli, F., and Palm, G., editors, 22nd Inter-

national Conference on Artificial Neural Networks and Machine Learning, volume

7553 of Lecture Notes in Computer Science, pages 540–547. Springer.

[Schütze et al., 2015] Schütze, H., Barth, E., and Martinetz, T. (2015). Learning or-

thogonal sparse representations by using geodesic flow optimization. In 2015 Inter-

national Joint Conference on Neural Networks (IJCNN), pages 1–8.

122



Bibliography

[Seeger, 2008] Seeger, M. (2008). Bayesian inference and optimal design for the sparse

linear model. Journal of Machine Learning Research, 9:759–813.

[Seeger and Nickisch, 2008] Seeger, M. and Nickisch, H. (2008). Compressed sensing

and bayesian experimental design. In ICML 2008, pages 912–919, New York, NY,

USA. Max-Planck-Gesellschaft, ACM Press.

[Sezer et al., 2015] Sezer, O. G., Guleryuz, O. G., and Altunbasak, Y. (2015). Approx-

imation and compression with sparse orthonormal transforms. IEEE Transactions

on Image Processing, 24(8):2328–2343.

[Sezer et al., 2008] Sezer, O. G., Harmanci, O., and Guleryuz, O. G. (2008). Sparse

orthonormal transforms for image compression. In ICIP, pages 149–152. IEEE.

[Skretting and Engan, 2011] Skretting, K. and Engan, K. (2011). Image compression

using learned dictionaries by rls-dla and compared with k-svd. In 2011 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

1517–1520.

[Sun et al., 2013] Sun, B., Edgar, M. P., Bowman, R., Vittert, L. E., Welsh, S., Bow-

man, A., and Padgett, M. J. (2013). 3D Computational Imaging with Single-Pixel

Detectors. Science, 340(6134):844–847.

[Sundaresan and Porikli, 2012] Sundaresan, R. and Porikli, F. (2012). Additive noise

removal by sparse reconstruction on image affinity nets. In 2012 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan,

March 25-30, 2012, pages 1137–1140.

[Takhar et al., 2006] Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron,

D., Sarvotham, S., Kelly, K. F., and Baraniuk, R. G. (2006). A new compressive

imaging camera architecture using optical-domain compression. In Proceedings of

Computational Imaging IV at SPIE Electronic Imaging, pages 43–52, San Jose, CA.

[Talukder and Harada, 2007] Talukder, K. H. and Harada, K. (2007). Haar wavelet

based approach for image compression and quality assessment of compressed image.

IAENG International Journal of Applied Mathematics, 36(1):49–56.

[Taubman and Marcellin, 2013] Taubman, D. and Marcellin, M. (2013). JPEG2000

Image Compression Fundamentals, Standards and Practice. Springer Publishing

Company, Incorporated.

[Tuma and Hurley, 2009] Tuma, T. and Hurley, P. (2009). On the incoherence of noise-

let and haar bases.

123



Bibliography

[Wakin et al., 2006a] Wakin, M. B., Laska, J. N., Duarte, M. F., Baron, D., Sarvotham,

S., Takhar, D., Kelly, K. F., and Baraniuk, R. G. (2006a). An architecture for com-

pressive imaging. In Proceedings of the International Conference on Image Processing

(ICIP), pages 1273–1276, Atlanta, GA.

[Wakin et al., 2006b] Wakin, M. B., Laska, J. N., Duarte, M. F., Baron, D., Sarvotham,

S., Takhar, D., Kelly, K. F., and Baraniuk, R. G. (2006b). Compressive imaging for

video representation and coding. In Proceedings of the Picture Coding Symposium

(PCS), Beijing, China.

[Wang et al., 2003] Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Multi-scale

structural similarity for image quality assessment. In in Proc. IEEE Asilomar Conf.

on Signals, Systems, and Computers, (Asilomar, pages 1398–1402.

[Welsh et al., 2013] Welsh, S. S., Edgar, M. P., Bowman, R., Jonathan, P., Sun, B.,

and Padgett, M. J. (2013). Fast full-color computational imaging with single-pixel

detectors. Opt. Express, 21(20):23068–23074.

[Willmore and King, 2009] Willmore, B. D. and King, A. (2009). Auditory cortex:

Representation through sparsification? Current Biology, 19(24):R1123 – R1125.

[Xiang et al., 2015] Xiang, S., Meng, G., Wang, Y., Pan, C., and Zhang, C. (2015). Im-

age deblurring with coupled dictionary learning. International Journal of Computer

Vision, 114(2):248–271.

[Yang et al., 2014] Yang, H., Zhu, M., Wu, X., Zhang, Z., and Huang, H. (2014). Dic-

tionary learning approach for image deconvolution with variance estimation. Appl.

Opt., 53(25):5677–5684.

[Zetzsche et al., 1993] Zetzsche, C., Barth, E., and Wegmann, B. (1993). The impor-

tance of intrinsically two-dimensional image features in biological vision and picture

coding. In Digital Images and Human Vision, pages 109–38.

124


