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Zusammenfassung

Das Gehirn kann viele Problemstellungen meistern, die heutzutage noch nicht von
maschinellen Lernmethoden bewiltigt werden kénnen. Ein vielversprechender An-
satz, um Forschritte in der maschinellen Informationsverarbeitung zu erzielen, ist,
die Informationsverarbeitungsprozesse des Gehirns zu identifizieren und die gefun-
denen Mechanismen nachzuahmen.

Beobachtungen der Neurowissenschaften stiitzen die Hypothese, dal das Gehirn
sparliche Kodierungen fiir die interne Représentation von Reizen verwendet. Lineare
generative Modelle mit Spéarlichkeitsrandbedingungen sind eine mathematische Ab-
straktion dieses Kodierungsprinzips. In vielen Problemstellungen, fiir deren Losung
lineare generative Modelle verwendet werden konnen, mochte man die Modellpara-
meter aus gegebenen Daten erlernen, um das Modell optimal an die Aufgabenstel-
lung anzupassen.

Im Rahmen dieser Arbeit wurden uniiberwachte Lernmethoden zur Bestimmung
optimaler Parameter eines linearen generativen Modells entwickelt: Sparse Coding
Neural Gas (SCNG) und Neural Gas for Dictionary Learning (NGDL). Zusétzlich
wurden verschiedene Anwendungen linearer generativer Modelle betrachtet: Daten-
reprasentation, Bildrekonstruktion, Bilddekonvolution, blinde Quellentrennung und
Merkmalsextraktion.

Anhand von Experimenten auf synthetischen Daten, die durch vorgegebene lineare
Modelle erzeugt wurden deren Eigenschaften bekannt sind, konnte gezeigt werden,
daB SCNG und NGDL die Modellparameter auf Basis der Trainingsdaten iden-
tifizieren konnen und dabei eine Verbesserung gegeniiber dem Stand der Technik
darstellen [1,3,6,9].

Es wurde ferner gezeigt, dafl die hier vorgestellten uniiberwachten Lernmethoden
eine verbesserte Bildrekonstruktion und Bilddekonvolution erméglichen [1,2,7]. In
Bildrekonstruktionsexperimenten konnte gezeigt werden, dafl bei begrenzter Anzahl
an vorhandenen Trainingsdaten und begrenzter Lernzeit die Modellparameter, die
durch NGDL gelernt wurden, eine bessere Bildrekonstruktion erlauben, als Mo-

dellparameter, die mit dem bisherigen Stand der Technik gelernt wurden [2,7]. In



Bilddekonvolutionsexperimenten konnte gezeigt werden, dafl die Modellparameter
an unterschiedliche Bildklassen adaptiert werden konnen [1].

Untersuchungen zu SCNG haben gezeigt, dafl diese Methode die blinde Trennung
linear gemischter Signale ermdglicht, insbesondere auch in iibervollstdndigen Situ-
ationen, d.h., in Féllen, in denen mehr Quellensignale als observierte Mischsignale
vorhanden sind [4,10]. Weiterhin wurde gezeigt, dafl unter gewissen Vorbedingung-
en die Quellentrennung auch moglich ist, wenn die Mischmatrix zeitlicher Variation
unterliegt [8].

Ferner wurde im Rahmen dieser Arbeit ein Ansatz fiir die Extraktion von Merk-
malen zur Losung bildbasierter Klassifikationsprobleme entwickelt [5,11]. Der Merk-
malsextraktionsansatz wurde auf einem Benchmark-Datensatz fiir die Klassifika-
tion handgeschriebener Ziffern evaluiert. Es konnte gezeigt werden, dafl eine sig-
nifikante Verbesserung der Klassifikationsleistung einer Support-Vektor-Maschine
erreicht werden kann. Die erreichte Klassifikationsleistung entspricht dem aktuellen
Stand der Technik bei der Erkennung handgeschriebener Ziffern, wobei der hier vor-
gestellte Ansatz leicht fiir andere visuelle Klassifikationsprobleme verwendet werden
kann.

Leistungsfihige Methoden fiir die Anpassung spérlicher linearer generativer Mo-
delle an gegebene Daten konnen auf weitere Anwendungsprobleme iibertragen wer-
den und lassen auch dort interessante und vielversprechende Lésungsansitze er-

warten.
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1 Introduction

By three methods we may learn
wisdom: First, by reflection,
which is noblest; Second, by
imitation, which is easiest; and
third by experience, which is
the bitterest.

(Confucius)
In the scholastic tradition of mediaeval europe the principle of deduction dominated

scientific reasoning for several centuries. The majority of scientists at that time
were convinced that findings can only be obtained from the application of given
axioms to a particular question. There was a controversial debate if the principle
of induction, i.e., to derive a general rule from a particular observation, is a valid
scientific approach. Around the 17th century the situation changed when more and
more scientists such as for instance Galileo Galilei, Francis Bacon, or David Hume
began to support the empirical approach and the principle of induction in science.

Today, due to their success, the empirical approach and the principle of induction
are predominant. Researchers on the quest for new findings apply all sorts of data
analysis techniques to measurement data. In politics and economics, it is common
sense that decisions have to be supported by “objective” numbers that are derived
from measurements such as opinion polls, accounting data, or goverment statistics.
The amount of data that is analysed by the use of machine learning techniques is
growing fast. Digital devices such as cameras, microphones, or GPS-receivers are
ubiquitous and the internet enables us to efficiently access, distribute, and gather
information. Social networks offer access to behavioural patterns and social rela-
tionships of a large number of persons. The collection of customer information is
part of the business of many companies.

To perform specific observations in order to derive general postulations based on
information that has been extracted from the observations by some formula or data

model corresponds to the definition of categories of objects that can be described



1 Introduction

in a particular way. If only a subset of all possible categorizations is considered,
a bias is inevitably introduced. Hence the question arises, if unbiased induction
can be performed simply by consideration of all categorizatons that are possible.
This question has been extensively studied by Satosi Watanabe. His “ugly duckling
theorem” states that all objects become equally similar or dissimilar in this case
[Watanbe, 1969]. Hence, induction is impossible without bias. A “natural® or
“objective” answer to the question what is important cannot be given. In the end,
it is a descision that is made by men which determines the categories that are
considered to be important.

Often, scientists use classical statistical features, e.g., means, variances, or higher
order moments in order to extract information from a set of observations. A huge
library of scientific literature offers a broad range of more sophisticated methods
that enable us to study various aspects of a given set of measurements. In many
cases, users do not provide a justification, why a certain method has been preferred
over other possibilities. Why does one prefer the mean over the median? Why
does one perform a principal component analysis in order to determine directions
of large variance that are pairwise orthogonal instead of considering a different set
of directions? Of course, the availability of efficient algorithms guides the choice of
the user.

A principle of science that has been proven to be very useful is the law of parsi-
mony, i.e., Ockham’s Razor. It is often used in order to justify the choice of certain
features or models. According to this principle, among all models that can explain
an observation, one should choose the most simple one. The simpler a model or
feature is, the less bias is introduced by using it. However, what is simple in the
language and axiomatic framework of men might look complicated from a different
point of view.

Another factor that strongly influences decisions of scientists is experience. Those
approaches that have been successfully employed in the past are likely to be consid-
ered as a possible solution in the future, i.e., often the implicit reason to prefer the
mean over the median is that it performed well the last time. The more diverse the
set of tasks is that have been tackled successfully by a solution strategy, the more
confidence one has that it will perform well on a new problem.

During evolution, the information processing strategies of the brain have been
proven to be competitive and applicable to a broad range of problems. Still many
simple cognitive tasks that can be easily performed by humans or animals are out

of reach of todays machine learning methods. An example of such a simple task
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is the ability of humans to concentrate on a single voice out of several voices in a
conversation and to follow that voice even if background noise is present.

By identification and imitation of the strategies of information processing that
are used by the brain scientists might be able to benefit from the experience of
nature. The aim of this work is to make some progress in this direction. It studies a
mathematical abstraction of a principle of information processing that recently has
attracted a number of researchers due to some evidence that this principle is also

implemented in the brain: the principle of sparse coding.

1.1 Sparse Coding and the Brain

One of the classical approaches that was used in order to gain insight into the in-
formation processing principles of the brain are electro-physiological measurements.
Microelectrodes were placed in the brain tissue, then a stimulus, e.g., visual, accus-
tical, or other was presented and the firing rate of the cells close to the electrodes
were measured [Kuffler, 1953, Hubel, 1957].

Kuffler employed this method in order to study the properties of ganglion cells in
the cats retina. The stimulus was a spot of light that was placed on the receptive
field of a ganglion cell. In case of the ganglion cells he found the so-called center
on/off cells whose receptive field can be devided in a concentric excitatory region
where the firing rate of the cell increases if a spot of light is placed on it and a
concentric inhibitory region that causes the firing rate of the cell to decrease if light
falls on it [Kuffler, 1953].

Later, Hubel and Wiesel report on so-called simple [Hubel and Wiesel, 1959] and
complex cells [Hubel and Wiesel, 1962] in the cats striate cortex. The receptive
fields of the simple cells also can be divided in distinct excitatory and inhibitory
regions. In contrast to the center on/off cells these regions are not concentric but
possess a parallel arangement such that the firing of the cell can be triggered by
a slit of light that has the width and orientation of the excitatory regions and is
placed on their position whereas light that falls on the inhibitory regions causes a
decrease of the firing rate [Hubel and Wiesel, 1959].

The complex cells showed a much more diverse behaviour. Their receptive field
could not be clearly divided in distinct excitatory and inhibitory regions. For ex-
ample, among them there was a class of cells whose most effective stimuli were

vertically oriented edges that could be shifted horizontally over an unusually large
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region whereas a slight variation of the orientation stopped the firing of the cell.
These cells did not respond to slits of light whether narrow or wide. Furthermore, it
was crucial whether the bright area was to the left or to the right [Hubel and Wiesel,
1962]. A few years later the so-called end-stopped or hyper-complex cells were dis-
covered that respond to termination of bars of light [Hubel and Wiesel, 1965]. While
the behaviour of center on/off cells and simple cells can be described by a linear
summation over the input, the behaviour of complex and hyper-complex cells can-
not be easily explained by a linear model [Zetzsche and Barth, 1990]. Olshausen
and Field [2004] argue that potentially only a small amount of all properties that
might be observable in the visual cortex (= 15%) have been properly documented
by the scientific community, though the visual cortex is a subject of research since

decades.

A long-standing hypothesis was that the simple cells remove redundancy from the
input by performing a decorrelation of the input signal [Daugman, 1989]. Though
this hypothesis explains the orientation and scale selectivity of the simple cells it
does not explain their spatial localization since decorrelation can be also achieved
by non-localized linear transformations such as the Fourier transformation or prin-
ciple component analysis. It also has been argued that the spatial redundancies of
natural images cannot be removed by decorrelation since they cannot be quantified
by second-order statistics but only by higher-order statistics [Field, 1989, Zetzsche
et al., 1993]. Furthermore, decorrelation can be performed by a linear mapping and
does not explain the broad range of non-linear behaviour that has been observed in

the visual cortex as for instance in case of complex and hyper-complex cells.

A hypothesis that could be used to derive the main properties of simple cells, e.g.,
spatial localization, ortientation selectivity, and selectivity with respect to different
scales from natural image data was proposed by Olshausen and Field [Field, 1994,
Olshausen and Field, 1995, 1996a,b]. Their assumption is that the output of the
visual system corresponds to the hidden variables a of a linear generative model
of natural images where each natural image x € RY is obtained from a linear

combination of a basis matrix C':
x=Ca+e CcRM*V (1.1)

In the probabilistic framework that they use, the hidden coefficients a stem from a
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prior density P(a). This joint density is assumed to be a factorial distribution, i.e.,

M
P(a) = [ P(@)). (1.2)

The coefficients are sparse since their marginal distributions P((a);) are considered
to be leptokurtic. The residual € is assumed to be Gaussian [Olshausen and Field,
1997]. The model parameters C' are determined by unsupervised learning such that
the probability of obtaining the training data x1,...,xy, , i.e., the data likelihood,
is maximized:

mgxP(xl,...,xL\C) . (1.3)

Olshausen and Field proposed the Sparsenet algorithm for this task [Olshausen and
Field, 1996b, 1997] (for details see Section 4.7) and have shown that the recep-
tive fields that correspond to the basis functions C' that are learned using the the
Sparsenet algorithm on natural images of size 8 x 8 pixels possess the properties of
simple cells that have been observed in the experiments mentioned before [Olshausen
and Field, 1996b] . It is important to note that though the generative model (1.1)
is linear, the mapping from the image x to its representation a that is implemented
in the model is not linear. Given a basis C that has been learned, the coefficients

are obtained by the maximization of the data likelihood:
max P(x|C) . (1.4)
a

Since Olshausen and Field explicitly consider overcomplete settings, i.e., M > N
[Olshausen and Field, 1997] this cannot be solved by simply inverting C but leads to
a non-linear optimization problem. Even in case of M = N due the prior of a which
is non-uniform a has to be determined by a non-linear optimization process. Hence,
this model theoretically offers enough degrees of freedom to also account for non-
linear observations in the visual cortex. Due to the assumption (1.2) that the prior
density of the coefficients is a factorial distribution, the new representations, i.e., the
hidden variables a, are statistically independent which implicates decorrelation but
also extends to higher-order statistics. This shows that the probabilistic generative
model of the Sparsenet algorithm, i.e., (1.1), can also be interpreted in the framework
of independent component analysis (ICA). In Chapter 6, we show that the Olshausen
and Field model can be successfully employed in order to built a very well performing

technical solution for handwritten digit recognition [Labusch et al., 2008c].
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ICA [Jutten and Herault, 1991, Bell and Sejnowski, 1995, Hyvérinen and Oja,
1997] is a another branch of research that provides an instructive view on the in-
formation processing principles that might be used in the brain. The model of
Olshausen and Field, which can be understood as an ICA model [Kreutz-Delgado
and Rao, 1999], assumes that the distributions of the hidden coefficients of the
model are leptokurtic and that the hidden coefficients are stochastically indepen-
dent. Another category of ICA approaches has been proposed which relies on weaker
assumptions on the properties of the distributions of the hidden coefficients. Similar
to the previously discussed approach of Olshausen and Field, in the ICA model of
Hyvérinen and Oja [1997] a probabilistic setting is considered. In this setting an

image x € R¥ is obtained from a linear mixture of some hidden variables a:
x=Ca, CecRY*N acR"Y. (1.5)

Their sole hypothesis on the hidden variables a is that they are statistically inde-
pendent, i.e.,

M
Pla) = HP((a)i) ; (1.6)

and that the marginal distributions P((a);) are non-Gaussian. The distribution
of a random variable that is obtained from a linear mixture of a number of non-
Gaussian random variables tends towards a Gaussian distribution. The central limit
theorem describes this behaviour for statistically independent random variables that
are identically distributed and have finite means and variances (as discussed in detail
for instance in [Ross, 2002]). In practice, often the Gaussianity of a linear mixture of
a number of non-Gaussian random variables tends to be larger than the Gaussianity
of the original random variables even if these original variables do not possess all
poperties that are required by the central limit theorem, for instance, if the original
random variables are not identically distributed. Due to this observation, it has
been suggested [Hyvérinen and Oja, 1997] (see Section 5.1 for details) to estimate
the mixing matrix C' by the maximization of the non-Gaussianity of the resulting
hidden variables a. In some cases the maximization of non-Gaussianity is equivalent
to the sparsification of the hidden variables a. In these cases the basis that is
obtained from Sparsenet and the mixing matrix that is obtained from these ICA
methods are quite similar. ICA based on maximization of non-Gaussianity has been

applied to natural images yielding receptive fields that are similar to the simple
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cells in the visual cortex [Hateren and Schaaf, 1998]. However, in their original form
these approaches are limited to linear mappings. Hence, they do not offer a possible

explanation for non-linear receptive fields.

Apart from observations in the visual cortex there has been further evidence that
sparse representations might be used in other parts of the brain for instance in the
auditory cortex [Hromadka and Zador, 2008] or the olfactory bulb of mice [Rinberg
et al., 2006] and locusts [Jortner et al., 2007]. However, sparseness is not only
considered to be a principle that is used in the first stages of signal processing of
the brain but is also supposed to be present in higher level functions of the brain.
Recently, the representation of objects in the medial temporal lobe (MTL) of humans
has been studied by electrode measurements [Quian Quiroga et al., 2005, 2008].
This has been possible since the treatement of certain epilepsy patients requires the
implantation of electrodes in this region of the brain in order to localize seizures in
preparation of curative resection. In experiments that have been done with these
patients, it could be shown that in the MTL there are neurons that show a very
specific response to certain objects or persons such as actors or buildings which
correspond rather to abstract concepts or perceptions and are highly invariant. For
instance there are neurons that respond to the presentation of TV-actors that play in
the same TV-series [Quian Quiroga et al., 2005, 2008]. It has been argued that this
is a hint for a sparse representation in the brain, since in case of a “grandmother-
cell” like representation that uses a single cell in order to represent a person, an
object, or a concept, it would be very unlikely to find such a cell in the experiments
[Quian Quiroga et al., 2008]. On the other hand, a densely distributed code would
be contradictory to the very rare firing of neurons that has been observed in various
experiments in this and other regions of the brain [F6ldidk and Young, 1998, Shoham
et al., 2006]. Furthermore Valiant [2006] argues that the amount of time in which the
brain solves certain tasks, the mean synaptic connection strength, and metabolic
constraints such as wiring lengths and energetic constraints limit the number of
neurons that are active in order to solve a particular task. His quantitative theory
of neural computation predicts a neural representation that could be interpreted
as a sparse code that neither is a “grandmother cell” code nor a dense distributed

code.
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1.2 Soft-competitive sparse coding

In the past, many learning methods have been proposed that can be used to de-
termine an optimal basis or dictionary, i.e., the parameter C', in a linear generative
model such as (1.1). In Chapter 4, we review the Method of Optimal Directions
(MOD) [Engan et al., 1999], the method proposed in [Lee et al., 2007] which is quite
similar to MOD but based on the dual of a slightly different optimization problem,
the K-SVD algorithm [Aharon et al., 2006], and the Sparsenet algorithm [Olshausen
and Field, 1995, 1996b].

A common problem of all these methods is that in order to perform an update
step with respect to the dictionary, a fixed configuration of the hidden parameters of
the model, i.e., the coefficients a, has to be assumed. In the probabilistic interpre-
tation that has been suggested for some of the algorithms, due to this approach, the
maximization of the data-likelihood of the generative model, i.e., (1.3), is replaced
with the maximization of a rather coarse approximation of the data-likelihood. In
this approximation the maximal value of the likehood function is optimized instead
of the actual likelihood, since a maximization of the actual likelihood would involve
an intractable integration over the hidden parameters of the model. This aspect is

discussed in more detail in Section 4.7.

In contrast to these approaches, we suggest to use many configurations of the
hidden parameters instead of only a single one, in order to learn the dictionary.
In a probabilistic interpretation, this corresponds to a better approximation of the
data-likelihood that is considered in the optimization process by the use of many
configurations of the hidden parameters in each learning step where each used con-

figuration has a high likelihood according to the probabilistic generative model.

We use a mathematical abstraction of sparse coding that is not based on a certain

prior density of the coefficients, but that relies on the hypothesis that each given

observation X = (x1, ... , X1), X; € RN can overall be generated as a linear
combination of a few elements from an unknown dictionary C' = (c1,...,cn), ¢; €
RN

x; = Ca; + €;. (17)

€; and ||€;]|2 are termed residual and representation error of sample x;. The require-
ment that only a few elements of C' are used in order to generate a given observation

x; means that the coefficients a; are sparse, i.e., they contain few non-zero entries
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compared to the dimensionality of the observations:
laillo < N . (1.8)

lajlo denotes the number of non-zero coefficients in a. The number of dictionary
elements M is a free model parameter. In case of overcomplete dictionaries, M > N
holds. Since in this case the number of columns of the matrix C, i.e., M, is larger
than the dimension of the observations, i.e., IV, one has to introduce constraints
on the dictionary C' and/or the coefficients a; in order to obtain a well-defined
representation. This can be achieved for instance by imposing sparsity constraints
on the coefficients. See also Chapter 2.3 for results on the stability and identifiability
of the representation (1.7). Apart from sparsity, we do not impose any further

constraints on the dictionary or the coefficients.

1.2.1 Contributions of this thesis

Within this work, we propose soft-competitive unsupervised learning algorithms in
order to tackle two different constrained optimization problems. Either we aim to
minimize the mean of the squared representation error and constrain the coeffi-
cients of the dictionary such that the maximum number of non-zero entries of each

coefficient vector a; is upper bounded:

L
1 .
min — z; |x; — Ca;||3 subject to |[la;|lo <k (1.9)
=
or we aim to minimize the mean number of non-zero entries of the coefficient vectors
such that the representation error of each given data sample is bounded by some

accuracy 0:
L

1
min - ; lagllo subject to [|x; — Ca;[|2 <6 . (1.10)

In [Labusch et al., 2008a, 2009a] we have introduced the Sparse Coding Neural Gas
algorithm (SCNG) which can be applied to (1.9). The SCNG algorithm is first
introduced in Chapter 4.5 where it is also shown that it can be used in order to
learn a dictionary from natural image data that possesses the properties of spatial
localization, ortientation selectivity, and selectivity with respect to different scales.

It has been already mentioned that ICA and linear generative models are closely

related. Indeed, any algorithm that determines the basis or dictionary of a linear
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generative model using a regularization term for the hidden parameters that obeys
the property of separability can be understood as an ICA method [Kreutz-Delgado
and Rao, 1999]. This aspect is also discussed in Section 5.1. In a similar way the
SCNG algorithm is closely related to the domain of blind source separation. As it
was first suggested in [Labusch et al., 2008b, 2009¢] and [Labusch et al., 2009b], a
slightly modified SCNG can be used to approach the optimization problem (1.10)
which makes it possible to apply it to the problem of overcomplete blind source
separation under the presence of noise and to the time dependent cocktail party

problem in a difficult overcomplete setting which is discussed in Section 5.2 and 5.3.

The SCNG algorithm can be understood as a sparse approximation method, based
on Optimized Orthogonal Matching Pursuit (OOMP), that modifies the dictionary
during the pursuit. Therefore it is not possible to use an arbitrary approxima-
tion method for the coefficients in the learning process. In order to obtain a so-
lution strategy for (1.9) that does not have this disadvantage, we have introduced
a hard-competitive and soft-competitive stochastic gradient method [Labusch and
Martinetz, 2010, Labusch et al., 2010] which we term Neural Gas for Dictionary
Learning (NGDL) that can be combined with an arbitrary approximation method
for the coefficients. NGDL provides significant performance improvements compared
to MOD and K-SVD in terms of reconstruction of the underlying dictionary and
minimization of the mean representation error as can be seen from the experiments
that are presented in Section 4.6.5. The improvements in comparison to other state-
of-the-art methods can also be seen in applications such as image reconstruction and
deconvolution [Labusch and Martinetz, 2010, Labusch et al., 2011a,b]. Experiments
that support these claims are presented in Chapter 4.6.7 and Chapter 4.6.8. Since
NGDL can be combined with an arbitrary approximation method for the hidden
parameters of the model, it is applicable whenever a probabilistic linear generative
model is considered where the additive noise is assumed to be Gaussian. This means
that it can also be applied if for instance a factorizable Laplacian prior is used for
the hidden parameters. Hence, it also can be seen as a soft-competitive approach

to noisy overcomplete ICA.

However, in order to employ NGDL for dictionary learning or ICA, one needs
a sparse approximation method that determines many good configurations of the
hidden parameters of the model. In the past, a number of approximation methods

have been proposed that can be applied to the following NP-hard combinatorial

10



1.2 Soft-competitive sparse coding

optimization problem [Davis et al., 1997]:
min ||x; — Cal|3 subject to |laljo < k (1.11)

Here, C is a given fixed dictionary and k is a user-defined parameter. Among them
there are greedy methods such as Matching Pursuit(MP) [S.Mallat and Zhang, 1993],
Orthogonal Matching Pursuit(OMP) [Pati et al., 1993], and Optimized Orthogonal
Matching Pursuit(OOMP) [Rebollo-Neira and Lowe, 2002]. Yet, all these sparse
approximation methods provide only a single approximative solution for (1.11) and
are therefore not applicable for soft-competitive learning with NGDL. In [Labusch
and Martinetz, 2010] and [Labusch et al., 2010] we have proposed the Bag of Pursuits
method (BOP) which is derived from OOMP and provides many good solutions for
(1.11), which enables us to use NGDL for dictionary learning. The BOP method
as well as other sparse approximation methods, i.e., greedy methods and relaxation

methods, are discussed in Chapter 2.

11
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Linear generative models as (1.1) can be used in a broad range of applications.
For instance, they have been used for compression [Chang et al., 2000], reconstruc-
tion [Mairal et al., 2008], deconvolution [Figueiredo et al., 2007], denoising [Hoyer
and Oja, 2000, Elad and Aharon, 2006], blind source separation [Lee et al., 1999,
Zibulevsky and Pearlmutter, 2001], or feature extraction [Lee et al., 2000, Hyvérinen
and Hoyer, 2000, Labusch et al., 2007, 2008¢c] tasks. In these applications, one is
interested in the configuration of the hidden parameters of the model for given ob-
servations, once the dictionary C that is used in the model has been obtained either
from an analytic framework (see Chapter 3) or from a dictionary learning method
(see Chapter 4). Furthermore, most of the dictionary learning methods require to
determine the coefficients of the dictionary elements during the learning process.

To determine the configuration of the hidden parameters that is optimal according
to some criterion, yields a sparse approximation problem, if sparsity constraints are
imposed on the hidden coefficients of the dictionary. This chapter discusses two
categories of sparse approximation methods.

The first category, the greedy methods that are discussed in Section 2.1, either
tackle the problem of finding the best k-term approximation of a given sample

x € RY in terms of a given dictionary C' € RV*M

min ||x — Cal|3 subject to ||allo < & (2.1)

or the problem of finding the sparsest representation of a given sample x under the

constraint that the representation error is at most §
min ||all¢ subject to ||x — Call2 <. (2.2)
a

Both (2.1) and (2.2) are NP-hard optimization tasks [Davis et al., 1997]. The greedy
methods provide an approximative solution of these NP-hard tasks by an iterative

construction of the sample x out of the elements of the dictionary C. If (2.1) is to

13



2 Sparse approximation

be solved, the greedy methods stop after exactly k iterations have been performed,
while in case of (2.2) the methods proceed until the approximation error drops below
the user defined accuracy 4.

The second category, the relaxation methods that are discussed in Section 2.2,
can be used to solve a least squares approximation problem where a regularization

term has been added that enforces sparsity on the dictionary coefficients
min ||x — Cal|3 + \S(a) . (2.3)
a

Often S(a), the measure of sparsity of the coefficients, is a relaxition of the zero
norm such as the I; norm. This can be seen as a replacement of the difficult NP-
hard optimization problem by an easier optimization task whose solution is under
certain conditions close to the solution of the original NP-hard optimization problem
[Donoho and Elad, 2003].

It is an important question whether the representation of given data in terms of a
sparse linear combination of an overcomplete dictionary is well-defined, i.e., unique.
This is indeed the case under certain conditions, which is discussed in Section 2.3,
where it is also discussed under which conditions approximative greedy approaches

can find these representations.

2.1 Greedy methods

This section refers to a class of greedy algorithms that are called pursuit methods.
They iteratively construct a given vector out of the columns of a given matrix. The
zero norm of the coefficient vector is equal to the number of approximation iter-
ations that have been performed. Here, we describe Matching Pursuit [S.Mallat
and Zhang, 1993], Orthogonal Matching Pursuit [Pati et al., 1993], Optimized Or-
thogonal Matching Pursuit [Rebollo-Neira and Lowe, 2002] and the Bag of Pursuits
[Labusch et al., 2010].

2.1.1 Matching pursuit

Matching pursuit (MP) is a very simple sparse approximation method. An advan-
tage of MP is its computational efficiency.
Let CaMP denote the current approximation of x in MP, and let € = x — CaM?

denote the current residual that still has to be encoded. Initially, a™® = 0 and

14



2.1 Greedy methods

e = x. MP iteratively selects k columns of C' by performing the following steps:

2

1. Select ¢, by ¢, = argmax,(c] €)

2. Set (aMP), MP)

+ (cl  e)

lwin

win (a lwin

3. Obtain new residual € = x — CaMP
4. Continue with step 1 until k iterations have been performed or |[e|| < §

Even if we perform N iterations of MP, i.e., if we select as many columns of C as
there are dimensions, it is not guaranteed that we will obtain CaMP = x and € = 0,
though the asymptotical convergence of MP for & — oo has been proven [S.Mallat
and Zhang, 1993].

2.1.2 Orthogonal matching pursuit

Let Ca®MP denote the current approximation of x in Orthogonal Matching Pursuit.
In contrast to MP, this approximation fulfills Ca®* = x and € = 0 after k < N
iterations [Pati et al., 1993]. Let U denote the set of indices of those columns of C
that already have been used during Orthogonal Matching Pursuit. The number of
elements in U, i.e., |U|, equals the number of iterations that have been performed
so far. The columns of C that are indexed by U are denoted by CV. Initially,
a®MP — 0, € =x and U = (). OMP works as follows:

1. Select ¢, by ¢, = argmax, ;¢p(cf €)?

win win

2. Set U =U U lyin

OMP

3. Solve the optimization problem a = argmin, ||x — CYal|3

4. Obtain current residual € = x — Ca®MP

5. Continue with step 1 until & iterations have been performed or e[| < §

2.1.3 Optimized orthogonal matching pursuit

An improved variant of the OMP algorithm is Optimized Orthogonal Matching
Pursuit (OOMP) [Rebollo-Neira and Lowe, 2002]. In general, the columns of C
are not pairwise orthogonal. Hence, the criterion of OMP that selects the column
lwin € U of C that is added to U is not optimal with respect to the minimization
has been added. Therefore,

C;

win ?

of the residual that is obtained after the column c;

win

15



2 Sparse approximation

Optimized Orthogonal Matching Pursuit uses a selection criterion that is optimal
with respect to the minimization of the norm of the residual obtained: the algorithms
runs through all columns of C' that have not been used so far and selects the one
that yields the smallest residual. Optimized Orthogonal Matching Pursuit works as

follows:
1. Select ¢, such that c;,,, = argming, ;¢ ming [x — CVa||

2. Set U = U U lyin

OMP

3. Solve the optimization problem a = argmin, ||x — CYal|3

4. Obtain current residual € = x — Ca®MP

5. Continue with step 1 until k iterations have been performed or ||e|| < ¢

The selection criterion of the OOMP algorithm (step 1) involves M — |U| minimiza-
tion problems, one for each column of C' that has not been used so far. In order to
reduce the computational complexity of this step, we use an implementation of the
OOMP algorithm that employs a temporary matrix R that has been orthogonalized
with respect to CV. R is obtained by removing the projection of the columns of C
onto the subspace spanned by CV from C and setting the norm of the residuals r;
to one. The residual €V is obtained in the same way, i.e., the projection of x to the
subspace spanned by CU is removed from x. Initially, R = (ry,...,r,...,1p) = C
and €V = x. In each iteration, the algorithm determines the column r; of R with

I ¢ U that has maximum overlap with respect to the current residual €V

lyin = Tely2 2.4
argg}}%(rl €) (2.4)

Then, in the construction step, the orthogonal projection with respect to r; . is

win

removed from the columns of R and €v:

r=r; — (rlj;mrl)rlwin, (2.5)

U Ui(rT EU)

lwin rl (2'6)

win *

After the projection has been removed, Iy, is added to U, i.e., U = U U lyi,. The
columns r; with [ ¢ U may be selected in the subsequent iterations of the algorithm.
The norm of these columns is set to unit length. The stopping criterion is either

|U| = k or ||e]| < §. The final entries of a®MF can be obtained by recursively

16



2.1 Greedy methods

collecting the contribution of each column of C' during the construction process,

taking into account the normalization of the columns of R in each iteration.

2.1.4 Bag of Pursuits

In order to perform soft-competitive dictionary learning with NGDL (see Section
4.6), we need a sparse approximation method that not only determines a single ap-
proximation of the best coefficients but that determines many good approximations
of a given sample. Here, we describe a method that has this property and which is
termed “bag of pursuits” (BOP), since it performs a sequence of optimized orthog-
onal matching pursuits. The number of solutions that are provided is equal to the
number of pursuits that are performed. The number of pursuits is a user-defined
parameter and in the following is denoted by K-

The algorithm starts with UJ = 0, R% = (r?’j, cee r(])\}[j) = C and eg) = x. The set
UJ contains the indices of those columns of C' that have been used during the j-th
pursuit with respect to x up to the n-th iteration. R}, is a temporary matrix that
has been orthogonalized with respect to the columns of C that are indexed by UJ.
r/"/ is the I-th column of R. €}, is the residual in the n-th iteration of the j-th
pursuit with respect to x.

In iteration n, the algorithm looks for that column of R}, whose inclusion in the
linear combination leads to the smallest residual ef1 41 in the next iteration of the

algorithm, i.e., that has the maximum overlap with respect to the current residual.

nj T _j nj T _j nj T _;
;i [ry” € r;” € r,; €
y%-( ,”rw. ’Nr"' m,”> (2.7)

Hence, with

[ ey e

it looks for lyin(n,j) = arg max; ;o ((y%)l)Q. Then, the orthogonal projection of

j n,i.j . j
R}, tor, ., ; ;) is removed from RJ,

- P
n,,j gL nyig T
i Tt BT i)
L =Ri- L)L : (2.8)
mn,t,) r’n,l,j
lwin(n,4,5)  ~lwin(n,1,5)

Rj

n

Furthermore, the orthogonal projection of €, to r;”"? is removed from €/,

lwin(1,%,5)
o
j ' € Tlin(nis) i
_J win (7,?, 32,
€ =€, — r S 2.9
n+1 n n,i,j T nij lwin(n,%,5) ( )

lwin(1,2,5) " lwin(n,%,5)
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Dictionary R = (r1,...,r5) = C,||r;|]| =1
Residual € = x m sort according to (r,’iTe)z
~ - o

sort according to (1‘?6) 3 sort according to (l‘iTé)2
r;=r; — (efr)rs  ri=r;— (eir)ry ri=r; — (riryrs
€e=¢€— (rge)r;; €e=¢€— (rge)rg €e=¢€— (rge)r:;
STOP STOP STOP

Figure 2.1: The figure depicts the tree-like search procedure of the BOP method
for the constraint ||aljp < 3. In this example Ks = 3 holds, i.e., the
method determines three different solutions. The method starts by sort-
ing the dictionary elements according to their overlap with respect to the
residual (root of the tree). The dictionary element that has the largest
overlap, i.e., element 5, is selected. All other dictionary elements as well
as the residual are orthogonalized with respected to dictionary element
5. This procedure is repeated (elements 2 and 3 are selected) until at
most three dictionaries elements have been used. Now, the second solu-
tion is determined. Among all overlaps that have been computed so far
the largest one is selected (element 1 at root level). Again a sequence
of orthogonalizations is performed until three dictionary elements have
been used (elements 2 and 3 are selected). The third solution is obtained
by repeating the entire procedure again. Solution 1: 5,2,3 Solution 2:
1,2,3 Solution 3: 5,4,2.
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The algorithm stops if ||€/ || < 6 or n = k. The j-th approximation of the coefficients
of the best k-term approximation, i.e., a’, can be obtained by recursively tracking
the contribution of each column of C' that has been used during the iterations of
pursuit j. In order to obtain a set of approximations al', ..., a%uer | where Kyger is
chosen by the user, we want to conduct K,s., matching pursuits. To obtain K s,

different pursuits, we implement the following function:

If there is no pursuit (among all pursuits
that have been performed with respect to
0:x) that is equal to the j-th pursuit up to
Qlin,j) = the n-th iteration, where in that iteration (2.10)

column [ has been selected

1:else.

Then, while a pursuit is performed, we track all overlaps y?, that have been computed
during that pursuit. For instance if a' has been determined, we have yé7 R S ,yirl
where s1 is the number of iterations of the 1st pursuit with respect to x. In order
to find a?, we now look for the largest overlap in the previous pursuit that has not

been used so far

(i) (2.11)

n = ar max max
target & n=0,...,s1—1  1,Q(I,n.5)=0
1
ltarget = arg mlax(yntarget )i - (2.12)

We replay the 1st pursuit up to iteration ngarger. In that iteration, we select column
ltarget instead of the previous winner and continue with the pursuit until the stopping
criterion has been reached. If m pursuits have been performed, among all previous

pursuits, we look for the largest overlap that has not been used so far:

. SN2
et = A n=01 s —1 1@ (e =0 (2)0) (2.13)
. 2
n = ar ma. ma. Jtarget 2.14
target g n:07---75j;(rget—1 l7Q(l;n7jta)r(get):0 (( n )l) ( )
, 2
I — ( Jearget ) ) 2.15
target argl,Q(l-,ntag(lz?fj{targct):O (yntarget)l ( )

We replay pursuit jiarget Up to iteration niarget. In that iteration, we select column

ltarget instead of the previous winner and continue with the pursuit until the stopping
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criterion has been reached. We repeat this procedure until K s, pursuits have been

performed. A schematic view of the BOP method is shown in Figure 2.1.

2.2 Relaxation methods

In general, the optimization problems (2.1) and (2.2) that involve the zero norm
as measure of sparsity are NP-hard [Davis et al., 1997]. Therefore, methods have
been proposed that do not solve these optimization problems but related easier
optimization problems, whose solution often is close to the solution of the primal NP-
hard problems [Donoho and Elad, 2003]. These methods consider the optimization
problem that is defined by (2.3) where the penalty or regularization term S(a) is a
relaxation of the zero norm. This means that it still enforces sparsity, but is not as

discontinuous as the zero norm. Many choices are possible for S(a), for instance:

llallx
S(a) = —e~llallz (2.16)
log(1+ a?) .

If the regularization term that is used is differentiable, as for instance in case of
S(a) = log(1 + a?), (2.3) can be approached by standard optimization methods
such as gradient descent. This has been done in the Sparsenet algorithm [Olshausen
and Field, 1995, 1996b]. However, if S(a) is not convex, which is the case for

S(a) = log(1 + a?), gradient optimization might run into local minima.

In the Basis Pursuit method [Chen et al., 1998], one chooses S(a) = ||a/|; and

obtains as optimization task
min [x — Cal3 + Alall: , (2.17)

which has a target function that is convex but not differentiable. With C' = (C, —C)

this can be converted to the following equivalent quadratic program
mina’CTCa — (2xTC + A\)a  subject to (a); > 0Vi=1,...,2M , (2.18)

a

that can be approached with standard QP-solvers. (2.17) is closely related to the
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following minimization problem
min ||all; subject to ||x—Cal3<§. (2.19)
a

The constrained minimization problem (2.19) can be solved by an equivalent un-

constrained maximization of its corresponding Lagrangian
méixmin lally + B(]| x — Cal|3 — §) subject to B >0 (2.20)
a

where 3 is the Lagrange parameter. Suppose that the optimal value for 3, i.e., (.,

is known, then (2.20) turns into
1 2
min - afl + || x ~ Call} . (2.21)

For any choice of A in (2.17) there is some ¢ in (2.19) such that A = 1/5,. For any
d in (2.19) there is some A in (2.17) such that A = 1/5,.

A disadvantage of the Basis pursuit approach is that it leads to a quadratic
minimization problem of size 2M x 2M, which becomes intractable for very large
settings. Among the methods that are computationally more feasible and that
can be used to find a solution of (2.17) (for a comprehensive review see [Bruckstein
et al., 2009]) there are iteratively reweighted least squares methods [Rao et al., 2003],
stepwise methods as for instance the LARS-LASSO algorithm [Osborne et al., 2000],
iterative shrinkage methods [Daubechies et al., 2004], and related neuro-inspired
dynamical systems [Rozell and Baraniuk, 2008].

2.3 Stability and identifiability

In this section, we briefly discuss some results on the stability and identifiability
of the solution of the sparse approximization tasks (2.1) and (2.2). Here, stability
is a property of the optimization problem and describes how a change of the noise
level influences its domain of solutions. Identifiability describes the ability of some
sparse approximation method to find such a solution within a certain accuracy.
Hence, this property is only defined in connection with a specific approximation
algorithm. Since in this work the OMP algorithm or one of its derivatives, e.g.,
OOMP or BOP, are used in order to solve sparse approximation problems, we here

concentrate on results that were obtained for the OMP method.

21
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Of course, the choice of the dictionary C has a strong influence on stability and
identifiability. In particular, its mutual coherence has an impact on these properties.

The mutual coherence H(C') is defined as follows:

_ T,
H(C) = 131‘,5%%\)4(,#3‘ lc; ¢l . (2.22)

Identifiablility in the approximation domain: Let x* = Ca* be the best k-term

approximation of a given sample x in terms of a dictionary C:
a* = argmin ||x — Ca|| subject to Jalo <k . (2.23)
a

It has been shown [Tropp, 2004] that if

1 1
k< - (14— 2.24
(1 77) 224
holds, than OMP yields an xOMP = Ca®MP with
| — xMP|| < V146K ||x — x| . (2.25)

This also means that if (2.24) holds and x = x*, OMP finds the exact solution of

(2.1), i.e., it identifies the best k-term approximation of x that is x*.

Stability of the solution in the representation domain: The result on the stability
of the solution in the representation domain, as it is presented in the following, is
taken from [Bruckstein et al., 2009]. It was first reported in [Donoho et al., 2006].
Let a* be some vector for which [|[x — Ca*|| < § and

1 1
* |1+ == 2.2
Il < 5 (1+ 775 (226)
holds. Now, let a** be some solution of (2.2), i.e.,

a™ = argmin ||a||g subject to|]|x — Cal| < §. (2.27)
a

Then
462

1-H(CO)(2]la*lo — 1)
holds. Therefore, if (2.26) holds and § = 0, a* is the unique solution of (2.2).

la” —

(2.28)
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Identifiablility in the representation domain: We here cite a result on the iden-
tifiability of the solution of (2.2) for OMP as it is presented in [Bruckstein et al.,
2009]. It was first reported in [Donoho et al., 2006].

Let a* be some vector for which ||[x — Ca*|| < § and

1 1
la*llo < = ( 1+ — .6
2 H(C) H(C) ming: 0 |at|

(2.29)
holds. Let a®™P be an approximative solution of (2.2) that has been obtained from
the OMP algorithm. Then

62
H(C)([la*[lo = 1)

|a* —a%MP|| < T (2.30)

holds. Furthermore, a®MP

contains only non-zeros that also appear in a*. This also
means that if (2.29) holds and § = 0, OMP identifies the exact solution of (2.2). For
d > 0, local stability is given, as long as in (2.29) the absolute value of the smallest

non-zero entry in a*, i.e., mina: o |aj|, is sufficiently large [Donoho et al., 2006].
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3 Analytic dictionaries

In some of the experiments that are part of this work analytic data representations
were used for comparison purposes. Analytic means in this case, that the dictionary
that is used for the representation of given data is not obtained from a learning
algorithm, but that the dictionary is defined by some mathematical framework. This
chapter provides an overview over those analytic representations that have been used
in the experiments. It is supposed to be a brief summary of the most important
aspects, since a comprehensive discussion of the methods that are presented here
would by far exceed the scope of this work. A comprehensive discussion of this

domain can be found for instance in [Mallat, 2009].

3.1 Discrete Fourier Transformation

Suppose you are given a vector x € RN, x = (xq,...,2;,...,2x5)7. By computing
its Fourier representation, it is implicitly considered to represent a discrete function
z(l) of period N

2(l) = 2@ mod N)+1 l=—-00,...,0 [ E€Z. (3.1)
The set of functions

27rml 2mml
cgft(l)cos( T)ﬂsm (T) m=0,...,N—1 (3.2)

is an orthogonal basis of the space of discrete functions of period N [Mallat, 2009].

Using a matrix CP¥T € CV*V with CBST = ¢ (I — 1) the coefficients of the
(CDFT

discrete Fourier transformation of x(I) are obtained from a = x. Given the
Fourier coefficients a, the vector representation of the function z(l) can be recon-
structed by applying the inverse discrete Fourier transformation x = (CDFT)T a.
The Fourier coefficients a = (ay, ..., am,. .. ,an) can be interpreted as the frequency

dependent discrete function a(m). The parameter [ of the primal function has been
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replaced by the frequency parameter m of its Fourier transformation.

Even if (1) is smooth in the interval [0, N — 1], due to its periodicity the absolute
values of the high-frequency Fourier coefficients are large, if |z(0) — z(N — 1)| is
large. On the one hand this effect is somehow artificial, on the other hand it is even
detrimental, in particular in applications such as image compression where, due to
the blockwise processing of the images, N might be quite small. Therefore, in such

applications often the discrete cosine transformation is used instead.

3.2 Discrete Cosine Transformation

For the discrete cosine transformation, the following set of basis functions is used:

cf,ft(l)fm\/gcos<n;;r <l+;>> m=0,...,N—1 (3:3)

1 _
fm{ 75 itm=0 (3.4)

with

1 : else.

Considering the matrix CPT € RN*N with CPST = ¢iet (I — 1), it follows from
(3.3) that its columns are pairwise orthogonal and, due to the normalization factor
fm \/% , the norm of each column is equal to one [Mallat, 2009]. Hence, CPCT is an
orthonormal basis of RY. Therefore, the coefficients of the discrete cosine transfor-

CPCTx. x can be reconstructed from the coefficients

mation are obtained from a =
by applying the inverse discrete cosine transformation, i.e., x = (CDCT)T a. In con-
trast to the discrete Fourier transformation, the discrete cosine transformation does
not suffer that strong from the problem of artificially introduced high-frequencies.
This can be seen as follows:

Let us consider a vector x € R2VN with

. x) : ifl=1,...,N (3.5)
xry = .
: T2N—14+1 . lfl:N+1,,2N

In the framework of the discrete Fourier transformation, this vector is implicitly

considered as discrete function of period 2NV

i‘(l) = .f?(l mod 2N)+1 l=—-00,...,00 [ E€Z. (36)
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3.2 Discrete Cosine Transformation

This function is symmetric at kN + (1/2), k € Z. Applying a discrete fourier
transformation to this function that has been shifted by (1/2) one obtains Fourier
coefficients that can be used in order to reconstruct Z(l) from the Fourier basis

functions as follows

2N -1 1 1
) 2mm (1 + %) m . [ 2mm (I + 3)
— re TN 2T im TN 27
() = E aye cos ( 5 ) + a,' sin ( SN . (3.7)

m=0

Here a'¢ and a!™ are the real and imaginary part of the Fourier coefficient a,,. Due
to the symmetry properties of #(l), the imaginary part of the Fourier coefficients is

im

=0, Ym. Furthermore, the discrete cosine basis functions

equal to zero, i.e., a
cdet(l), m =0,...,N —1,1 =0,...,N — 1 already provide an orthogonal basis
that can represent any x € RY. Together with the symmetry properties of 2 (1)
and the symmetry properties of the shifted cosine functions in (3.7), it follows that
aye =0, Vm > N — 1. Hence, apart from normalization factors, the discrete cosine
transformation can be understood as the discrete Fourier transformation of the
periodic function Z(1). &(!) is much smoother than x(I) since Z(0) = (2N — 1) is

guaranteed.

One dimensional bases such as the Fourier basis (3.2) or the cosine basis (3.3)
can be extended to multiple dimensions by taking the pairwise tensor products
of the one-dimensional basis vectors [Mallat, 2009]. In this work we use the two-
dimensional discrete cosine transformation that uses a set of basis vectors that are

products of one-dimensional discrete cosine functions

o ln,ly) = fhfv% cos (lg (lh + ;)) cos <g (lv + ;)) (3.8)

h=0,1,....D—1,v=0,1,...,D—1.

and provides an orthonormal basis of the image patches x € RP*P D2 = N. Here,
Iy, and [, are the horizontal and vertical position in the image. Furthermore, we use
overcomplete cosine dictionaries that have M > D? many elements. Such an over-

complete cosine dictionary is obtained by using a finer sampling of the frequencies
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3 Analytic dictionaries

(here v M is an integer number):

2 hm 1 vT 1
C%flt)(l}“ lv) = fhf’UN COS (\/M (lh + 2)) COS <\/M (lv + 2)) (39)
h=0,1,....VM-1,0=0,1,....V/M—1, VM > D..

Note that in the overcomplete case the representation in terms of the dictionary
elements is not unique. Also the dictionary elements are not pairwise orthogonal any
more. In order to obtain a well-defined representation constraints on the coefficients
have to be imposed. The sparse approximation methods described in Chapter 2 can
be used in order to determine a representation of given data in terms of such an

overcomplete dictionary.

3.3 Gabor functions

In the Fourier representation the frequency resolution is maximal, whereas the de-
pendency of an observation on its primal parameters, as for instance time or space,
is completely removed. The more the basis functions of a new representation are
localized in one of the domains, i.e., either frequencies or primal parameters, the
higher the resolution is in that domain. High localisation is in this case equivalent
to small variance. The Fourier basis functions are maximally localized in the fre-
quency domain, since each of them represents negative and positive part of exactly
one frequency. This means that the variance of the Fourier representation of the
Fourier basis functions is equal to zero, whereas the variance of the Fourier basis
functions in the primal parameter domain is infinite.

In order to obtain a representation that enables a parallel analysis in terms of both
domains, i.e., frequencies and primal parameters, one needs basis functions whose
variance in both domains is as small as possible. The uncertainty principle provides
a lower-bound on the product of the variances of a function in its primal domain
and its Fourier representation [Weyl, 1931]. As a consequence of this principle the
maximum resolution in both domains cannot be achieved, but one has to trade
frequency resolution against resolution in the primal parameter domain. In order
to realize such a trade-off windowed Fourier transformations have been proposed
[Mallat, 2009]. One important example is the product of the Fourier basis functions

and a Gaussian, which localizes the infinite Fourier basis functions in the primal
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3.3 Gabor functions

parameter domain:

aborlD (l_lO)2 2mml L. 2mml
g (1) =exp (—02 cos | —— ) Fisin( —— ]| - (3.10)

The product of the variances in both domains of the obtained basis functions is

equal to the theoretical minimum that is defined by the uncertainty principle [Ga-
bor, 1946]. The frequency resolution can be controlled by the parameter o, i.e., the
larger o is, the larger the frequency resolution becomes. The location in the primal
parameter domain is controlled by the parameter [y. Since this type of representa-
tion has been first analyzed and proposed by Gabor [Gabor, 1946] the resulting basis
functions are termed Gabor-chirps. Gabor functions possess a bandpass character-
istic and zero mean and are therefore also termed Gabor-wavelets. Gabor functions

have been generalized to two dimensions [Daugman, 1980, 1985]:

h,,lg,o 2
' O, 0y

2 2
Cgab0r2D(lh,lv) = exp (_ (lh 2lh0) + (lv lvo) ) (311)

y {cos (25 (Rl — Ing) + v (I — zvo)))
+isin (25 (h(ln— ) + v (I — zvo)))} .

The 2-dimensional Gabor functions can be controlled with respect to frequency
selectivity, spatial selectivity, and orientation selectitivity. It has been shown that
given an appropriate parameterization, the projections of image patches on these
Gabor functions are very similar to the responses of simple cells to the same visual
stimuli [Daugman, 1980, 1985]. Usually, the projection on the Gabor functions is
complex valued. Taking the real part is one of the valid approaches to obtain real
valued projections to work with [Gabor, 1946, Daugman, 1985]. Additionally, we

use a reparameterized version of (3.11). Considering a two-dimensional rotation of

R, — < cosa —sina > (3.12)

degree a

sine  cos«

the real part of a two-dimensional Gabor function that is determined by its orien-
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3 Analytic dictionaries

tation a, wavelength A, phase ¢, and center 1y = (Ip,, 1y, )7 is

abor Ry(1-1 2 2w
cﬁ%\(iz’fm(l) = exp (—” “(202 o)l ) cos ()\ (1R.,1-1y)) + ¢7T> . (3.13)

Here, 1 = (I5,1,)7 is the position in the image. Measurements in the visual cortex of
macaques have shown that the majority of the simple cells have a spatial bandwidth
of approximately one octave, which is independent from the wavelength A [Valois
et al., 1982] . The spatial bandwidth of (3.13) is § [Kruizinga and Petkov, 1999].
If the wavelength A and bandwidth in octaves b are considered as parameters to be
chosen by the user, the width o of the Gaussian window is obtained according to
[Kruizinga and Petkov, 1999] as:

A [In220+1
2,/ =22 T 14
TV 2w (3.14)

The phase parameter ¢ controlls the type of receptive field that is obtained. ¢ =0
leads to symmetric center on fields whereas ¢ = 1 leads to symmetric center-off
fields. For ¢ = % and ¢ = f% asymmetic receptive fields with oposite polarities are

obtained.

3.4 Orthogonal Wavelet Dictionaries

In the orthogonal wavelet framework data representations at different scales are
considered. In order to represent a given function x(¢) € L?(R) at a scale 2° a set
of basis functions is used that is obtained from dilations and translations of the

so-called scaling function ¢:

1 t — 2%
¢t073(t) = \/?(ﬁ <2SO) tO,S S Z, t e R. (315)

¢ is chosen such that [Mallat, 2009]:

e the set of functions ¢, s(t) is an orthonormal basis of a subspace Vs C L?(R).

e the sequence of subspaces Vy, V1,..., Vs, Viq1 ... is nested:

VooViD---DVyeD Veyq,... . (3.16)

e proceeding from a finer scale to a coarser scale removes only details that are
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3.4 Orthogonal Wavelet Dictionaries

orthogonal to the structures that remain in the subsequent subspaces. If
UsLs*1 denotes a subspace of functions that is contained in V, where its

elements are orthogonal to the functions contained in V;q:
Uststl — {x(t) € V, |< x(1),y(t) >= 0 Vy(t) € Voy1} (3.17)

then
Vg1 = Vi \ UStst? (3.18)

holds.

e the union of all orthogonal complement spaces spans the entire function space

Uu.=L*®). (3.19)
SEZ
Due to the subspace structure also
U Ukirn | U Ve = *(R) . (3.20)

k€EZ, E<Smax

An orthogonal basis for the orthogonal complement spaces U***1 is obtained
from dilations and translations of the wavelet function ¢ that complements the

scaling function ¢:

1 t — 2%t
wtg,s(t) = \/?’L/) <2s> to, S € Z7 teR. (321)
In this work, we consider finite dimensional vectors x € RY. An orthogonal basis for
a finite dimensional vector space can be obtained from the continuous orthogonal
wavelet framework by considering:

cWaV(is)(l) _ gf’w(l—lo) (3.22)

lo,s

s=1,...,8max, (=0,....N [,s€eNy

N
lo=k2", k=0....5 -1 keNg
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3 Analytic dictionaries

and

CScale(¢)(l) _ h(b (l*lo) (323)

l0;Smax Smax

1=0,....,N leN,

lo = k2% k=0,.. ~1, keNg

"7 9Smax

where Spyax is the maximum scale that is considered in the new representation and

g2 (1) = (s (1), dolt - 1)) (3.24)

as well as
B0 = (8 () dolt 1)) - (3.25)

os(t) and Vs (t) are the periodized scaling function and the periodized wavelet:

Ps(t) = > ¢ (; +kN> (3.26)
k=—o00

hat) = i " (; + k:N) s€Z, teR. (3.27)
k=—o00

Note that there are other ways of handling the boundaries, as for instance folded
wavelets [Mallat, 2009].

h?(1) and g¥¥ (1) can be understood as coefficients of discrete filters which enable
a very efficient computation of the representation in the new basis by means of
a filter-bank which does not explicitly use the expanded basis vectors (3.22) and
(3.23) [Mallat, 2009]. However, in this work, the basis has been explicitly expanded
in order to employ sparse approximation algorithms for the coefficient estimation in

case of overcomplete bases.

A widely used orthogonal wavelet is the Haar-wavelet, that is defined as follows:

1 ifo<t<;
Py =<8 1 ifl<t<1 (3.28)

0 else.
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3.4 Orthogonal Wavelet Dictionaries

The Haar-Wavelet complements a piece-wise constant scaling function

gy { 1 ifo<t<1 (3.29)

0 else.

A Haar-wavelet orthogonal basis for image patches of size D x D is obtained from

the pairwise tensor products of one-dimensional Haar basis vectors

Wav (Haar Wav Haar7 Haar Wav Haar7 Haar
CIO: (Haa )(1) _ Cloh,s(¢ P (In) Cloj,sw P (L) (3.30)
s=1,...,8max, SEN
D
loh:k287 k:07...,2fs—1, k € Ng
D
low = k2%, k=0,..., 0 —1, ke,
and
Scale(Haar) 1 o Scale(gp™aar) I Scale(gtaar) l 1
lo,smax ( ) - lolnsmax ( h) Clov’smax ( ’U) (3'3 )
lop, = k2°"", F=0,. o =1 kEN
max D
ZO,U:]CQS 3 k:O,...,Wfl, kGNO

Here, 1 = (I},,1,,)7 is the position in the image patch. We used syay = log, D. In
a very similar way as in the discrete cosine case, one can define an overcomplete
Haar-wavelet dictionary. However, in this case overcompleteness is not introduced in
terms of frequency but in terms of localisation, i.e., an overcomplete Haar dictionary

is generated by smaller translation steps of the wavelet in the primal parameter

domain:
Wav(H Wav ¢Haar7wHaar Wav ¢Haar7wHaar
M) = i U ‘) 332)
s=1,...,8max, SEN

loh:O,...,D—l, lohENo
loy =0,...,D—1, lp, €Np.

If an overcomplete Haar-wavlet basis is used, again, the representation is not unique.

Therefore constraints on the coefficients have to be imposed in order to render the

representation unique. If sparseness constraints are imposed on the coefficients,
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3 Analytic dictionaries

again, the approximation methods described in Chapter 2 can be employed in order

to determine the coefficients of the dictionary elements.
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4 Dictionary Learning

This chapter discusses two general categorys of dictionary learning approaches that
can be combined with the sparse approximation methods that are described in Chap-
ter 2. The methods from the first category aim to minimize the representation error
where constraints on the zero norm of the coefficients are explicitly implemented
in the sparse approximation method, i.e., the constraint on the number of non-zero
coefficients is not part of the target function but is considered in the optimization
with respect to the coefficients. The zero norm as measure of the sparsity of the
coeflicients is invariant against a scaling of the elements of the dictionary. Due to
the scaling invariant measure of sparsity, the methods from this category consider an
unconstrained optimization problem with respect to the dictionary. Methods from
this category are for instance vector quantization approaches, e.g., the k-means al-
gorithm [Hartigan and Wong, 1979], the LBG-algorithm [Linde et al., 1980], and the
Neural Gas algorithm [Martinetz and Schulten, 1991, Martinetz et al., 1993, Cottrell
et al., 2006]. Also the Method of Optimal Directions (MOD) [Engan et al., 1999],
the K-SVD algorithm (KSVD) [Aharon et al., 2006], the Sparse Coding Neural Gas
algorithm (SCNG) [Labusch et al., 2008a, 2009a] as well as the combination of the
Bag of Pursuits approach for sparse approximation (Section 2.1.4) and the Neural
Gas algorithm [Labusch et al., 2010] belong to this group.

The methods from the second category employ a sparse approximation method
in order to determine the dictionary coefficients that does not introduce explicit
constraints on the number of non-zero coeflicients but incorporates some regulariza-
tion term in the target function in order to prevent trivial, i.e., non-sparse, solutions
from being selected. These dictionary learning methods employ relaxation methods,
as for instance those approaches discussed in Section 2.2 for the determination of
the coefficients. Many methods from this second category possess a probabilistic
interpretation in terms of a maximization of the data likelihood or the posteriori
probability of the learned dictionary. Since the regularization or penalty term usu-
ally is a relaxation of the zero norm such as for instance the L; norm, it often is

not scaling invariant, i.e., its influence could be minimized by simply increasing the
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norm of the dictionary elements. In order to prevent this, one has to constrain
the norm of the dictionary elements to some fixed value. Hence, methods from
the second category have to solve a constrained optimization problem with respect
to the dictionary. In many cases, as for instance in the Sparsenet algorithm pro-
posed in [Olshausen and Field, 1996b], the improved algorithm proposed in [Lewicki
and Sejnowski, 1998, 2000], or the column normalized FOCUSS variant for dictio-
nary learning, i.e., FOCUSS-CND