Learning Orthogonal Bases for k-Sparse Representations

Henry Schütze, Erhardt Barth, Thomas Martinetz

Institute for Neuro- and Bioinformatics, University of Lübeck
Ratzeburger Allee 160, 23562 Lübeck, Germany
schuetze@inb.uni-luebeck.de

Sparse Coding aims at finding a dictionary for a given data set, such that each sample can be represented by a linear combination of only few dictionary atoms. Generally, sparse coding dictionaries are overcomplete and not orthogonal. Thus, the processing substep to determine the optimal \(k \)-sparse representation of a given sample by the current dictionary is \(NP \)-hard. Usually, the solution is approximated by a greedy algorithm or by \(l_1 \) convex relaxation. With an orthogonal dictionary, however, an optimal \(k \)-sparse representation can not only be efficiently, but exactly computed, because a corresponding \(k \)-sparse coefficient vector is given by the \(k \) largest absolute projections.

In this paper, we present the novel online learning algorithm Orthogonal Sparse Coding (OSC), that is designed to find an orthogonal basis \(U = (u_1, \ldots, u_d) \) for a given data set \(X \in \mathbb{R}^{d \times L} \), such that for any \(k \in \{1, \ldots, d\} \), the optimal \(k \)-sparse coefficient vectors \(A \in \mathbb{R}^{d \times L} \) minimize the average representation error

\[
E = \frac{1}{dL} \| X - UA \|_F^2.
\]

At each learning step \(t \), OSC randomly selects a sample \(x \) from \(X \) and determines an index sequence \(h_1, \ldots, h_d \) of decreasing overlaps \(|u_i^T x| \) between \(x \) and the basis vectors in \(U \). In the order of that sequence, each

(a) Learned basis from 1,000 synthetic image patches of size 16×16 pixel.

(b) Learned basis from 20,000 natural image patches of size 16×16 pixel.

Fig. 1: Basis patches learned with OSC.
basis vector u_h is updated by the Hebbian learning rule $\Delta u_h = \varepsilon_t (u_h^T x)x$ with a subsequent unit length normalization. After each basis vector update, x and the next basis vector u_{h+1} to be adapted are projected onto the orthogonal complement $\text{span}(\{u_1, ..., u_h\})^\perp$ wherein the next update takes place.

We applied OSC to (i) 1,000 synthetic ($k=50$)-sparse patches of size 16\times16 pixel, randomly generated with a 2D Haar basis, and (ii) 20,000 natural image patches of size 16\times16 pixel, that were randomly sampled from the first image set of the nature scene collection [1] (308 images of nature scenes containing no man-made objects or people). The basis patches learned by OSC are shown in Figure 1 and demonstrate that OSC reliably recovers the generating basis from synthetic data (see Figure 1a). Figure 1b illustrates that the OSC basis learned on the natural image patches resembles a wavelet decomposition, and is distinct from PCA, DCT, and Haar bases.

In Figure 2, the average k-term approximation performance of the OSC basis is compared with PCA, DCT, Haar and JPEG 2000 wavelets on the natural image patch data set. For this data set, OSC yields a consistently better k-term approximation performance than any of the alternative methods.

![Fig. 2: Average k-term approximation performance of 20,000 natural image patches of size 16\times16 pixel.](image)

Acknowledgement.

The research is funded by the DFG Priority Programme SPP 1527, grant number MA 2401/2-1.

References