
Learning Data Representations with Sparse

Coding Neural Gas

Kai Labusch and Erhardt Barth and Thomas Martinetz

University of Lübeck - Institute for Neuro- and Bioinformatics
Ratzeburger Alle 160 23538 Lübeck - Germany

Abstract. We consider the problem of learning an unknown (overcom-
plete) basis from an unknown sparse linear combination. Introducing the
“sparse coding neural gas” algorithm, we show how to employ a combina-
tion of the original neural gas algorithm and Oja’s rule in order to learn a
simple sparse code that represents each training sample by a multiple of
one basis vector. We generalise this algorithm using orthogonal matching
pursuit in order to learn a sparse code where each training sample is rep-
resented by a linear combination of k basis elements. We show that this
method can be used to learn artificial sparse overcomplete codes.

1 Introduction

In the last years there has been a lot of interest in sparse coding. Sparse coding is
closely connected to independent component analysis, in particular to overcom-
plete and noisy ICA [1]. Furthermore, favorable properties of sparse codes with
respect to noise resistance have been studied [2]. Mathematically the problem
is to estimate an overcomplete basis of given training samples X = (x1, . . . , xL),
xi ∈ ℜN that were generated from a sparse linear combination. Without loss of
generality we require X to have zero mean. We measure the quality of the basis
by the mean square of the representation error:

E =
1

L

L
∑

i=1

‖xi − Ca(i)‖2

2
(1)

C = (c1, . . . , cM ), cj ∈ ℜN denotes a matrix containing the basis elements. a(i)
denotes a set of sparse coefficients that was chosen optimally for given xi and
C. The number of basis elements M is a free model parameter. In case of
overcomplete bases M > N holds. Imposing different constraints on the basis C

or the choice of the coefficients a(i) allows to control the structure of the learned
basis.

2 Vector quantization

A well-known approach for data representation is vector quantization. Vector
quantization is based on a set of so-called codebook vectors. Each sample is
encoded by the closest codebook vector. Therefore, for the coefficients a(i)
holds

a(i)k = 1, a(i)j = 0 ∀j 6= k where k = arg min
j

‖cj − xi‖
2

2
(2)



Vector quantization finds a set of codebook vectors that minimize (1) under
the constraints posed by (2). The well-known k-means algorithm is among the
methods that try to solve this optimization problem. But k-means can lead
to a sub-optimal utilization of the codebook vectors with respect to (1) due to
the hard-competitive nature of its learning scheme. The neural gas algorithm
introduced in [3] remedies this deficiency by using a soft-competitive learning
scheme that facilitates an optimal distribution of the codebook vectors over the
data manifold to be learned.

3 Learning one-dimensional representations

In a step towards a more flexible coding scheme, i.e., a coding scheme that in
some cases may better resemble the structure of the data, we drop one constraint
on the coefficients a(i) allowing a representation in terms of an arbitrary multiple
of one codebook vector. Due to the added flexibility of the coefficients, we require
‖cj‖2

2
= 1 without loss of generality. This leads to the following optimization

problem, which can be understood as a model of maximum sparseness:

min

L
∑

i

‖xi − Ca(i)‖2

2
subject to ‖a(i)‖0 ≤ 1 and ‖cj‖

2

2
= 1 (3)

Here ‖a(i)‖0 denotes the number of non-zero coefficients in a(i). First consider
the marginal case of (3), where only one codebook vector is available, i.e, M = 1.
Now (3) becomes:

min

L
∑

i=1

‖xi − ca(i)‖2

2
=

L
∑

i=1

xT
i xi − 2a(i)cT xi + a(i)2 subject to ‖c‖2

2
= 1 (4)

Fixing xi and c, (4) becomes minimal by choosing a(i) = cT xi. One obtains as
final optimization problem:

max

L
∑

i=1

(cT xi)
2 subject to ‖c‖2

2
= 1 (5)

Hence, in this marginal case, the problem of finding the codebook vector that
minimizes (4) boils down to finding the direction of maximum variance. A well-
known learning rule that solves (5), i.e., that finds the direction of maximum
variance, is called Oja’s rule [4]. Now we describe how to modify the original
neural gas algorithm (see Algorithm 1) to solve the general case of (3), where
M > 1 holds. The soft-competitive learning is achieved by controlling the update
of all codebook vectors by the relative distances between the codebook vectors
and the winning codebook vector. These distances are computed within the
sample space (see Algorithm 1, step 4,5). Replacing the distance measure, we
now consider the following sequence of distances:

−
(

cT
j0x

)2

≤ · · · ≤ −
(

cT
jk

x
)2

≤ · · · ≤ −
(

cT
jM

x
)2

(6)



Algorithm 1 The neural gas algorithm
1 initialize C = (c1, . . . , cM ) using uniform random values

for t = 0 to tmax do

2 select random sample x out of X
3 calculate current size of neighbourhood and learning rate:

λt = λ0

`

λfinal/λ0

´t/tmax

ǫt = ǫ0
`

ǫfinal/ǫ0
´t/tmax

4 determine the sequence j0, . . . , jM with:

‖x − cj0‖ ≤ · · · ≤ ‖x − cjk
‖ ≤ · · · ≤ ‖x − cjM

‖

for k = 1 to M do

5 update cjk
according to cjk

= cjk
+ ǫte−k/λt

`

cjk
− x

´

end for

end for

Due to the modified distance measure a new update rule is required to minimize
the distances between the codebook vectors and the current training sample x.
According to Oja’s rule, with y = cT

jk
x, we obtain:

cjk
= cjk

+ ǫte
−k/λty (x − ycjk

) (7)

Due to the optimization constraint ‖cj‖ = 1, we normalize the codebook vectors
in each learning step. The complete “sparse coding neural gas” algorithm is
shown in Algorithm 2.

4 Learning sparse codes with k-coefficients

In order to generalise the “Sparse Coding Neural Gas” algorithm, i.e., allowing
for a representation using a linear combination of k elements of C to represent
a given sample xi, we consider the following optimization problem:

min
L

∑

i

‖xi − Ca(i)‖2

2
subject to ‖a(i)‖0 ≤ k and ‖cj‖

2

2
= 1 (8)

A number of approximation methods tackling the problem of finding optimal
coefficients a(i) constrained by ‖a(i)‖0 ≤ k given fixed C and xi were proposed.
It can be shown that in well-behaved cases methods such as matching pursuit
or orthogonal matching pursuit [5] provide an acceptable approximation [6, 2].
We generalize the “sparse coding neural gas” algorithm with respect to (8) by

performing in each iteration of the algorithm k steps of orthogonal matching
pursuit. Given a sample x that was chosen randomly out of X , we initialize
U = ∅, xres = x and R = (r1, . . . , rM ) = C = (c1, . . . , cM ). U denotes the
set of indices of those codebook vectors that were already used to encode x.
xres denotes the residual of x to be encoded in the subsequent encoding steps,
i.e., xres is orthogonal to the space spanned by the codebook vectors indexed



Algorithm 2 The sparse coding neural gas algorithm.
initialize C = (c1, . . . , cM ) using uniform random values
for t = 0 to tmax do

select random sample x out of X
set c1, . . . , cM to unit length
calculate current size of neighbourhood and learning rate:

λt = λ0

`

λfinal/λ0

´t/tmax

ǫt = ǫ0
`

ǫfinal/ǫ0
´t/tmax

determine j0, . . . , jM with: −(cT
j0

x)2 ≤ · · · ≤ −(cT
jk

x)2 ≤ · · · ≤ −(cT
jM

x)2

for k = 1 to M do

with y = cT
jk

x update cjk
according to cjk

= cjk
+ ǫte−k/λty(x − ycjk

)

end for

end for

Algorithm 3 The generalised sparse coding neural gas algorithm.
initialize C = (c1, . . . , cM ) using uniform random values
for t = 0 to tmax do

select random sample x out of X
set c1, . . . , cM to unit length

calculate current size of neighbourhood: λt = λ0

`

λfinal/λ0

´t/tmax

calculate current learning rate: ǫt = ǫ0
`

ǫfinal/ǫ0
´t/tmax

set U = ∅, xres = x and R = (r1, . . . , rM ) = C = (c1, . . . , cM)
for h = 0 to K − 1 do

determine j0, . . . , jk, . . . , jM−h with jk /∈ U :

−(rT
j0

xres)2 ≤ · · · ≤ −(rT
jk

xres)2 ≤ · · · ≤ −(rT
jM−h

xres)2

for k = 1 to M − h do

a with y = rT
jk

xres update cjk
= cjk

+ ∆jk
and rjk

= rjk
+ ∆jk

with

∆jk
= ǫte

−k/λty(xres − yrjk
)

set rjk
to unit length

end for

b determine jwin = arg max
j /∈U

(rT
j xres)2

c remove projection to rjwin
from xres and R:

xres = xres − (rT
jwin

xres)rjwin

rj = rj − (rT
jwin

rj)rjwin
, j = 1, . . . , M ∧ j /∈ U

d set U = U ∪ jwin

end for

end for



by U . R denotes the residual of the current codebook C with respect to the
codebook vectors indexed by U . Each of the k encoding steps now adds the
index of the codebook vector that was used in the current encoding step to
U . The subsequent encoding steps do not consider and update those codebook
vectors whose indices are already elements of U . An encoding step involves: (a)
updating C and R according to (7), (b) finding the element rjwin

of R that has
maximum overlap with respect to xres, (c) subtracting the projection of xres to
rjwin

from xres, subtracting the projection of R to rjwin
from R, and (d) adding

jwin to U . The entire generalised “sparse coding neural gas” method is shown
in Algorithm 3.

5 Experiments

We test the “sparse coding neural gas” algorithm on artificially generated sparse
linear combinations. We do not consider the task of determining M , i.e., the
size of the basis that was used to generate the samples; instead we assume M to
be known. The basis vectors and coefficients used to generate training samples
are chosen from an uniform distribution. The mean variance of the training
samples is set to 1. A certain amount of uniformly distributed noise is added to
the training samples. First, we consider a two-dimensional toy example, where
each training sample is a multiple of one in five basis vectors, i.e., M = 5, k =
1, N = 2. The variance of the additive noise is set to 0.01. Figure 1 (a) shows the
training samples, the original basis Corig (dashed line) and the basis Clearn that
was learned from the data (solid line). Note that the original basis is obtained
except for the sign of the basis vectors. In a second experiment, a basis Corig ∈
ℜ20×50 is generated, consisting of M = 50 basis vectors within 20 dimensions.
Linear combinations x1, . . . , x5000 of k basis vectors are computed using uniform
distributed coefficients. The learned basis Clearn is compared to the original
basis Corig that was used to generate the samples. This is done by taking
the maximum overlap of each original basis vector c

orig
j and the learned basis

vectors, i.e., maxi |clearn
i c

orig
j |. We repeated the experiment 10 times. Figure 1

(b) shows the mean maximum overlap for k = 1, . . . , 15 for different noise levels.
To assess how many of the learned basis vectors can be assigned unambiguously
to the original basis, we consider unique(Ĉlearn), which is the size of the set
Ĉlearn = {clearn

k : k = argmaxi |clearn
i c

orig
j |, j = 1, . . . , M} without repetitions.

Figure 1 (c) shows the mean of unique(Ĉlearn). Increasing noise level leads
to decreasing performance as expected. The less sparse the coefficients are (the
larger k) the lower the quality of the dictionary reconstruction is (see also [6, 2]).
Finally, we repeat the second experiment by fixing k = 7 and evaluating the
reconstruction error (1) during the learning process. Note that the coefficients
used for reconstruction are determined by orthogonal matching pursuit with k

steps. Figure 1 (d) shows that the reconstruction error decreases over time.



0 5 10 15

x 10
4

0

5

10

t

1 L

∑
i
‖
x

i
−
C

a
(i

)‖
2 2

(d)

2 4 6 8 10 12 14
0.6

0.7

0.8

0.9

1

k

1 M

∑
j
m

a
x

i
|c

o
r
ig

j
c

l
e
a
r
n

i
| (b)

no noise

noise variance : 0.1

noise variance : 0.2

noise variance : 0.3

noise variance : 0.4

noise variance : 0.5

2 4 6 8 10 12 14
30

35

40

45

50

k

u
n
iq

u
e
(Ĉ

l
e
a
r
n
)

(c)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
(a)

Fig. 1: (a) two-dimensional toy example where each sample is a multiple of one in five basis
vectors plus additive noise (b) mean maximum overlap between original and learned basis (c)

mean size of Ĉlearn without repetitions (d) mean reconstruction error; Sparse Coding Neural
Gas parameters used: λ0 = M/2, λfinal = 0.01, ǫ0 = 0.1, ǫfinal = 0.0001, tmax = 20 ∗ 5000.

6 Conclusion

We described a new method that learns an overcomplete basis from unknown
sparse linear combinations. In experiments we have shown how to use this
method to learn a given artificial overcomplete basis from artificial linear com-
binations with additive noise present. Our experiments show that the obtained
performance depends on the sparsity of the coefficients and on the strength of
the additive noise.

References

[1] Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
Wiley-Interscience, May 2001.

[2] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. Stable recovery of sparse
overcomplete representations in the presence of noise. IEEE Transactions on Information

Theory, 52(1):6–18, 2006.

[3] T. Martinetz and K. Schulten. A ”Neural-Gas Network” Learns Topologies. Artificial

Neural Networks, I:397–402, 1991.

[4] E. Oja. A simplified neuron model as a principal component analyzer. J. Math. Biol.,
15:267–273, 1982.

[5] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition. Proceedings of the 27

th Annual Asilomar Conference on Signals, Systems,, November 1993.

[6] J. A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transac-

tions on Information Theory, 50(10):2231–2242, 2004.


