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Abstract—Recently, the so-called Support Feature Machine
(SFM) was proposed as a novel approach to feature selection
for classification, based on minimisation of the zero norm of
a separating hyperplane. We propose an extension for linearly
non-separable datasets that allows a direct trade-off between
the number of misclassified data points and the number of
dimensions. Results on toy examples as well as real-world
datasets demonstrate that this method is able to identify
relevant features very effectively.
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I. I NTRODUCTION

The ever increasing complexity of real-world machine
learning tasks requires more and more sophisticated methods
to deal with datasets that contain only very few relevant
features but many irrelevant noise dimensions. In practise,
these scenarios often arise in the analysis of biological
datasets, such as tissue classification using microarrays [1],
identification of disease-specific genome mutations or dis-
tinction between mental states using functional magnetic
resonance imaging [2]. It is well-known that a large number
of irrelevant features may distract state-of-the-art methods,
such as the support vector machine. Thus, feature selection
is often a fundamental preprocessing step to achieve proper
classification results, to improve runtime, and to make the
training results more interpretable.

For many machine learning tasks, maximum margin meth-
ods have been confirmed to be a good choice to maximise the
generalisation performance [3]. But, besides generalisation
capabilities, other aspects, such as fast convergence, exis-
tence of simple error bounds, straightforward implementa-
tion, running time requirements, or numerical stability, may
be equally important.

In recent years, as complexity and dimensionality of
real-world problems have dramatically increased, two other
aspects have gained more and more importance. These are
sparsity and domain interpretability of the inference model.
Both are closely connected to the task of variable or feature
selection. Primarily, feature selection aims to improve or
at least preserve the discriminative capabilities when using
fewer features than the original classifier, regression or
density estimator. In the following, we focus on feature
selection for classification tasks.

Feature selection as an exhaustive search problem is in
general computationally intractable as the number of states

in the search space increases exponentially with the number
of features. Therefore, all computationally feasible feature
selection techniques try to approximate the optimal feature
set, e.g. by Bayesian inference, gradient descent, genetic
algorithms, or various numerical optimisation methods.

Commonly, these methods are divided into two classes:
filter and wrapper methods. First, filter methods completely
separate the feature selection and the classification task [4].
The feature subset is selected in advance, i.e. filtered out
from the overall set of features without assessing the actual
classifier.

Wrapper methods make use of the induction algorithm to
assess the prediction accuracy of a particular feature subset.
Well-known contributions to this class of feature selection
algorithms are those of Weston et al. [5], who select those
features that minimise bounds on the leave-one-out error,
and Guyon et al. [6], who propose the so-called recursive
feature elimination. Some types of support vector machines
already comprise feature selection to some extend, such as
the l1-norm SVM [7] or the VS-SSVM (Variable Selection
via Sparse SVMs) [8]. The influence of an exponentially
increasing number of irrelevant features on feature selection
in general has been discussed in [9].

Recently, we proposed the so-called Support Feature Ma-
chine (SFM) [10] as a novel method to feature selection that
is both simple and fast. However, the standard formulation
is limited to linearly separable datasets.

The following sections are organised as follows. First,
we introduce the problem of finding relevant variables by
means of zero norm minimisation. We outline the mathe-
matical formulation of the Support Feature Machine and its
extension to linearly non-separable datasets. Additionally,
we provide an estimate of incidental separability to answer
the question whether the feature selection reveals the fun-
damental structure of a particular data set or if the same
outcome could be observed on random data. An evaluation
of the SFM in scenarios with an exponentially increasing
number of features and on linearly non-separable datasets
follows. Finally, we demonstrate the performance of the
SFM on a real-world microarray dataset. We conclude with
a critical discussion of the achievements and propose further
extensions to the SFM.



II. FEATURE SELECTION BY ZERO-NORM

M INIMISATION

We make use of the common notations used in classi-
fication and feature selection frameworks, i.e. the training
set

D = {~xi, yi}
n

i=1

consists of feature vectors~xi ∈ R
d and corresponding class

labelsyi ∈ {−1,+1}. First, we assume the datasetD to be
linearly separable, i.e.

∃ ~w ∈ R
d, b ∈ R

with yi
(

~wT~xi + b
)

≥ 0 ∀ i and ~w 6= ~0 , (1)

where the normal vector~w ∈ R
d and the biasb ∈ R

describe the separating hyperplane except for a constant
factor. Obviously, if~w andb are solutions to the inequalities,
alsoλ ~w andλ b solve them withλ ∈ R

+.
In general, there is no unique solution to (1). Our goal is

to find a weight vector~w and a biasb which solve

minimise ‖~w‖00
subject to yi

(

~wT~xi + b
)

≥ 0 and ~w 6= ~0 (2)

with ‖~w‖00 = card{wi|wi 6= 0}. Hence, solutions to (2)
solve the classification problem (1) using the least number
of features. Note, that any solution can be multiplied by a
positive factor and is still a solution.

Some attempts have been made to approximate the above
problem with a variant of the Support Vector Machine
(SVM), e.g. by Weston et al. [11] who

minimise
d
∑

j=1

ln (ǫ+ |wj |)

subject to yi
(

~wT~xi + b
)

≥ 1 . (3)

with 0 < ǫ ≪ 1. A local minimum of (3) is found using
an iterative scheme based on linear programming. However,
we found the following approach to identify relevant features
more effectively.

A. Standard Support Feature Machine

Instead of modifying the SVM setting as in [11], we
slightly change (2) such that we

minimise ‖~w‖00
subject to yi

(

~wT~xi + b
)

≥ 0

and ~wT~u+ ȳb = 1 (4)

with ~u = 1
n

∑n

i=1 yi~xi and ȳ = 1
n

∑n

i=1 yi. The second
constraint excludes~w = ~0, since otherwise we would obtain
ȳb = 1 andyib ≥ 0, which cannot be fulfilled for alli (we
have labels+1 and−1). As long as there is a solution to
(2) with yi

(

~wT~xi + b
)

> 0 for at least onei ∈ {1, ..., n},
also

∑n

i=1 yi
(

~wT~xi + b
)

> 0 is satisfied. Hence, solving
(4) yields a solution to the ultimate problem (2).

Since we have linear constraints, for solving (4) we can
employ the same framework Weston et al. [11] used for
solving their problem. However, our experiments show that
by

minimising
d
∑

j=1

ln (ǫ+ |wj |)

subject to yi
(

~wT~xi + b
)

≥ 0 and ~wT~u+ ȳb = 1

we obtain significantly better solutions to the ultimate prob-
lem then by solving (3). It seems that the new cost function
is much less prone to local minima. For solving the above
problem, we apply a constrained gradient descent technique
based on Frank and Wolfe’s method [12]:

1) Set~z = (1, . . . , 1).
2) Minimise |~w| such thatyi

(

~wT(~xi ∗ ~z) + b
)

≥ 0 and
1
n

∑n

i=1 yi
(

~wT(~xi ∗ ~z) + b
)

= 1
3) Set~z = ~z ∗ ~w.
4) Repeat until convergence.

B. Extension to non-separable Datasets

We extend the SFM to non-separable datasets by intro-
ducing a slack variableξi for each data point and a softness
parameterC. Then we

minimise ‖~w‖00 + C‖~ξ‖00

subject to











yi
(

~wT~xi + b
)

≥ −ξi

~wT~u+ ȳb = ±1

ξi ≥ 0 .

As we allow for classification errors,yi
(

~wT~xi + b
)

may
become negative and the pathological case where~wT~u+ ȳb

gets negative may occur. Therefore, the optimiser needs to
fulfil the latter constraint either with+1 or −1. Practically,
one needs to optimise for both variants and finally choose
the solution with the lower objective function. Again, we use
the previously mentioned iterative approximation scheme for
solving (5).

An appealing feature of the soft-margin SFM is that the
objective function explicitly contains the trade-off between
the number of features and the number of misclassified
training samples‖~ξ‖00.

C. Notes on Incidental Separability

Finally, we want to assess the issue of incidental separa-
bility, i.e. the probability of a random dataset to be linearly
separable depending on the number of features and the
number of data points. In general, there exists no closed
formulation for this probability, but in case of rotationally
symmetric distributions some bounds can be derived. Let
PD,n denote the probability ofn data points drawn from
a D-dimensional distribution to be linearly separable. This
is equivalent to the probability that all data points are



located within the same half-space. Obviously,PD,n = 1
for n ≤ D. For rotationally symmetric distributions, such as
the multidimensional standard normal distribution, Wendel
[13] proofed that

PD,n = 2−n+1
D−1
∑

k=0

(

n− 1

k

)

. (5)

Assume a feature selection algorithm indicates that only
d < D dimensions are relevant. Now, what is the probability
Pd,D,n that ad-dimensional subspace exists where all data
points are linearly separable or, in other terms, located in
the same half-space. As there are

(

D

d

)

possible ways to
choose thed-dimensional subspace, the following upper
bound holds:

Pd,D,n ≤ min

(

1,

(

D

d

)

Pd,n

)

≤ min

(

1,

(

D

d

)

2−n+1
d−1
∑

k=0

(

n− 1

k

)

)

(6)

Admittedly, this is a very rough estimate constrained to
the strong requirement of rotationally symmetric distribu-
tions. However, ifPd,D,n is low in an arbitrary scenario,
it is a strong indicator that the selected features are truly
relevant. In other words, it is not likely that a random data
set with the same parameters is separable by chance.

Finally, we want to address the special case ford = 1
and the multidimensional standard normal distribution. Let
Ei denote the event that the dataset is separable within
dimensioni. Now, the probabilityP1,D,n derives to

P1,D,n = P

(

D
⋃

i=1

Ei

)

= P (E1) + . . .+ P (ED)

−P (E1 ∩ E2)− . . .− P (ED−1 ∩ ED)

+P (E1 ∩ E2 ∩ E3) + . . .

. . .

(−1)D−1P

(

D
⋂

i=1

Ei

)

=
D
∑

i=1

(−1)i+1

(

D

i

)

P i
1,n

=

D
∑

i=1

(−1)i+1

(

D

i

)

2i·(−n+1) (7)

Here, we use the fact that all eventsEi are pairwise
statistically independent, i.e.P (Ei ∩ Ej) = P (Ei)P (Ej)
for all i 6= j.

III. E XPERIMENTS

For learning tasks, such as classification or regression,
one normally assesses a method’s performance via the k-
fold cross-validation error, or via the test error on a separate

dataset. For feature selection, besides the test error, also
the number of selected features and the amount of truly
relevant features are important. As in real-world scenarios
these values are almost never known, we start with artificial
examples to compare the results of different methods.

A. Exponentially Increasing Number of Irrelevant Features

First, we focus on the impact of an exponentially increas-
ing number of irrelevant features as this is the most inter-
esting scenario in real-world machine learning and pattern
recognition applications, such as the analysis of microarray
or genome data. We normally deal with an extremely large
number of input features while the number of data points is
low due to practical and financial issues in data acquisition.
However, we expect the number of relevant dimensions in
these scenarios to be rather low with respect to the whole
number of input dimensions.

The toy examples were constructed according to Weston
et al. [11], i.e. the input data consist of 6 relevant but
redundant features and an exponentially increasing num-
ber of Gaussian noise dimensionsk∗ (k∗ = 8, 64, 512,
4096, the original dataset contained a fixed number of
196 noise dimensions). We sampled 10000 data points, a
small proportion ofn data points was used for training
(n = 20, 50, 100, 200, 500), the remaining data points served
as the test set. Additionally, we required the training set to
be linearly separable. Each experiment was conducted 100
times for each training method.

Table I shows the impact of the noise features on the
test error for the SVM without feature selection, Weston’s
method and the SFM. Obviously, the SVM shows a very
bad performance fork∗ ≥ 512. Both, the SFM and Weston’s
method, are significantly better suited in these scenarios and
Weston’s method shows the lowest error rate in extremely
low-dimensional scenarios (e.g.n = 20, k∗ = 512). How-
ever, the test error of the SFM increases only slowly with
the number of irrelevant featuresk∗ and the increase from
k∗ = 512 to k∗ = 4096 is well below the standard deviation.

Table II compares the capability of both variable selection
methods to identify relevant and irrelevant features. Obvi-
ously, the SFM returns a lower number of features which
are more likely to be truly relevant features. Even in high-
dimensional low-sample size scenarios the SFM can identify
very effectively the relevant dimensions. As the number of
data points increases, the number of features we find to
be relevant increases but stays below 6 — the number of
truly relevant features. The percentage of correctly identified
features decreases with the number of noise dimension.
However, only in extremely high-dimensional low-sample
size scenarios the value drops below 90%.

Finally we apply the estimate for incidental separabil-
ity (6). For n = 20 and k∗ = 4096, we find 2.2 ≈ 2
relevant dimensions. Here,Pd,D,n = P2,5102,20 = 1, i.e. the
result does not reveal significant structure — empirically



only 40.9% of the identified features were truly relevant on
average. However, forn = 50 and againk∗ = 4096, approx-
imately 3 features were found. Now,P3,5102,50 = 0.048,
being a strong indicator that these features indeed reveal
structure. Empirically,84.7% were correctly identified on
average.

B. Soft-Margin Support Feature Machine

For evaluating the soft-margin approach, we constructed
an artificial problem where both classes have a significant
overlap. The probability of the classesy = 1 and y = −1
was equal both in the training and the test set. The firstk

dimensionsx1, . . . , xk were drawn normally distributed as
xi = N (µ ·y, 1). The remaining featuresxk+1, . . . , xd were
noise drawn asxi = N (0, 1). Training and test sets were
sampled according to the above procedure, each containing
n data points.

Figure 1 shows the mean results after 100 repetitions for
n = 500, k = 10, d = 200 and µ = 0.3. The softness
parameterC was sampled in 100 steps logarithmically
spaced between0.01 and100.

We observe the number of features to increase withC.
For very smallC exclusively relevant features are selected,
hence, a correct feature rate of 100% is achieved. As the
number of features approaches the true number of features
(k = 10) more and more irrelevant features are included. The
training error decreases withC but does not become zero
as both classes have a significant overlap. The test error is
minimal for C = 0.66.

C. Microarray Data

In recent years, the use of microarray data has become
an important tool to determine genes that cause certain
diseases. Golub et al. [1] showed how to classify two
different types of cancer (acute myeloid leukaemia (AML)
and acute lymphoblastic leukaemia (ALL)) using correlation
coefficients. The dataset consists of 38 training samples (27
vs. 11) and 34 test samples (20 vs. 14) with 7129 features
each describing the expression level of a single protein.

An important aspect of this high-dimensional low-sample
size datasets is the strong correlation between some of the
relevant features. Using an SFM, we find the training dataset
to be separable in two dimensions, but with a test error
of 17.7%. This is due to two different aspects. First, the
SFM may have multiple solutions, so there may exist other
two dimensional projections that are also linearly separable.
Second, whenever dimensions are strongly correlated, the
SFM selects one of them if separability is achieved. How-
ever, it might be beneficial with respect to generalisation
performance to also include these correlated features. We
propose the following greedy method for identifying corre-
lated dimensions:

1) Initialise the set of active featuresA = {1, . . . , d} and
the set of relevant featuresF = ∅.
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Figure 1. Soft margin SFM (n = 500, k = 10, d = 200). Shown are
the number of features‖~w‖0

0
(dash-dotted, left y-axis), the percentage of

misclassified training data points (solid, right y-axis), the test error (dashed,
right y-axis) and the percentage of correctly identified features (dotted, right
y-axis) for 100 independent trials.

2) Train an SFM using the feature setA.
3) Remove all features with non-zero weight fromA and

add these features toF .
4) Repeat for a fixed number of iterations or until the

training error exceeds a certain threshold.

The final feature setF may now be used for training an
SVM to optimise for generalisation performance. After 10
iterations (C = 1000) we obtained a total of 25 features.
A soft-margin SVM (C = 10000) using these 25 features
misclassified only a single test data point.

We further compared the obtained list of relevant features
with the 50 most relevant features in [1]. We found that 20
of the 25 features were also present in the feature list of
Golub et al. As both methods rely on different theoretical
approaches — Golub et al. use a ranking of correlation coef-
ficients, we use a multidimensional optimisation procedure
— the results are not only consistent but also emphasise the
biological relevance of the selected feature set. These are
promising results for future applications of the SFM.



Table I
IMPACT OF AN EXPONENTIALLY INCREASING NUMBER OF IRRELEVANT FEATURES ON THE TEST ERROR. SHOWN ARE THE TEST ERROR OF ANSVM
WITHOUT FEATURE SELECTION(A), OF THE METHOD PROPOSED BYWESTON (B) AND OF THE SFM (C) (TOY EXAMPLE, 6 RELEVANT FEATURES, k∗

IRRELEVANT ONES).

(a) Support Vector Machine
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 5.0% (± 2.5%) 17.5% (± 2.8%) 36.1% (± 1.3%) 45.1% (± 0.7%)
50 2.4% (± 1.2%) 8.7% (± 1.7%) 28.6% (± 1.3%) 41.9% (± 0.7%)

100 1.7% (± 0.8%) 5.0% (± 1.3%) 21.6% (± 1.3%) 38.7% (± 0.7%)
200 1.3% (± 0.5%) 2.7% (± 0.7%) 14.1% (± 1.0%) 34.2% (± 0.7%)
500 1.0% (± 0.3%) 1.6% (± 0.3%) 6.9% (± 0.7%) 26.2% (± 0.6%)

(b) Weston’s Method
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 6.0% (± 5.7%) 6.8% (± 6.8%) 14.5% (±12.0%) 30.9% (±15.6%)
50 2.3% (± 1.8%) 2.6% (± 1.7%) 3.0% (± 2.2%) 3.7% (± 3.0%)

100 1.6% (± 0.7%) 1.8% (± 1.0%) 1.8% (± 0.9%) 1.8% (± 1.0%)
200 1.2% (± 0.5%) 1.2% (± 0.5%) 1.3% (± 0.5%) 1.3% (± 0.5%)
500 0.8% (± 0.3%) 0.8% (± 0.2%) 0.8% (± 0.3%) 0.8% (± 0.3%)

(c) Support Feature Machine
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 14.5% (± 5.5%) 14.7% (± 5.9%) 23.0% (±11.8%) 31.5% (±14.9%)
50 5.8% (± 2.7%) 6.4% (± 3.9%) 7.2% (± 4.1%) 8.5% (± 4.8%)

100 3.4% (± 1.7%) 3.2% (± 1.5%) 3.3% (± 1.5%) 3.6% (± 1.8%)
200 1.9% (± 0.8%) 2.0% (± 0.7%) 2.1% (± 0.8%) 1.9% (± 0.8%)
500 1.1% (± 0.3%) 1.1% (± 0.4%) 1.1% (± 0.4%) 1.0% (± 0.4%)

Table II
IMPACT OF AN EXPONENTIALLY INCREASING NUMBER OF IRRELEVANT FEATURES ON THE VARIABLE SELECTION PERFORMANCE. SHOWN ARE THE

NUMBER OF FEATURES FOUND TO BE RELEVANT(A ,B) AND THE PERCENTAGE OF CORRECTLY IDENTIFIED FEATURES(C,D).

(a) SFM, features found to be relevant
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 2.0 (± 0.6) 2.1 (± 0.7) 2.1 (± 0.7) 2.2 (± 0.8)
50 2.4 (± 0.6) 2.5 (± 0.6) 2.5 (± 0.8) 2.6 (± 0.8)

100 2.6 (± 0.7) 2.7 (± 0.7) 2.7 (± 0.7) 2.7 (± 0.7)
200 3.1 (± 0.7) 3.3 (± 0.8) 3.0 (± 0.8) 3.1 (± 0.8)
500 4.2 (± 0.8) 4.1 (± 0.7) 4.0 (± 0.7) 4.0 (± 0.9)

(b) Weston, features found to be relevant
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 2.8 (± 0.8) 2.7 (± 0.9) 3.1 (± 1.1) 3.4 (± 1.3)
50 3.2 (± 1.0) 3.2 (± 1.1) 3.4 (± 1.2) 3.5 (± 1.4)

100 3.8 (± 1.0) 4.0 (± 1.2) 3.8 (± 1.3) 3.8 (± 1.2)
200 4.8 (± 1.3) 4.8 (± 1.3) 5.0 (± 1.2) 4.8 (± 1.4)
500 5.8 (± 1.3) 6.2 (± 1.5) 6.0 (± 1.4) 6.0 (± 1.3)

(c) SFM, Correctly identified relevant features
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 98.0% (± 9.0%) 85.6% (±22.8%) 67.2% (±26.5%) 40.9% (±34.4%)
50 98.6% (± 6.1%) 99.4% (± 4.1%) 94.4% (±14.0%) 84.7% (±23.6%)

100 99.8% (± 2.5%) 99.5% (± 3.5%) 97.1% (± 9.4%) 94.9% (±12.0%)
200 99.6% (± 2.6%) 98.8% (± 5.1%) 97.4% (± 7.5%) 96.3% (± 9.5%)
500 98.6% (± 5.2%) 96.6% (± 8.0%) 95.6% (± 8.6%) 94.3% (±10.5%)

(d) Weston, Correctly identified relevant features
n k∗ = 8 k∗ = 64 k∗ = 512 k∗ = 4096

20 93.0% (±15.1%) 82.8% (±20.4%) 62.7% (±29.9%) 33.9% (±30.1%)
50 93.8% (±12.7%) 90.2% (±14.6%) 81.0% (±18.7%) 82.3% (±20.1%)

100 95.0% (±10.0%) 91.1% (±14.6%) 88.0% (±16.8%) 85.3% (±15.8%)
200 90.3% (±12.8%) 82.2% (±15.0%) 79.6% (±16.3%) 82.7% (±15.9%)
500 83.8% (±12.9%) 76.9% (±15.0%) 75.4% (±14.8%) 78.6% (±15.2%)



D. Implementation Issues

As with many machine learning algorithms, normalisation
is an essential preprocessing step also for the SFM. For all
experiments, we normalised the training datasets to zero
mean and unit variance and finally scaled all vectors to
have a mean norm of one. This last step is necessary in
high-dimensional scenarios to keep the outcome of scalar
products in a reasonable range. The test sets were normalised
according to the factors obtained from the corresponding
training sets.

For solving the optimisation problems, we used the
MOSEK optimisation software. To avoid numerical is-
sues, numbers that differed by no more than a specific
implementation-dependent number — normally closely con-
nected to the machine epsilon — were considered to be
equal.

In the hard-margin case, either no solution exists or
a solution where all data points are correctly classified.
Since the optimiser uses numerical approximation methods
with certain accuracy thresholds, some constraints may be
marginally violated. Thus, some data points may be located
on the wrong side of the hyperplane, but very close to it,
producing a non-zero training error even in the hard-margin
case.

IV. CONCLUSIONS

Experiments on artificial as well as real-world datasets
demonstrated that the SFM can identify relevant features
very effectively and may improve the generalisation perfor-
mance significantly with respect to an SVM without feature
selection. Even an exponentially increasing number of ir-
relevant features does not cause a significant performance
drop. The implementation only requires linear programming
solvers and may therefore be established in various program-
ming environments.

Additionally, we introduced some simple bounds for the
probability of incidental separability, that may be used to
estimate whether separability in a certain scenario is likely
or may occur even for a completely random data set.

So far, we focused on linear classifiers, mostly for
high-dimensional low-sample size scenarios because these
scenarios seem to be the most relevant ones in practical
applications, such as the analysis of microarray datasets.

In some scenarios, it is necessary to allow for nonlinear
classification to achieve proper classification performance.
One might think of ways to incorporate kernels into the
SFM to allow for arbitrary class boundaries. Nevertheless,
the main focus of the SFM was to provide results that may
easily be interpreted both in terms of feature selection and
classification, so nonlinearities would slacken this demand.

Further work will include experiments on more challeng-
ing real-world scenarios with practical relevance. Finally, we
seek for an iterative optimisation method to be independent
from proprietary optimisation toolboxes.
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