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Abstract—The well-known MinOver algorithm is a slight and incremental almost by definition. The pattern-by-patte
modification of the perceptron algorithm and provides the nature of learning in Neural Networks like, for example, the
maximum margin classifier without a bias in linearly separable perceptron usually leads to simple training procedureschvhi

two class classification problems. DoubleMinOver as an extension iiv be imol ted. It is desirable to h imil
of MinOver, which now includes a bias, is introduced. An ©@n €asily be implemented. IS desirable 10 have simiiar

O(t~') convergence is shown, where is the number of learning ~ training procedures also for the SVM.

steps. The computational effort per step increases only linearly Several approaches for obtaining more or less simple incre-
with the number of patterns. In its formulation with kernels mental learning algorithms for the SVM have been introduced
selected training patterns have to be stored. A drawback of 16, [7], [8], [9], [10], [11], [12], [13]. Among the first and

MinOver and DoubleMinOver is that this set of patterns does . . -
not consist of support vectors only. DoubleMaxMinOver, as most widespread are the Kernel-Adatron by Friess, Cristian

an extension of DoubleMinOver, overcomes this drawback by and Campbell [6] and the Sequential-Minimal-Optimization
selectively forgetting all non-support vectors after a finite nunber  algorithm (SMO) by Platt [7]. Like the MinOver algorithm by
of training steps. It is shown how this iterative procedure Krauth and Mezard [14], which we will build on, the Adatron
that is still very similar to the perceptron algorithm can be \yac introduced for constructing synaptic weight matricés o

extended to classification with soft margins and be used for - e .
training least squares Support Vector Machines (SVM). On optimal stability in spin-glass models of Neural Networks

benchmarks the SoftDoubleMaxMinOver algorithm achieves the [15], [16]. Friess et al. adapted the Adatron to the problem
same performance as standard SVM software. of maximum margin classification with kernels. The Adatron

and the MinOver algorithm are very similar and can both
be derived from constrained gradient descent. The Adatron
|. INTRODUCTION converges faster; however, the MinOver learning step is eve

The Support Vector Machine (SVM) [1], [2] has become §_impler_ (exponentia] versu];/t convergence, quadratic versus
standard tool in classification and regression tasks (@ld4], linear time complexity per iteration step). Navone and Dswn
[5]). A major drawback, particularly for industrial appditions [17] give a comparison of both algorithms on common bench-
where easy and robust implementation is an issue, is its cof@'k problems. They report that for reasons which require
plicated training procedure. A large Quadratic-Prograngmi further investigations the MinOver algorithm shows a Iéagn
problem has to be solved, requiring sophisticated numeri@ghaviour which is advantageous in a number of aspects.
optimization routines which many users do not want or cannot Vishwanathan et al. [12] present a method which guarantees
implement by themselves. They have to rely on existid§ converge to the exact maximum margin solution after agfinit
software packages, which are hardly comprehensive andNgfnber of steps. They use an active set strategy and claim
least in some cases, error-free. This is in contrast to md@tPe considerably faster than the SMO algorithm by Platt

Neural Network approaches where learning has to be simpfé Their work is based on an approach of Cauwenberghs
and Poggio [10], which converges afteriterations, where

http://Awww.inb.uni-luebeck.de n is the number of considered samples. Their method has



the additional advantage of being able to learn incremigntalWe want to find the hyperplane which separates the patterns
and decrementally, thereby enabling an efficient calauati of these two classes with maximum margin. The hyperplane
of the leave-one-out error. Another approach for incremienfor classification is determined by its normal vectore R”
or decremental learning was introduced by Kim et al. [18hnd its bia® € RR. It achieves a separation of the two classes,
Their approach is based on updating and downdatingxRe if
decomposition of the least squares Support Vector Machine,  y;(w’x; —b) > 0 for all i=1,...,N.
which allows to efficiently compute the updated solution wheTh inA of thi tion is ai b
data points are added or removed. In [19] they show how their® Margina ot this separation is given by
method can be applied to drug design by iteratively inclgdin A(w,b) = min [yi(wa,; — b)/||w\|] )
new compounds into the training set. xi €X

Another interesting approach is the work of Tsang et d&laximum margin classification is obtained by the.,
[13]. Training an SVM is reduced to the problem of finding/w«|| = 1 and b, for which A(w.,b.) = A* becomes
the minimum enclosing ball around a set of points. They appigaximal.
the so-called core set, which has been introduced for findingThe Support Vector Machine (SVM) as introduced in [1],
approximate solutions for the minimum enclosing ball (MEBJR1] determinesw. and b. by solving a quadratic pro-
problem [13]. The method converges fast as the convergelgé@mming problem. It minimizegw||> under the constraints

rate does not depend on the number of samples, but it oslyw’x; —b) > 1,i = 1,..., N, the so-called hard margin

provides approximate solutions. The loss in precision gpeecase. The solution is equivalent te. up to a scaling factor.

up the algorithm. In its dual formulation one has to find, ¢ R} ,i =1,..., N
In this paper, we will revisit and extend the MinOver algowhich maximize

rithm to obtain perceptron-like procedures for trainingpfort N 1 N

Vector Machines. Their learning steps can be motivated from W(a) = Zai ) Z yiijiTXj

gradient descent. With their pattern-by-pattern natunetiie i=1 i,j=1

sense that, like for the perceptron, one pattern after ther @t

. . - under the constrainE" , y;a; = 0. The solution yields
chosen for learning from a given training set) these pro=iu Bim i y

are suitable for incremental and decremental learningerAdt N
finite number of iterations only support vectors are takea in Wi = Zyioz,;x,; . (1)
account. The method can easily be extended to kernels while i=1
keeping its simplicity. Only a subset of they; will be non-zero. Those; for which

First, we will reformulate MinOver. In this reformulationé «; > 0 are called support vectors [21]. For thep{w!x; —
MinOver algorithm is a slight modification of the perceptrorh.) = A* is valid. Hence, the set’s C X" of these support
learning rule and could hardly be simpler. Then, in Sectipn vectors determinev,. and b.. In the following we introduce
we extend MinOver to DoubleMinOver which remains a8 class of algorithms which determirve, andb, iteratively,
simple as MinOver but now provides the maximum margire., which solve the quadratic programming problem of the
solution also for linear classifiers with a bias. We presenthard-margin SVM by employing a perceptron-like pattern-by
convergence proof and show that @t —!) convergence can pattern optimization procedure.
be expected, whereis the number of learning steps. A simple, perceptron-like pattern-by-pattern algorithm

The convergence of MinOver to the maximum margiihich provides the maximum margin classification in lingarl
hyperplane in linearly separable classification tasks i-weseparable cases is the well-known MinOver algorithm intro-
known; however, the solution is not based solely on suppéiticed by [14] in the context of constructing synaptic weight
vectors. The same is true for DoubleMinOver. Therefore, imatrices of optimal stability in spin-glass models of Néura
Section Il we extend DoubleMinOver to DoubleMaxMinOveNetworks. However, it only provides the maximum margin
in a similar way as we extended MinOver to MaxMinOver irsolution if no biasb is included. In the MinOver algorithm
[20]. The DoubleMaxMinOver algorithm provides the maxithe current normal vectox; converges tov, with increasing
mum margin hyperplane based only on support vectors. In theémber of iterations. This is valid as long as a full separation,
last part of this paper we will show how DoubleMaxMinOvet.€. aw, with A* > 0 exists. The MinOver algorithm works
can be extended to SoftDoubleMaxMinOver for classificatidike the perceptron algorithm. However, instead of chagsin
with soft margins. SoftDoubleMaxMinOver yields solution@n arbitrary misclassified pattern out of the training &gt
also in cases where the classification problem is not ligeawith each training step the "mostly misclassified” pattern is
separable. In the last section we will present results affiosen. The "mostly misclassified” pattexp,;, (t) is the one

comparisons on common benchmark problems. with minimum distance (overlap)inxi from the separating
hyperplane § = 0). Hence the name MinOver. In contrast to

the perceptron, however, learning proceeds even if alepadt
are classified correctly. In this case the distapse” x; of the
Given a set of pattern&’ = {x; € RP,i = 1,...,N} "mostly misclassified” patterx,;,(¢t) has become positive.
with corresponding class labels € {-1,1},i = 1,...,N As a first step we slightly modify MinOver such that a
such that the clas®* C X of patterns with label-1 and the bias b can be included. Instead of looking for the pattern
classX¥~ C X of patterns with label-1 are linearly separable. with minimum distance inX, now we look for the pattern

Il. THE DOUBLEMINOVER ALGORITHM



Xpint (£) € XT with minimum distance in¥* and for the
patternx,;,- (¢) € X~ with minimum distance in¥~ and

use both for the next adaptation step. Hence the name Double-
MinOver. In Algorithm 1 the pseudo code for DoubleMinOver

is listed.

Algorithm 1 With ¢,,., denoting the number of desired

iterations, DoubleMinOver works as follows:

w «— 0
for t = 0 to tmax dO
Xpin+ < arg min (wai)

X, EXT

Xmin— < ar'g min (_WTXi)
X;EX™

W — W + Xpin+ — Xpin-

end for

b— %WT (Xmin+ + Xmin— )

Why does it work? For a givew, the marginA(w,b) is
maximized if b(w) is chosen such that the margin to both

classes is equal, i.e., if

min [w'x; —b(w)] = min [—(w'x; —b(w))] .

X, EXT x; EX™

This leads to the expression for the bias in Algorithm 1

1
b(W) = 5 (VVTXmin+ + WTXmin*) .
DoubleMinOver then looks for th&r which maximizes

A(w) = A(w,b(w))

= min
XiEX [wl
o wlx; —b(w) —w'x; + b(w)
= min =
X, EX+ [lw]| X €EX~ [wl|
1 . WTXZ' . _WTXi
= —| min —— + min
2 \xiext [[w|  xicx— ||W]
1
- M ’ (Xmin+ _Xmin*> .

In this form the adaptation step fer; in DoubleMinOver can
be motivated from gradient ascent dnw). Note, however,
that this view is just a motivation and, e.g., neglects the

normalization ofw.

Note that it is sufficient to determirteonly once at the end
of the training procedure. This is due to the fact tkat, + (¢)

andx,;,- (t) do not depend on the choice bf

A. On the convergence of DoubleMinOver

Krauth and Mezard proved arO(t~'/2) convergence for

A(w, +euy) =

we can write

T
AW) = Smin Y2 and A* = A(w,) .
2 zezZ HWH

With z,i, (t) := arg rréinwfz = Xpin+ (t) — Xpin- (t)
z
we obtain for the learning step
Witr1 = Wi + ZII]iIl(t) .

Let X7 := XsNX* be the set of support vectors M*
and Xy := X5 N XA~ be the set of support vectors in
X~. We call

Zg={x"T—x |xT eXJ x X5}

the set of support vectors ifi. For eachz € Zg wlz =
2A* is valid.

) ~: denotes the angle between andw..
) u; :=w;—(w!w;)w, denotes the projection ef; onto

*

the plane perpendicular t@,, i.e., it holds
Wi = €08 V|| W || Wi +uy with u/w,=0.(2

s(z) := z — (wl'z)w, denotes the projection of € Z
onto the plane perpendicular .. This yieldsS :=
{s(z) | z € Z} as the set of projections anfls :=
{s(z) | z € Zg} as its subset where the are support
vectors.

Lemma 1:For eacht € INj it holds u? z,;, (t) < 0.

Proof: We introducez, := argmig(w* +ewy)lz, e €
z€

IRSF. Fore =0, z. € Zg is valid. SinceZ is a discrete and
finite set of points inR”, there is am € R* andz, € Zg
such that for0 < € < a z. = z¢ is valid. u}z, < 0, since
otherwise by choosing € R sufficiently small

1 . (wetew)lz
~ min ~—~—
2 22w + ey

1 (wy +eu)?

2 ||lwi + euy|
1 2A* 4+ eul'z
9 ol ot
2 (14 2 u)|?)?
1

Z

E (2A* + cuf zo) <1 — ;52|u752)
> A7

+% (utho - %et||ut||2 (2A* + sutho))
> A*,

MinOver [14] within the context of spin-glass Neural Neti.e., a larger margin thann* would result by choosingv. +
works. Here, we adapt this proof to DoubleMinOver. Imu, instead ofw, (contradiction).

addition, we show that DoubleMinOver converges even asWith Equation (2) we obtainw! zg = 2 cosy;||w|A* +
O(t™1). First, we introduce some notations and have to prove z,. Further, w; zin(t) > 2cos || wi[|A* + uf zmin (¢).

some lemmata.
Notations:

i) With

Z={xt-x |xtextx ex}

Subtracting both equations, we obtairf z,i,(t) — wilzo >
U Zin(t) — ulzg. Since 0 > wlzyn(t) — wizg, also
0 > ul zuin(t) —ul'zg and, henceu! z,,;, (t) < ul'zg. Since
u!'zy, < 0, we can conclude the proof. ]



Theorem 1:Let A, = A(w;) be the margin provided by
DoubleMinOver aftet iteration steps anfA*—A;)/A* be its
relative deviation from the maximum margin. For each 0

A=A _ (R/AY)?1(R/AY)
A Vi 2 ¢

is valid, with R := maxxcx x|
Proof: First, we show thatju,||? < 4R?t. This can be
seen from

0<

+

e ]|® = fue]® in () = [Zmin (1) W] w2
QU?Zmirl(t) + ||Zmin(t)H2
_[Zmin(t)TW*]2

Hzmin(t)”2

4R?

IN A

where we have used; w, = 0 and Lemma 1 (note that we
start withuy = 0). Since also

t—1
W*TWt = WZ Z Zmin(T) > 2A™ ¢
7=0

is valid, we obtain the bounds

|l _ 2RvVE _ R/A*

siny; <y < tany, = szt = 9A*t \/% )
Together with Equation (2) this yields
T
min t
oA* > oA, — YiZmin()
[[we |
= wfzmin(t) cos vy
T
min t .
i Zmin() o @
[[ae]
> 2A%cosy; — 2Rsiny;
> 2A7(1-12/2) — 2Ry
2 * 2 *
> 2A*721%/A _RP/A .
Vi t
A proper rearrangement concludes the proof. [ ]

Hence, with increasing the margin converges to the
maximum margin a€)(¢t~'/2). In the following we show that

even anO(t~!) convergence can be expected. But first wejj)

have to prove that after a finite number of iterationg, (¢)
will always be a support vector.

Lemma 2:1t exists at, € INg such thatz,,, (t) € Zg for
t > to.
Proof: Let us assume that there exists no sugle INy.

We haveA := % min w!z > A*. Then for any (arbitrarily
ZEZ\ZS

large)t, € INy there is a > to such thatz,i, (t) ¢ Zs. Then
wlzmin(t) > 2A and with Equation (4) we obtain

utTZInin (t)
[

2A cos v — 2R siny, .

2A%

Y

szmin(t) cosys + sin 7y

vV

Sincecosy; — 1 andsinvy; — 0 for ¢ — oo, this leads to a
contradiction. [ |

Lemma 3:There are3, € R,z € Z with 3, > 0 only
for z € Z5 such that

W*:Zﬂzzz Zﬁzz~

z€EZ zZ€EZg

Proof: We use Equation (1). Foz = x; — x;, x; €
X*,x; € X~ we choosef, = “74 with A = %Zﬁil ;.
Sincea; € ]Rar,z' =1,...,N andq; > 0 for support vectors

only, the same conditions hold fgt,. Further, we obtain

Q; 05
§ Baz = § Bez = E g A (Xi_xj)
z€Z zZEZg X, €EXtT x;€X~
ij ceXxX— aj
= 714 Z OéinL
x;, €EXT
inEXJF @ .
- A QX
X;EX
= E ;X — E ;X
X, €EXT XjEX_
= W,.

We used) , v+ = >, cx-; = A, which can be
derived from the constrainzil\i1 yio; = 0. [ ]

Theorem 2:(A* — A;)/A* converges to zero a®(t~1!).
This O(t~1!) convergence is tight.

Proof: We prove Theorem 2 by proving thgi; || remains

bounded. From Equation (3) we can discern that in this case

we obtain anO(¢~!) bound for the angley, and, hence, an
O(t~1) convergence of the margih; to the maximum margin
A*,

We haveu; 1 = u;+S(zmin(t)). As we know from Lemma 2,
there is atg € INy such thats(zyi,(t)) € Sg for ¢ > tg. We
discriminate two cases:

i) s =0 foreachs € Sg. Then||u;|| remains bounded since
it does not change anymore foe> t,.

s # 0 for at least ones € Sg. With u; we denote the
projection ofu, onto the linear subspace spanneddy
Because of Lemma 2|u;|| remains bounded, if|a||
remains bounded. As soon &s> t;, we haveu;,; =
1 + s(zmin(t)) and, hence, for the change b, ||

[T * = (18] = 207 8(2min(£)) + [18(Zmin(0) 1 -

We show by contradiction that there is an- 0 such that
l's(zmin(t)) < —cllty|| for t > to. Then ||y 1]]® —
la|? < —2¢|[ws|| + 4R?. The negative contribution to
the change of{u||? increases with|w, ||, which keeps it
bounded.

Let @ := {q|q € span(Ss) and||q|| = 1} be the set
of all vectors of unit norm within the linear subspace



spanned bySs. Fort > ¢ty we have B. DoubleMinOver with kernels
The vectorw,; which determines the dividing hyperplane is

Zmin(t) = arg Jnin W, z given by
= arg mlzn (cosyt||wi||ws + ;) 2z t—1
ze. g % T Wi = Z (XminJr (T) — Xmin-— Zy7n Xy
= arg min (2cos || we[|A™ + u, z) =
= arg min utT wheren; € INg is the number of timeg; € X has been used
z€2s . . for training up to steg. Sincew,/|w;|| — w, for t — oo,
= arg min u; (z — (W, z)w,) comparison with Equation (1) shows that/||w:| — «; for

zEZ . . .
g t — oo. Slncezij\i1 y;n; = 0 at each time step, the constraint

T
since «=0 L .
Ue W SV | yia = 0 of the optimization problem’s dual formulation

. T
- ats W s(2) is permanently fulfilled during the learning proceéss
— arg min 07s(z) . The expression which decides the cl_ass assignment by being
zEZs smaller or larger than zero can be written as
Hence, N
wix—b= Z yiniX!I x — b. (6)
U Zmin(t) = m}sn u/'s =1
se . .
’ If the input patternsx € R” are transformed into an-
< <max min q s) ||| other (usually higher dimensional) feature spdeex) before
9€Q €8s classification, DoubleMinOver has to work wit(x;) as
< el training patterns. Due to Equation (6), we do not have to
) do it explicitly. With K (x;,x) = ®(x;)T®(x) as the kernel
with £ := — max min q's.Letq" = arg max min a’s. which corresponds to the transformati@rx), the r.h.s. of (6)
Lemma 3 andy*”'z = q*”'s(z) yields transforms into
«T N T *T Z X —b
q-w,=0= Z Baq z = Z Bzq S(Z) (5) niyi K (%, x .
z€EZg z€EZg

. In this kernel formulation the training step of the Double-
with 3, > 0 vz E Zs. Let us hassu?e that MinOver algorithm simply consists of searching fog,;,+ (t)
?3552}92‘1 s = ming’ "s = =2 > 0. Then, because andx,,;,- (t) and increasing their corresponding. In Algo-
of (5), q*"s(z) has to be zero for each € Zg, or, rithm 2 the pseudo code is listed.
equivalently,q*”'s = 0 for eachs € Sg. This, however,  If the numbers
is not possible, since* € Q, i.e., q* lies within the N
subspace spanned 8 andq* # 0. h(x;) = v Zyjan(xj,xi) i=1,....,.N (7)
The O(t~!) convergence bound faran -y, is a tight bound. '
For example in case of the four training pattexis= (1,1)”, are stored and updated appropriately, also in its kernel for
xy = (=1,1)7, x3 = (1,-1)", andxy = (=1,-1)" within mulation the computational effort for an iteration step of
R”, D = 2 with class labelg; = +1, y = +1, ys = —1, DoubleMinOver increases linearly with the number of tragi
andy, = —1 (in case ofD > 2 this might be a subspace).patternsN. Instead of performing a computation of the entire
It is easy to see that by construction. = (0, 1)T and sum (7) in each learning step, one can keep these values from
w, = (£2,2t)" for t = 1,3,5,... andw, = (0,2t)” for the previous step and obtain the new sum by adding only the
t=0,2,4,.... Thentany, = 1/t for t = 1,3,5,... and kernel values of those patterns that were selected in therur
tany, =0 fort =0,2,4,. |
Remark 1:In Theorem 1 we assumed that the DoubIeMln 1The alternative approach of extending the input vectors Hyiaa unit
Over algoritm stats witw,_o — 0. However, I is easy %yiq, (% U, S9ee i sandac Minover coes ol cemphy wih i
to verify that theO(t~'/2) convergence rate is valid also for
w;—o # 0. But then all the lemmata and theorems we have XN:yinif(Tf(:XN:y'n'(XTX-i-l)
proven so far are valid fow,—y # 0. = o
N N
ZyiniX?X+2yini
=1 i=1

wlx

In Fig. 1 we demonstrate the learning process on a 2-
dimensional toy problem. 50 data points for each class had
to be linearly classified with maximum margin. The dividing
line is shown for different time steps. Fig. 1 also shows with
convergence plot of the angle between and w.. In the b=—> yini #0
double-logarithmic scale th&(¢~!) convergence becomes i
evident. in general.
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log tan'y

log t

Fig. 1. Left: Learning process of the DoubleMinOver alduriton an artificial 2-dimensional dataset consisting of 1@hing samples. The dashed lines
show the separating plane at different time steps. The sioldis the final result of the DoubleMinOver learning algonit Training samples that are part
of the solution, i.e. that were selected for learning, arekedaby a circle. Right: Double logarithmic plot of the convemge oftan +, with ~ as the angle
betweenw; andw.. The dashed line demonstrates th¢t—1) convergence.

Algorithm 2 Kernel formulation of the DoubleMinOver algo-
N

rithm. With A (Xi) =Y Z yjan(Xj,Xi):
j=1

n«—0Vi=1,...,N
for t = 0 t0 tmax doO

mint T g xfreli/‘l;l_'_h (xz)
Xmin— < arg min h (x;)
n

»

xX;EX ™
mint < Mmin+ + 1
Nmin— < Mmin— +1

step. Initialized withh (x;) = 0, at the end of each iteration
theh(x;),i=1,...,N are updated according to

h(xi) < h(x:) + yi (K (Xmint > Xi) = K (Xpin-»Xi)) -

In Fig. 2 we show the learning result of DoubleMinOver
in its kernel formulation with Gaussian kernels, again on
2-dimensional toy problem. 100 data points for each clags hag. 2. Result of DoubleMinOver with Gaussian kernels on eificial 2-
to be classified with maximum margin. Circles indicate thosﬁmeTsionﬁl datdaset %)_nslistingdt?f 200 ;‘rainindg samples. Thg grea dedpifcts

H H . H e class boundary. Circles indicate those data pomtslwhnere used for
data points for whicln; > 0. Note that these data points ar earning, ie. for whichn; > 0.
not only support vectors.

lll. DOUBLEMAXMINOVER trainingV; = X5 should be valid. However, in particular in the
A drawback of the DoubleMinOver algorithm is that at thdeginning of the learning procedure, DoubleMinOver sslect
end of the training procedure; is non-zero not only for the training data points for learning which finally turn out not t
support vectors. LeV; = {x;|x; € X,n; > 0} C X be be support vectors of the maximum margin hyperplane. These
the set of training patterns for which; is non-zero at time data points are superfluous, need not be stored, and might
stept. Since the maximum margin hyperplane is determinezyen be detrimental for convergence. It would be desirable t
solely by the sefts C X" of support vectors, at the end of thehave an algorithm as simple as DoubleMinOver which yields a



log tany

log t

Fig. 3. Left: The same 2-dimensional dataset as in Fig. 1, time approached with DoubleMaxMinOver. The dashed linesalepe separating plane at
different time steps. Again, the solid line is the final tramiresult. Data points for which; > 0 holds are marked by a circle. It can be seen that only
support vectors remain. Right: Double logarithmic plot of dmmvergence ofan v. As DoubleMinOver, DoubleMaxMinOver converges @§t—1).

solution for whichV, = X is valid at the end of the training. Algorithm 3 DoubleMaxMinOver (fort = 0 one chooses
Xmint = Xmax+t and Xmin— = Xmax*):
w0
For this purpose, we introduce DoubleMaxMinOver as a for ¢t = 0 t0 t,ax dO

simple extension of DoubleMinOver which overcomes this  x,;,+ < arg min (w”x;)
drawback and leads to a solution which is determined by xi€xt T
support vectors only. DoubleMaxMinOver not only learns by ~ Xmin~ — a%& T (~w"xi)
adding training patterns, but also by selectively forgettivhat Xmax+ < arg max (wlx;)
has been learned before. As in DoubleMinOver, we look for i€V T
the training patternsc,,;,+ (t) € Xt and x,,;,- (t) € X~ Kmax—  alg innea\“,’; (—w'xi)

with minimum distance to the current hyperplane given by  — w+ 2(x
w:. Now, at the same time we also look for the patterns end for
Xmaxt (1) € V7 and x., (1) € V; with maximum dis- LT (Kint + Xonin—)

tance (overlap) to the current hyperplane. Hence the name

DoubleMaxMinOver.V;” = V,NnX* denotes the subset of the

currentV, containing all patterns with class labgl = +1,

andV; = V;NX~ the subset containing all patterns with clasé. On the convergence of DoubleMaxMinOver

labely; = —1. In addition to addingk,,;,,+ (¢) andx,;,- (¢) to ) ) )

w;, the patternsc,,,.+ (t) andx,,.— (£) which were selected In the following, we will prove that unbIeMalenOyer
for learning in at least one of the preceding learning stef@Nverges (Lemma 4), that it indeed yields the maximum
are substracted fronw,. In the kernel representation we nofhargin 59'““"” based S°|e|31/ on support vectors (Theorem 3)
only increase coefficients;, but also decrease; values. This and that it converges a8(t") (Theorem 4).

corresponds to eventually removing elements figm

mint xmin_) - (Xmax+ - Xmax‘)

Lemma 4:The angley, betweenw, and thew; provided
by DoubleMaxMinOver converges to zero.
We will see that this forgetting is advantageous in two  Proof: We introduce
aspects: (i) it reduces the number of patterns in thelset
which have to be memorized in the kernel representation Zo={xt—x |xteVi,x eV }.
and (ii) after a finite number of learning steps the learning
set V, consists of support vectors only. Without kernel
DoubleMaxMinOver works as given in Algorithm 3. Sinc i
we subtract patterns, we now add,;,+(t) and x,,,- (t) MaxMinOver can be expressed as
twice, respectively. This ensures thaf is increasing, which
is important for fast convergence. Wil = Wi + 2Zmin () — Zmax (t) -

éNith Zmax(t) 1= arg mazxthz the learning step of Double-
ZEZy



For the angley; we can write

W, Wy

o Hwtll

Z

Now we exploit the fact that for each,.x(7),0 < 7 < ¢
there is &zmin(7'), 7/ < 7 such thatz,,.x (7) = Zmin (7). FOr
7=17"=0 we havez.x(7) = zmin (7') by construction (see
header of Algorithm 3). Hence, eaeh,.x(7), 0 < 7 < tin
the sum can be canceled out on cost @f,g,(7'), 0 < 7' < ¢
and we obtain

mm — Zmax (T)) :

Hwtll

COS Yy

8)

Now we show by induction thaffw,|| < 2A*t 4+ 6R/t
for all t € INy. The case = 0 is trivial. Fort — ¢ + 1 we
obtain

||Wt + 2Zmin(t) - Zmax(t) H2
Wi l|? + 2WT (22Zmin (t) — Zmax (1))
+2Zmin (t) — ZmaX(t)||2

HWt+1H2

< |wel|? 4 2w Zmin (1) + 2(W T Zin ()
_W?ZmaX(t)) + (12Zmin ()] + ||ZmaX(t)||)2
< flwal? + 42 wil| + 3652

In the last step we Usest! z,i, (t) < 2A% || wyl|, W} Zmin (t) —
W Zmax(t) <0, and||z|| < 2R for eachz € Z. Now we take
the induction hypothesi§w,|| < 2A*t + 6R+/t and can
conclude the induction step:

[wir]? < (2A%t + 6RV)? 4+ 4A* (2A%t + 6RVt)
+36R?
< (24 2t)(2A%)% + 24A*RVE(t 4 1)
+36R%(t + 1)
< (2A%)2(t+ 1) + 24A*RVEF1(t + 1)
+(6R)?(t + 1)
< (2A%(t+1)+6RVET D)

With (8) we then obtain
cos > 2A*t B 3R/A*
"T A"t + 6RVE Vi
Hence,cos~v; — 1 and, thereforey; — 0 for ¢t — co.

Theorem 3:lt exists at; € INy such thaty, = Xg for
t>t.

z' which remains to be an element . Then there is a
t” € INg such thatwyz' < wiznax(t) for all ¢ > ¢,
This, however, is not possible sin¢en; .., w;z’ = A and
limy oo WiZmax (t) = A* with A > A*, |

Theorem 4:Let A; be the margin provided by Double-
MaxMinOver after ¢ iteration steps. Its relative deviation
(A* — Ay)/A* from the maximum margim\* converges to
zero at least a®(¢~!). This bound is tight.

Proof: We introduce

Z:={22-7 |z¢c 25,7 € Z5} .

We haveZg C Z. Sincew!z = 2A* for eachz € Z, the
maximum margin solution fog is equivalent to the maximum
margin solution forZ.

We introduce z i, (t) Ty

arg min w; z.

Because of The-

orem 3, fort > t; we haveli = Xg and, therefore,
Zmin(t) = 22Zmin(t) — Zmax(t). The learning step then reads
as Wiy = Wi + Zmin(t). That means that for > ¢
DoubleMaxMinOver onZ is equivalent to DoubleMinOver
on Z and we can apply Theorem 1. |

B. DoubleMaxMinOver with kernels

Algorithm 4 Kernel formulation of the DoubleMaxMinOver
N

algorithm. Withh (Xz) =Y Z yjan(Xj7xi):
j=1

n,—0Vi=1,...,N
for t =0 to ;4. dO
Xmint+ < arg min h (x;)
xleX
Xmin— < arg min h (x;)
X, EX ™
Xmax+ < arg max h (x;)
XIGV+
Xmax- — arg max h(x;)
x; €V,
Nmint < Mmint+ + 2
Nmin— <~ Mmin— + 2
Nmaxt < Mmaxt+ — 1
Nmax— < Mmax— — 1
end for
1
b} (h’ (Xmin+) -

b —

h (Xmin* )) .

In its kernel formulation DoubIeMalenOver looks as
given in Algorithm 4. As for DoubIeManverZZ 1ny =2t
and the constramEl Lying = 0 is always fulfilled. As we
have shown in Theorem 3, after a finite number of iteratigns
will consist only of support vectors, i.en; will be non-zero
only for support vectors.

In Fig. 3 we show the same example as in Fig. 1, this
time the result achieved with DoubleMaxMinOver in its kdrne

Proof: Since lim v, = 0, Lemma 2 also applies 10 formulation. Again, circles indicate those data points for
DoubIeMalenOver “and there is 3 € INg such that which n; > 0. Note, this time all these data points are
Zmin(t) € Zg for t > ty. Hence, the number of non-support vectors. In Fig. 3, also th@(¢t~!) convergence is
support vectors withi, and then; of non-support vectors demonstrated.
within V, will not increase anymore fot > t,. But then Fig. 4 shows the same example as in Fig. 2, this time
there has to be & € INy such thatz,..(t) € Zg for approached with DoubleMaxMinOver instead of DoubleMin-
t > t'. Let us assume that there is a non-support vect@wer. As in Fig. 3, we see that at the end only support



IV. SOFTDOUBLEMAXMINOVER

So far linear separability of the patterns was required.
Since this is often not fulfilled in practice, the concept of
a "soft margin” was introduced in [1], [2]. With a soft
margin training patterns are allowed to be misclassified at a
certain cost. Instead of minimizingw||* under the constraints
yi (wl'x; —b) > 1, a certain error represented by so-called
slack variableg; is allowed.

There are two ways of incorporating these slack variables
into the objective function. In its original form and uswall
the SVM solves the so-called 1-norm soft margin classifica-
tion problem. In this case it minimizew|?> + CZf\ngi
under the constrainty; (w'x; —b) > 1 — & with & > 0.

The scalar parametef’ determines the "hardness” of the
margin. The smallerC, the softer the margin. Note, that
admitting a soft margin is identical to the relaxation of the
Lagrangian, which allows to solve the Quadratic Prograngmin
problem even if the training patterns are not linearly saplar.
The second variation is the 2-norm soft margin problem,
where ||w||? + CZﬁil €2 is minimized under the constraints
Fig. 4. The same 2-dimensional dataset as in Fig. 2. The grayimdeates i (WTXi - b) > 1 — . Again, the scalar parameter

the class boundary obtained with DoubleMaxMinOver and Gianskernels. determines the "hardness” of the margin. Compared to the 1-
e e ot e e poepeassg oM Case, slight deviaions from the hard margin consisain
from the solution and only support vectors remain. are punished less, but large values &f contribute much
more to the cost function. Both versions, of course, provide
different solutions, but usually there is hardly a diffezerin
classification performance. In the following we will showvho
DoubleMinOver as well as DoubleMaxMinOver are able to
solve the 2-norm soft margin classification problem.

In Cristianini and Shawe-Taylor [22] it is shown, by con-
verting into the dual and eliminating, that solving the 2-
norm soft margin classification problem within a featurecgpa
implicitly defined by a kerneK (x,x’) is equivalent to solving
the hard margin problem within a feature space defined by the
kernel K (x;,x;) = K (x;,x;) + C~14;; for eachx;,x; € X,
where §;; denotes the Kronecker delta whichlisfor i = j
and0 otherwise. Within the feature space defined/bgx, ')
the training data are linearly separable by constructidns T
conversion of the soft margin classification problem int@edh
margin problem with modified kernels is not possible in the
1-norm case. This is the reason why we pursue the 2-norm
case.

Fig. 5. Incremental learning with DMMO. Top left: Initial $&aobtained by After conversion of the soft margin problem into a Iinearly
performing 100 training iterations with 25 training samplesen successively

25 training samples were added. Each time another 100 traitérgtions Separable hard margin problem by modifying the kernel we
were performed. Initially the:; of the added training samples are set to zergan directly apply DoubleMinOver as well as DoubleMax-

while keeping then; values of the “old” training samples. MinOver. As stated already in Section II, DoubleMinOver as
well as DoubleMaxMinOver are perceptron-like pattern-by-
) . ) . pattern solvers of the hard-margin SVM-problem. By solving

vectors determine the solution. In Fig. 5 we applied Doublgsa harg margin problem formulated with the kerrliéﬂx, x')

MaxMinOver to an incrementally growing training set, i.eye solve the 2-norm soft margin classification problem with
we successively added 25 training samples to the trainihg §&, yernel K (x,x'). With

until 100 data points were reached. Each time training sesnpl

were added we performed another 100 training iterations of . N Y n;
DoubleMaxMinOver. The:; of the new training samples were 7 (i) = i > (K(Xﬁxi) + E) = h(x;) + Yol
initialized by zero while keeping the; of the “old” training =1

samples. It can be seen how the class boundary adepts tothege SoftDoubleMaxMinOver algorithm in its kernel formula-
enlarged training set. Support vectors that become nopestip tion then works as shown in Algorithm 5. Having determined
vectors by adding further training samples are forgotten. then; andb via SoftDoubleMaxMinQOver, the class assignment
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V. EXPERIMENTAL RESULTS ON BENCHMARK PROBLEMS

To validate and compare the performance of SoftDouble-
MaxMinOver we tested it on a number of common classi-
fication benchmark problems. The classification benchmarks
stem from the UG}, DELVE* and STATLOG [23] collection.

We compare our results with those reported in the SVM-
benchmark repository of the Fraunhofer Instituéad results
we obtained with the 1-norm-SVM of the OSU-SVM Matlab
ToolboX that is based on the SMO-algorithm (in the following
called SMO-SVM) [7].

Each result reported in the benchmark repository of the
Fraunhofer Institute is based on 100 different partitigsin
of the respective benchmark data into training and test sets
(except for the splice and image benchmark results which ste
from 20 partitionings). For classification they used thed#ad
1-norm-SVM with RBF-kernels. The reported classification
result is the average and standard deviation over all 100
realizations. Each partitioning is available from thisasitory.

Table | lists the average classification errors we obtained
with SoftDoubleMaxMinOver and the SMO-SVM on the
Fig. 6. The same 2-dimensional dataset as in Fig. 2 and Fig.id, tdifferent benchmark problems. We used the default parame-
time appro_ached with SoftDoubIe_IVIaxl_VIinOv_er. _Obviously, thsulting class ter settings of the OSU-SVM Toolbox. Like the Fraunhofer
boundary is smoother now. Again, circles indicate the suppectors for . .
which n, > 0. Institute we used RBF-kernels, and we took their kernel

widths v. The C values in SoftDoubleMaxMinOver and the

SMO-SVM where chosen such that the error is minimized.
of a new pattern takes place, of course, based on the origingn @ll benchmarks the simple SoftDoubleMaxMinOver is
kernel. The decision depends on whether as fast as and achieves results comparable to those of the
SMO-SVM and those reported in the Fraunhofer benchmark
repository. Only a few training steps are necessary. On the
ringnorm, theimageand thesplicebenchmark both the SMO-
SVM as well as SoftDoubleMaxMinOver are worse than the
Fraunhofer reference. Since convergence is guaranteed, by
either performing more iterations for SoftDoubleMaxMirgdv
or tweaking the parameters of the SMO-SVM, one can, of
Algorithm 5 Kernel formulation of the SoftDoubleMax- course, obtain comparable results for these benchmarts, to
This assumes that on these benchmarks it does not make a
significant difference using the 2-norm instead of the Iamor
soft margin.

N
Z yin K(x;,x) — b
i=1

is larger or smaller than zero.

N
MinOver algorithm. Withh (x;) = y; Y y;n,; K(x;,%;):
j=1

n+—0Vi=1,...,N
for ¢ = 0 t0 tmax dO

Xpint < arg xf_reli)gr (h(x:) + %) VI. CONCLUSIONS

Xmin— < arg xﬁeli)gl_ (h (xi) + %) The WeII—known. MinOver_ algorithm as a perceptron'-like

Xopat — AIE max (h(x;) + ) pro'cedure for obtaining maximum margin hypgrplanes wrthou
x; €V, a bias was extended to the so-called DoubleMinOver alguarith

Xmax— — arg ngi (h(xi) + %) which yields the maximum margin hyperplane with a bias.
x; €V,

Nmint < Mmin+ + 2
Nmin— < Mmin— + 2
Nmax+ <= Mmax+ — 1

Nmax— <~ Mmax— — 1

end for
b— % (h (Xmin+) —h (xmin_)) + % (nmin+

— Nmin— )

In its kernel formulation DoubleMinOver learns by iteraty
selecting patterns from the training set. The computationa
effort increases lik& (V) with the number of training patterns
N. We proved anO(t~'/2) convergence, and based on this
proof we could show that even &(¢t~*) convergence can be
expected, witht as the number of iteration steps.

»A SoftDoubleMinOver package is available at
http://www.inb.uni-luebeck.de/maxminover

Fig. 6 shows the result obtained with SoftDoubleMax- 3UCI Repository: http://www.ics.uci.eduimlearn/MLRepository.html
MinOver on the same dataset as in Fig. 2 and Fig. 4. The'DELVE Datasets: http:/iwww.cs.utoronto.calelve/index.html
hardness parametet was set t01/2 The class boundary is sBenchmark Repository: http://ida.first.fraunhofer.de/

e ] projects/bench/benchmarks.htm
smoother now than in Fig. 2 and Fig. 4. 60SU SVM Classifier Toolbox: http://sourceforge.net/potgésvm/



SoftDoubleMaxMinOver SMO-SVM Reference
Benchmark #TR  #TE Seconds/lter. FERR(%) Seconds ERR(%) ERRrer (%)
banana 400 4900 0.030,/200 11.6 =+ 0.83 0.031 10.4 +0.46 12.0 £ 0.66
br-cancer 200 s 0.019/100 27.1 +4.96 0.012 28.2 +4.62 26.0 +£4.74
diabetis 468 300 0.060/300 23.3 £1.78 0.065 23.1£1.82 24.0£1.73
fl-solar 666 400 0.148/300 32.4+1.80 0.229 32.3 +£1.82 32.0 £ 1.82
german 700 300 0.142/200 24.1 £ 2.67 0.177 24.0 £ 2.17 24.0 £ 2.07
heart 170 100 0.010/100 15.5 4+ 3.22 0.006 15.243.21 16.0 £+ 3.26
image 1300 1010 0.811/2000 13.1 £4.33 0.812 9.8 +0.62 3.0 +0.60
ringnorm 400 7000 0.030/300 2.6 £0.41 0.021 2.5+0.38 1.74+0.12
splice 1000 2175 0.615/500 16.1 + 0.65 0.654 14.94+0.78 11.0 + 0.66
titanic 150 2051 0.034/1500 22.4 +0.96 0.013 22.3+1.04 22.0 +1.02
waveform 400 4600 0.047/300 11.4 +0.59 0.045 10.7 +0.53 10.0 £0.43
thyroid 140 75 0.004,/200 4.24+2.40 0.003 4.1+2.42 4.84+2.19
twonorm 400 7000 0.057,/200 2.44+0.13 0.033 2.44+0.14 3.0+0.23
#Tr : number of training data, #Te : number of test data
TABLE |

CLASSIFICATION RESULTS OBTAINED WITHSOFTDOUBLEMAXMINOVER ON STANDARD BENCHMARKS FOR COMPARISON THE RESULTS OBTAINED
WITH THE SMO ALGORITHM (USING THEOSU-SVM TOOLBOX) AND THOSE REPORTED IN THEFRAUNHOFER BENCHMARK REPOSITORY(LAST
COLUMN) ARE LISTED.

Since DoubleMinOver does not use only support vector§] J.C. Platt. Advances in Kernel Methods - Support Vector Learning
for its solution, we extended DoubleMinOver to DoubleMax- ~ chapter Fast Training of Support Vector Machines using Eetal

. . . . Minimal Optimization, pages 185-208. MIT Press, 1999.
MinOver. DoubleMaxMinOver learns not only by iteratively .
selecing patters from the training set, but also by rempvi ) 5: & Keert, S, ¢ Shevade, € shatachanya, s i« Fomi.
patterns which have been used for learning before. We proved cjassifier DesignIEEE-NN 11(1):124-136, January 2000.
that the computational effort and convergence remain thesa [9] A. Kowalczyk. Advances in Large Margin Classifigrshapter Maximal
as for DoubleMinOver, but now the final result is based solely  margin perceptron, pages 61-100. MIT Press, 2000.
on support vectors. [10]

We showed a way of extending DoubleMaxMinOver to 2-
norm soft margins. This is achieved by using DoubleMax#1]
MinOver with an appropriately modified kernel. Hence,
SoftDoubleMaxMinOver remains as simple as Doubldi2]
MaxMinOver and obeys the same convergence characteristics
With SoftDoubleMaxMinOver which is closely related to thé3l
perceptron algorithm a complete pattern-by-pattern SVM s
realized. In experiments on common benchmark problems?i
SoftDoubleMaxMinOver algorithm provided the same classifi
cation performance as common state-of-the-art SVM-soéiwa;5;

Gert Cauwenberghs and Tomaso Poggio. Incremental anceeatal
Support Vector Machine Learning. NIPS pages 409-415, 2000.

Y. Li and P.M. Long. The Relaxed Online Maximum Margin Alithm.
Machine Learning46(1-3):361-387, 2002.

S. V. N. Vishwanathan, Alex J. Smola, and M. Narasimha Musimple
SVM. In ICML, pages 760-767, 2003.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Coretdfe
Machines: Fast SVM Training on Very Large Data SétdMach. Learn.
Res, 6:363-392, 2005.

% W. Krauth and M. Mezard. Learning algorithms with optinsahbility
in neural networksJ.Phys.A 20:745-752, 1987.

J. K. Anlauf and M. Biehl. The AdaTron: an adaptive peiren
algorithm. Europhys. Lett.10:687-692, 1989.

W. Kinzel. Statistical mechanics of the perceptron witlaximal
stability. Lecture Notes in Physic868:175-188, 1990.

H.D. Navone and T. Downs. Variations on a Kernel-Adatbheme.
VII Internacional Congress on Information Engineering,eBos Aires
2001.

H. Kim, B. Drake, and H. Park. Adaptive nonlinear discriant
analysis by regularized minimum squared errotEEE Transactions
on Knowledge and Data Engineering8(5):603—612, 2006.

H. Kim and H. Park. Incremental and decremental leastregusupport
vector machine and its application to drug design. Phoceedings of
the 2004 IEEE Computational Systems Bioinformatics Cenfes (CSB
2004) pages 656-657, 2004.

T. Martinetz. MaxMinOver: A simple incremental learnimpgocedure
for support vector classification. IRroc. of the International Joint
Conference on Neural Networksages 2065-2070. |IEEE Press, 2004.

V. Vapnik. Statistical Learning TheoryWiley, New York, 1998.

Nello Cristianini and John Shawe-TayloAn Introduction to Support
Vector Machines and Other Kernel-based Learning Meth@dsnbridge
University Press, 2000.

R. King, C. Feng, and A. Shutherland. STATLOG: comparisuf
classification algorithms on large real-world problempplied Artificial
Intelligence 9(3):259-287, May/June 1995.
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