
1

SoftDoubleMaxMinOver: Perceptron-like Training
of Support Vector Machines

Thomas Martinetz (Senior Member IEEE)
Institute for Neuro- and Bioinformatics

University of Lübeck
D-23538 L̈ubeck

martinetz@informatik.uni-luebeck.de
Kai Labusch

Institute for Neuro- and Bioinformatics
University of Lübeck

D-23538 L̈ubeck
labusch@inb.uni-luebeck.de

Daniel Schneegaß
Siemens AG, Corporate Technology

Learning Systems
D-81739 Munich

daniel.schneegass.ext@siemens.com
keywords: incremental learning, Support Vector Machine, maximum margin classification

Abstract—The well-known MinOver algorithm is a slight
modification of the perceptron algorithm and provides the
maximum margin classifier without a bias in linearly separable
two class classification problems. DoubleMinOver as an extension
of MinOver, which now includes a bias, is introduced. An
O(t−1) convergence is shown, wheret is the number of learning
steps. The computational effort per step increases only linearly
with the number of patterns. In its formulation with kernels
selected training patterns have to be stored. A drawback of
MinOver and DoubleMinOver is that this set of patterns does
not consist of support vectors only. DoubleMaxMinOver, as
an extension of DoubleMinOver, overcomes this drawback by
selectively forgetting all non-support vectors after a finite number
of training steps. It is shown how this iterative procedure
that is still very similar to the perceptron algorithm can be
extended to classification with soft margins and be used for
training least squares Support Vector Machines (SVM). On
benchmarks the SoftDoubleMaxMinOver algorithm achieves the
same performance as standard SVM software.

I. I NTRODUCTION

The Support Vector Machine (SVM) [1], [2] has become a
standard tool in classification and regression tasks (e.g. [3], [4],
[5]). A major drawback, particularly for industrial applications
where easy and robust implementation is an issue, is its com-
plicated training procedure. A large Quadratic-Programming
problem has to be solved, requiring sophisticated numerical
optimization routines which many users do not want or cannot
implement by themselves. They have to rely on existing
software packages, which are hardly comprehensive and, at
least in some cases, error-free. This is in contrast to most
Neural Network approaches where learning has to be simple

http://www.inb.uni-luebeck.de

and incremental almost by definition. The pattern-by-pattern
nature of learning in Neural Networks like, for example, the
perceptron usually leads to simple training procedures which
can easily be implemented. It is desirable to have similar
training procedures also for the SVM.

Several approaches for obtaining more or less simple incre-
mental learning algorithms for the SVM have been introduced
[6], [7], [8], [9], [10], [11], [12], [13]. Among the first and
most widespread are the Kernel-Adatron by Friess, Cristianini,
and Campbell [6] and the Sequential-Minimal-Optimization
algorithm (SMO) by Platt [7]. Like the MinOver algorithm by
Krauth and Ḿezard [14], which we will build on, the Adatron
was introduced for constructing synaptic weight matrices of
optimal stability in spin-glass models of Neural Networks
[15], [16]. Friess et al. adapted the Adatron to the problem
of maximum margin classification with kernels. The Adatron
and the MinOver algorithm are very similar and can both
be derived from constrained gradient descent. The Adatron
converges faster; however, the MinOver learning step is even
simpler (exponential versus1/t convergence, quadratic versus
linear time complexity per iteration step). Navone and Downs
[17] give a comparison of both algorithms on common bench-
mark problems. They report that for reasons which require
further investigations the MinOver algorithm shows a learning
behaviour which is advantageous in a number of aspects.

Vishwanathan et al. [12] present a method which guarantees
to converge to the exact maximum margin solution after a finite
number of steps. They use an active set strategy and claim
to be considerably faster than the SMO algorithm by Platt
[7]. Their work is based on an approach of Cauwenberghs
and Poggio [10], which converges aftern iterations, where
n is the number of considered samples. Their method has



2

the additional advantage of being able to learn incrementally
and decrementally, thereby enabling an efficient calculation
of the leave-one-out error. Another approach for incremental
or decremental learning was introduced by Kim et al. [18].
Their approach is based on updating and downdating theQR
decomposition of the least squares Support Vector Machine,
which allows to efficiently compute the updated solution when
data points are added or removed. In [19] they show how their
method can be applied to drug design by iteratively including
new compounds into the training set.

Another interesting approach is the work of Tsang et al.
[13]. Training an SVM is reduced to the problem of finding
the minimum enclosing ball around a set of points. They apply
the so-called core set, which has been introduced for finding
approximate solutions for the minimum enclosing ball (MEB)
problem [13]. The method converges fast as the convergence
rate does not depend on the number of samples, but it only
provides approximate solutions. The loss in precision speeds
up the algorithm.

In this paper, we will revisit and extend the MinOver algo-
rithm to obtain perceptron-like procedures for training Support
Vector Machines. Their learning steps can be motivated from
gradient descent. With their pattern-by-pattern nature (in the
sense that, like for the perceptron, one pattern after the other is
chosen for learning from a given training set) these procedures
are suitable for incremental and decremental learning. After a
finite number of iterations only support vectors are taken into
account. The method can easily be extended to kernels while
keeping its simplicity.

First, we will reformulate MinOver. In this reformulation the
MinOver algorithm is a slight modification of the perceptron
learning rule and could hardly be simpler. Then, in Section II,
we extend MinOver to DoubleMinOver which remains as
simple as MinOver but now provides the maximum margin
solution also for linear classifiers with a bias. We present a
convergence proof and show that anO(t−1) convergence can
be expected, wheret is the number of learning steps.

The convergence of MinOver to the maximum margin
hyperplane in linearly separable classification tasks is well-
known; however, the solution is not based solely on support
vectors. The same is true for DoubleMinOver. Therefore, in
Section III we extend DoubleMinOver to DoubleMaxMinOver
in a similar way as we extended MinOver to MaxMinOver in
[20]. The DoubleMaxMinOver algorithm provides the maxi-
mum margin hyperplane based only on support vectors. In the
last part of this paper we will show how DoubleMaxMinOver
can be extended to SoftDoubleMaxMinOver for classification
with soft margins. SoftDoubleMaxMinOver yields solutions
also in cases where the classification problem is not linearly
separable. In the last section we will present results and
comparisons on common benchmark problems.

II. T HE DOUBLEM INOVER ALGORITHM

Given a set of patternsX = {xi ∈ IRD, i = 1, . . . , N}
with corresponding class labelsyi ∈ {−1, 1}, i = 1, . . . , N
such that the classX+ ⊆ X of patterns with label+1 and the
classX− ⊆ X of patterns with label−1 are linearly separable.

We want to find the hyperplane which separates the patterns
of these two classes with maximum margin. The hyperplane
for classification is determined by its normal vectorw ∈ IRD

and its biasb ∈ IR. It achieves a separation of the two classes,
if

yi(w
T xi − b) > 0 for all i = 1, . . . , N .

The margin∆ of this separation is given by

∆(w, b) = min
xi∈X

[

yi(w
T xi − b)/‖w‖

]

.

Maximum margin classification is obtained by thew∗,
‖w∗‖ = 1 and b∗ for which ∆(w∗, b∗) = ∆∗ becomes
maximal.

The Support Vector Machine (SVM) as introduced in [1],
[21] determinesw∗ and b∗ by solving a quadratic pro-
gramming problem. It minimizes‖w‖2 under the constraints
yi(w

T xi − b) ≥ 1, i = 1, . . . , N , the so-called hard margin
case. The solution is equivalent tow∗ up to a scaling factor.
In its dual formulation one has to findαi ∈ IR+

0 , i = 1, . . . , N
which maximize

W (α) =

N
∑

i=1

αi −
1

2

N
∑

i,j=1

yiyjx
T
i xj

under the constraint
∑N

i=1
yiαi = 0. The solution yields

w∗ =

N
∑

i=1

yiαixi . (1)

Only a subset of theαi will be non-zero. Thosexi for which
αi > 0 are called support vectors [21]. For themyi(w

T
∗ xi −

b∗) = ∆∗ is valid. Hence, the setXS ⊆ X of these support
vectors determinew∗ and b∗. In the following we introduce
a class of algorithms which determinew∗ and b∗ iteratively,
i.e., which solve the quadratic programming problem of the
hard-margin SVM by employing a perceptron-like pattern-by-
pattern optimization procedure.

A simple, perceptron-like pattern-by-pattern algorithm
which provides the maximum margin classification in linearly
separable cases is the well-known MinOver algorithm intro-
duced by [14] in the context of constructing synaptic weight
matrices of optimal stability in spin-glass models of Neural
Networks. However, it only provides the maximum margin
solution if no biasb is included. In the MinOver algorithm
the current normal vectorwt converges tow∗ with increasing
number of iterationst. This is valid as long as a full separation,
i.e. aw∗ with ∆∗ > 0 exists. The MinOver algorithm works
like the perceptron algorithm. However, instead of choosing
an arbitrary misclassified pattern out of the training setX ,
with each training stept the ”mostly misclassified” pattern is
chosen. The ”mostly misclassified” patternxmin(t) is the one
with minimum distance (overlap)yiw

T xi from the separating
hyperplane (b = 0). Hence the name MinOver. In contrast to
the perceptron, however, learning proceeds even if all patterns
are classified correctly. In this case the distanceyiw

T xi of the
”mostly misclassified” patternxmin(t) has become positive.

As a first step we slightly modify MinOver such that a
bias b can be included. Instead of looking for the pattern
with minimum distance inX , now we look for the pattern



3

xmin+(t) ∈ X+ with minimum distance inX+ and for the
patternxmin−(t) ∈ X− with minimum distance inX− and
use both for the next adaptation step. Hence the name Double-
MinOver. In Algorithm 1 the pseudo code for DoubleMinOver
is listed.

Algorithm 1 With tmax denoting the number of desired
iterations, DoubleMinOver works as follows:

w← 0
for t = 0 to tmax do

xmin+ ← arg min
xi∈X+

(

wT xi

)

xmin− ← arg min
xi∈X−

(

−wT xi

)

w← w + xmin+ − xmin−

end for
b← 1

2
wT (xmin+ + xmin−).

Why does it work? For a givenw, the margin∆(w, b) is
maximized if b(w) is chosen such that the margin to both
classes is equal, i.e., if

min
xi∈X+

[

wT xi − b(w)
]

= min
xi∈X−

[

−(wT xi − b(w))
]

.

This leads to the expression for the bias in Algorithm 1

b(w) =
1

2

(

wT xmin+ + wT xmin−

)

.

DoubleMinOver then looks for thew which maximizes

∆(w) := ∆(w, b(w))

= min
xi∈X

yi(w
T xi − b(w))

‖w‖

= min
xi∈X+

wT xi − b(w)

‖w‖ = min
xi∈X−

−wT xi + b(w)

‖w‖

=
1

2

(

min
xi∈X+

wT xi

‖w‖ + min
xi∈X−

−wT xi

‖w‖

)

=
1

‖w‖w
T (xmin+ − xmin−) .

In this form the adaptation step forwt in DoubleMinOver can
be motivated from gradient ascent on∆(w). Note, however,
that this view is just a motivation and, e.g., neglects the
normalization ofw.

Note that it is sufficient to determineb only once at the end
of the training procedure. This is due to the fact thatxmin+(t)
andxmin−(t) do not depend on the choice ofb.

A. On the convergence of DoubleMinOver

Krauth and Ḿezard proved anO(t−1/2) convergence for
MinOver [14] within the context of spin-glass Neural Net-
works. Here, we adapt this proof to DoubleMinOver. In
addition, we show that DoubleMinOver converges even as
O(t−1). First, we introduce some notations and have to prove
some lemmata.
Notations:

i) With

Z :=
{

x+ − x− | x+ ∈ X+,x− ∈ X−
}

we can write

∆(w) =
1

2
min
z∈Z

wT z

‖w‖ and ∆∗ = ∆(w∗) .

With zmin(t) := arg min
z∈Z

wT
t z = xmin+(t) − xmin−(t)

we obtain for the learning step

wt+1 = wt + zmin(t) .

ii) Let X+

S := XS ∩X+ be the set of support vectors inX+

andX−
S := XS ∩ X− be the set of support vectors in

X−. We call

ZS :=
{

x+ − x− | x+ ∈ X+

S ,x− ∈ X−
S

}

the set of support vectors inZ. For eachz ∈ ZS wT
∗ z =

2∆∗ is valid.
iii) γt denotes the angle betweenwt andw∗.
iv) ut := wt−(wT

∗ wt)w∗ denotes the projection ofwt onto
the plane perpendicular tow∗, i.e., it holds

wt = cos γt‖wt‖w∗+ut with uT
t w∗ = 0 . (2)

v) s(z) := z − (wT
∗ z)w∗ denotes the projection ofz ∈ Z

onto the plane perpendicular tow∗. This yieldsS :=
{s(z) | z ∈ Z} as the set of projections andSS :=
{s(z) | z ∈ ZS} as its subset where thez are support
vectors.

Lemma 1:For eacht ∈ IIN0 it holds uT
t zmin(t) ≤ 0.

Proof: We introducezε := arg min
z∈Z

(w∗ + εut)
T z, ε ∈

IR+

0 . For ε = 0, zε ∈ ZS is valid. SinceZ is a discrete and
finite set of points inIRD, there is ana ∈ IR+ andz0 ∈ ZS

such that for0 ≤ ε < a zε = z0 is valid. uT
t z0 ≤ 0, since

otherwise by choosingε ∈ IR+ sufficiently small

∆(w∗ + εut) =
1

2
min
z∈Z

(w∗ + εut)
T z

‖w∗ + εut‖

=
1

2

(w∗ + εut)
T z0

‖w∗ + εut‖

=
1

2

2∆∗ + εuT
t z0

(1 + ε2‖ut‖2)
1
2

≥ 1

2

(

2∆∗ + εuT
t z0

)

(

1− 1

2
ε2‖ut‖2

)

≥ ∆∗

+
ε

2

(

uT
t z0 −

1

2
ε‖ut‖2

(

2∆∗ + εuT
t z0

)

)

> ∆∗ ,

i.e., a larger margin than∆∗ would result by choosingw∗ +
εut instead ofw∗ (contradiction).

With Equation (2) we obtainwT
t z0 = 2 cos γt‖wt‖∆∗ +

uT
t z0. Further,wT

t zmin(t) ≥ 2 cos γt‖wt‖∆∗ + uT
t zmin(t).

Subtracting both equations, we obtainwT
t zmin(t)−wT

t z0 ≥
uT

t zmin(t) − uT
t z0. Since 0 ≥ wT

t zmin(t) − wT
t z0, also

0 ≥ uT
t zmin(t)−uT

t z0 and, hence,uT
t zmin(t) ≤ uT

t z0. Since
uT

t z0 ≤ 0, we can conclude the proof.



4

Theorem 1:Let ∆t = ∆(wt) be the margin provided by
DoubleMinOver aftert iteration steps and(∆∗−∆t)/∆∗ be its
relative deviation from the maximum margin. For eacht > 0

0 ≤ ∆∗ −∆t

∆∗
≤ (R/∆∗)2√

t
+

1

2

(R/∆∗)2

t

is valid, with R := maxx∈X ‖x‖.
Proof: First, we show that‖ut‖2 ≤ 4R2t. This can be

seen from

‖ut+1‖2 − ‖ut‖2 = ‖ut + zmin(t)− [zmin(t)T w∗]w∗‖2

−‖ut‖2

= 2uT
t zmin(t) + ‖zmin(t)‖2

−[zmin(t)T w∗]
2

≤ ‖zmin(t)‖2

≤ 4R2 ,

where we have useduT
t w∗ = 0 and Lemma 1 (note that we

start withu0 = 0). Since also

wT
∗ wt = wT

∗

t−1
∑

τ=0

zmin(τ) ≥ 2∆∗ t

is valid, we obtain the bounds

sin γt ≤ γt ≤ tan γt =
‖ut‖
wT

∗ wt
≤ 2R

√
t

2∆∗t
=

R/∆∗

√
t

. (3)

Together with Equation (2) this yields

2∆∗ ≥ 2∆t =
wT

t zmin(t)

‖wt‖
= wT

∗ zmin(t) cos γt

+
uT

t zmin(t)

‖ut‖
sin γt (4)

≥ 2∆∗ cos γt − 2R sin γt

≥ 2∆∗(1− γ2
t /2)− 2Rγt

≥ 2∆∗ − 2
R2/∆∗

√
t
− R2/∆∗

t
.

A proper rearrangement concludes the proof.
Hence, with increasingt the margin converges to the

maximum margin asO(t−1/2). In the following we show that
even anO(t−1) convergence can be expected. But first we
have to prove that after a finite number of iterationszmin(t)
will always be a support vector.

Lemma 2: It exists at0 ∈ IIN0 such thatzmin(t) ∈ ZS for
t ≥ t0.

Proof: Let us assume that there exists no sucht0 ∈ IIN0.
We have∆̃ := 1

2
min

z∈Z\ZS

wT
∗ z > ∆∗. Then for any (arbitrarily

large)t0 ∈ IIN0 there is at ≥ t0 such thatzmin(t) /∈ ZS . Then
wT

∗ zmin(t) ≥ 2∆̃ and with Equation (4) we obtain

2∆∗ ≥ wT
∗ zmin(t) cos γt +

uT
t zmin(t)

‖ut‖
sin γt

≥ 2∆̃ cos γt − 2R sin γt .

Sincecos γt → 1 and sin γt → 0 for t → ∞, this leads to a
contradiction.

Lemma 3:There areβz ∈ IR+

0 , z ∈ Z with βz > 0 only
for z ∈ ZS such that

w∗ =
∑

z∈Z

βzz =
∑

z∈ZS

βzz .

Proof: We use Equation (1). Forz = xi − xj , xi ∈
X+,xj ∈ X− we chooseβz =

αiαj

A with A = 1

2

∑N
i=1

αi.
Sinceαi ∈ IR+

0 , i = 1, . . . , N andαi > 0 for support vectors
only, the same conditions hold forβz. Further, we obtain

∑

z∈Z

βzz =
∑

z∈ZS

βzz =
∑

xi∈X+

∑

xj∈X−

αiαj

A
(xi − xj)

=

∑

xj∈X−
αj

A

∑

xi∈X+

αixi

−
∑

xi∈X+ αi

A

∑

xj∈X−

αjxj

=
∑

xi∈X+

αixi −
∑

xj∈X−

αjxj

= w∗ .

We used
∑

xj∈X+ αi =
∑

xj∈X−
αj = A, which can be

derived from the constraint
∑N

i=1
yiαi = 0.

Theorem 2:(∆∗ − ∆t)/∆∗ converges to zero asO(t−1).
ThisO(t−1) convergence is tight.

Proof: We prove Theorem 2 by proving that‖ut‖ remains
bounded. From Equation (3) we can discern that in this case
we obtain anO(t−1) bound for the angleγt and, hence, an
O(t−1) convergence of the margin∆t to the maximum margin
∆∗.

We haveut+1 = ut+s(zmin(t)). As we know from Lemma 2,
there is at0 ∈ IIN0 such thats(zmin(t)) ∈ SS for t ≥ t0. We
discriminate two cases:

i) s = 0 for eachs ∈ SS . Then‖ut‖ remains bounded since
it does not change anymore fort ≥ t0.

ii) s 6= 0 for at least ones ∈ SS . With ũt we denote the
projection ofut onto the linear subspace spanned bySS .
Because of Lemma 2,‖ut‖ remains bounded, if‖ũt‖
remains bounded. As soon ast ≥ t0, we haveũt+1 =
ũt + s(zmin(t)) and, hence, for the change of‖ũt‖2

‖ũt+1‖2 − ‖ũt‖2 = 2ũT
t s(zmin(t)) + ‖s(zmin(t))‖2 .

We show by contradiction that there is anε > 0 such that
ũT

t s(zmin(t)) ≤ −ε‖ũt‖ for t ≥ t0. Then ‖ũt+1‖2 −
‖ũt‖2 ≤ −2ε‖ũt‖ + 4R2. The negative contribution to
the change of‖ũt‖2 increases with‖ũt‖, which keeps it
bounded.
Let Q := {q | q ∈ span(SS) and‖q‖ = 1} be the set
of all vectors of unit norm within the linear subspace



5

spanned bySS . For t ≥ t0 we have

zmin(t) = arg min
z∈ZS

wT
t z

= arg min
z∈ZS

(cos γt‖wt‖w∗ + ut)
T z

= arg min
z∈ZS

(2 cos γt‖wt‖∆∗ + uT
t z)

= arg min
z∈ZS

uT
t z

= arg min
z∈ZS

uT
t (z− (wT

∗ z)w∗)

since uT
t w∗ = 0

= arg min
z∈ZS

uT
t s(z)

= arg min
z∈ZS

ũT
t s(z) .

Hence,

ũT
t zmin(t) = min

s∈SS

ũT
t s

≤
(

max
q∈Q

min
s∈SS

qT s

)

‖ũt‖

≤ −ε‖ũt‖

with ε := −max
q∈Q

min
s∈SS

qT s. Let q∗ := arg max
q∈Q

min
s∈SS

qT s.

Lemma 3 andq∗T
z = q∗T

s(z) yields

q∗T
w∗ = 0 =

∑

z∈ZS

βz q∗T
z =

∑

z∈ZS

βz q∗T
s(z) (5)

with βz > 0 ∀z ∈ ZS . Let us assume that
max
q∈Q

min
s∈SS

qT s = min
s∈SS

q∗T
s = −ε ≥ 0. Then, because

of (5), q∗T
s(z) has to be zero for eachz ∈ ZS , or,

equivalently,q∗T
s = 0 for eachs ∈ SS . This, however,

is not possible, sinceq∗ ∈ Q, i.e., q∗ lies within the
subspace spanned bySS andq∗ 6= 0.

The O(t−1) convergence bound fortan γt is a tight bound.
For example in case of the four training patternsx1 = (1, 1)T ,
x2 = (−1, 1)T , x3 = (1,−1)T , andx4 = (−1,−1)T within
IRD,D = 2 with class labelsy1 = +1, y2 = +1, y3 = −1,
and y4 = −1 (in case ofD > 2 this might be a subspace).
It is easy to see that by constructionw∗ = (0, 1)T and
wt = (±2, 2t)T for t = 1, 3, 5, . . . and wt = (0, 2t)T for
t = 0, 2, 4, . . .. Then tan γt = ±1/t for t = 1, 3, 5, . . . and
tan γt = 0 for t = 0, 2, 4, . . ..

Remark 1:In Theorem 1 we assumed that the DoubleMin-
Over algorithm starts withwt=0 = 0. However, it is easy
to verify that theO(t−1/2) convergence rate is valid also for
wt=0 6= 0. But then all the lemmata and theorems we have
proven so far are valid forwt=0 6= 0.

In Fig. 1 we demonstrate the learning process on a 2-
dimensional toy problem. 50 data points for each class had
to be linearly classified with maximum margin. The dividing
line is shown for different time steps. Fig. 1 also shows a
convergence plot of the angle betweenw and w∗. In the
double-logarithmic scale theO(t−1) convergence becomes
evident.

B. DoubleMinOver with kernels

The vectorwt which determines the dividing hyperplane is
given by

wt =
t−1
∑

τ=0

(xmin+(τ)− xmin−(τ)) =
N

∑

i=1

yinixi ,

whereni ∈ IIN0 is the number of timesxi ∈ X has been used
for training up to stept. Sincewt/‖wt‖ → w∗ for t → ∞,
comparison with Equation (1) shows thatni/‖wt‖ → αi for
t→∞. Since

∑N
i=1

yini = 0 at each time step, the constraint
∑N

i=1
yiαi = 0 of the optimization problem’s dual formulation

is permanently fulfilled during the learning process1.
The expression which decides the class assignment by being

smaller or larger than zero can be written as

wT x− b =

N
∑

i=1

yinix
T
i x− b. (6)

If the input patternsx ∈ IRD are transformed into an-
other (usually higher dimensional) feature spaceΦ(x) before
classification, DoubleMinOver has to work withΦ(xi) as
training patterns. Due to Equation (6), we do not have to
do it explicitly. With K(xi,x) = Φ(xi)

T Φ(x) as the kernel
which corresponds to the transformationΦ(x), the r.h.s. of (6)
transforms into

N
∑

i=1

niyiK(xi,x)− b .

In this kernel formulation the training step of the Double-
MinOver algorithm simply consists of searching forxmin+(t)
andxmin−(t) and increasing their correspondingni. In Algo-
rithm 2 the pseudo code is listed.

If the numbers

h (xi) = yi

N
∑

j=1

yjnjK(xj ,xi) i = 1, . . . , N (7)

are stored and updated appropriately, also in its kernel for-
mulation the computational effort for an iteration step of
DoubleMinOver increases linearly with the number of training
patternsN . Instead of performing a computation of the entire
sum (7) in each learning step, one can keep these values from
the previous step and obtain the new sum by adding only the
kernel values of those patterns that were selected in the current

1The alternative approach of extending the input vectors by abias unit
x̂i = (xi, 1)

T together with standard MinOver does not comply with this
constraint and, hence, does not yield the correct solution.One obtains

ŵ
T
x̂ =

N
X

i=1

yinix̂
T

i x̂ =
N

X

i=1

yini(x
T

i x + 1)

=

N
X

i=1

yinix
T

i x +

N
X

i=1

yini

with

b = −

N
X

i=1

yini 6= 0

in general.



6

Fig. 1. Left: Learning process of the DoubleMinOver algorithm on an artificial 2-dimensional dataset consisting of 100 training samples. The dashed lines
show the separating plane at different time steps. The solid line is the final result of the DoubleMinOver learning algorithm. Training samples that are part
of the solution, i.e. that were selected for learning, are marked by a circle. Right: Double logarithmic plot of the convergence oftan γ, with γ as the angle
betweenwt andw∗. The dashed line demonstrates theO(t−1) convergence.

Algorithm 2 Kernel formulation of the DoubleMinOver algo-

rithm. With h (xi) = yi

N
∑

j=1

yjnjK(xj ,xi):

ni ← 0 ∀i = 1, . . . , N
for t = 0 to tmax do

xmin+ ← arg min
xi∈X+

h (xi)

xmin− ← arg min
xi∈X−

h (xi)

nmin+ ← nmin+ + 1
nmin− ← nmin− + 1

end for
b← 1

2
(h (xmin+)− h (xmin−)).

step. Initialized withh (xi) = 0, at the end of each iteration
the h (xi) , i = 1, . . . , N are updated according to

h (xi)← h (xi) + yi (K(xmin+ ,xi)−K(xmin− ,xi)) .

In Fig. 2 we show the learning result of DoubleMinOver
in its kernel formulation with Gaussian kernels, again on a
2-dimensional toy problem. 100 data points for each class had
to be classified with maximum margin. Circles indicate those
data points for whichni > 0. Note that these data points are
not only support vectors.

III. D OUBLEMAX M INOVER

A drawback of the DoubleMinOver algorithm is that at the
end of the training procedureni is non-zero not only for the
support vectors. LetVt = {xi|xi ∈ X , ni > 0} ⊆ X be
the set of training patterns for whichni is non-zero at time
stept. Since the maximum margin hyperplane is determined
solely by the setXS ⊆ X of support vectors, at the end of the

Fig. 2. Result of DoubleMinOver with Gaussian kernels on an artificial 2-
dimensional dataset consisting of 200 training samples. The gray area depicts
the class boundary. Circles indicate those data points which were used for
learning, i.e. for whichni > 0.

trainingVt = XS should be valid. However, in particular in the
beginning of the learning procedure, DoubleMinOver selects
training data points for learning which finally turn out not to
be support vectors of the maximum margin hyperplane. These
data points are superfluous, need not be stored, and might
even be detrimental for convergence. It would be desirable to
have an algorithm as simple as DoubleMinOver which yields a



7

Fig. 3. Left: The same 2-dimensional dataset as in Fig. 1, this time approached with DoubleMaxMinOver. The dashed lines depict the separating plane at
different time steps. Again, the solid line is the final training result. Data points for whichni > 0 holds are marked by a circle. It can be seen that only
support vectors remain. Right: Double logarithmic plot of theconvergence oftan γ. As DoubleMinOver, DoubleMaxMinOver converges asO(t−1).

solution for whichVt = XS is valid at the end of the training.

For this purpose, we introduce DoubleMaxMinOver as a
simple extension of DoubleMinOver which overcomes this
drawback and leads to a solution which is determined by
support vectors only. DoubleMaxMinOver not only learns by
adding training patterns, but also by selectively forgetting what
has been learned before. As in DoubleMinOver, we look for
the training patternsxmin+(t) ∈ X+ and xmin−(t) ∈ X−

with minimum distance to the current hyperplane given by
wt. Now, at the same time we also look for the patterns
xmax+(t) ∈ V+

t and xmax−(t) ∈ V−
t with maximum dis-

tance (overlap) to the current hyperplane. Hence the name
DoubleMaxMinOver.V+

t = Vt∩X+ denotes the subset of the
currentVt containing all patterns with class labelyi = +1,
andV−

t = Vt∩X− the subset containing all patterns with class
labelyi = −1. In addition to addingxmin+(t) andxmin−(t) to
wt, the patternsxmax+(t) andxmax−(t) which were selected
for learning in at least one of the preceding learning steps
are substracted fromwt. In the kernel representation we not
only increase coefficientsni, but also decreaseni values. This
corresponds to eventually removing elements fromVt.

We will see that this forgetting is advantageous in two
aspects: (i) it reduces the number of patterns in the setVt

which have to be memorized in the kernel representation
and (ii) after a finite number of learning steps the learning
set Vt consists of support vectors only. Without kernels,
DoubleMaxMinOver works as given in Algorithm 3. Since
we subtract patterns, we now addxmin+(t) and xmin−(t)
twice, respectively. This ensures thatwt is increasing, which
is important for fast convergence.

Algorithm 3 DoubleMaxMinOver (fort = 0 one chooses
xmin+ = xmax+ andxmin− = xmax− ):

w← 0
for t = 0 to tmax do

xmin+ ← arg min
xi∈X+

(

wT xi

)

xmin− ← arg min
xi∈X−

(

−wT xi

)

xmax+ ← arg max
xi∈V+

t

(

wT xi

)

xmax− ← arg max
xi∈V−

t

(

−wT xi

)

w← w + 2(xmin+ − xmin−)− (xmax+ − xmax−)
end for
b← 1

2
wT (xmin+ + xmin−)

A. On the convergence of DoubleMaxMinOver

In the following, we will prove that DoubleMaxMinOver
converges (Lemma 4), that it indeed yields the maximum
margin solution based solely on support vectors (Theorem 3),
and that it converges asO(t−1) (Theorem 4).

Lemma 4:The angleγt betweenw∗ and thewt provided
by DoubleMaxMinOver converges to zero.

Proof: We introduce

Zt :=
{

x+ − x− | x+ ∈ V+
t ,x− ∈ V−

t

}

.

With zmax(t) := arg max
z∈Zt

wT
t z the learning step of Double-

MaxMinOver can be expressed as

wt+1 = wt + 2zmin(t)− zmax(t) .



8

For the angleγt we can write

cos γt =
w∗wt

‖wt‖

=
w∗

‖wt‖

t−1
∑

τ=0

(2zmin(τ)− zmax(τ)) .

Now we exploit the fact that for eachzmax(τ), 0 < τ < t
there is azmin(τ ′), τ ′ < τ such thatzmax(τ) = zmin(τ ′). For
τ = τ ′ = 0 we havezmax(τ) = zmin(τ ′) by construction (see
header of Algorithm 3). Hence, eachzmax(τ), 0 ≤ τ < t in
the sum can be canceled out on cost of azmin(τ ′), 0 ≤ τ ′ < t
and we obtain

cos γt =
w∗

‖wt‖

t−1
∑

τ=0

zmin(τ)

≥ 2∆∗ t

‖wt‖
. (8)

Now we show by induction that‖wt‖ ≤ 2∆∗ t + 6R
√

t
for all t ∈ IIN0. The caset = 0 is trivial. For t → t + 1 we
obtain

‖wt+1‖2 = ‖wt + 2zmin(t)− zmax(t)‖2

= ‖wt‖2 + 2wT
t (2zmin(t)− zmax(t))

+‖2zmin(t)− zmax(t)‖2

≤ ‖wt‖2 + 2wT
t zmin(t) + 2(wT

t zmin(t)

−wT
t zmax(t)) + (‖2zmin(t)‖+ ‖zmax(t)‖)2

≤ ‖wt‖2 + 4∆∗‖wt‖+ 36R2 .

In the last step we usedwT
t zmin(t) ≤ 2∆∗‖wt‖, wT

t zmin(t)−
wT

t zmax(t) ≤ 0, and‖z‖ ≤ 2R for eachz ∈ Z. Now we take
the induction hypothesis‖wt‖ ≤ 2∆∗ t + 6R

√
t and can

conclude the induction step:

‖wt+1‖2 ≤ (2∆∗t + 6R
√

t)2 + 4∆∗(2∆∗t + 6R
√

t)

+36R2

≤ (t2 + 2t)(2∆∗)2 + 24∆∗R
√

t(t + 1)

+36R2(t + 1)

≤ (2∆∗)2(t + 1)2 + 24∆∗R
√

t + 1(t + 1)

+(6R)2(t + 1)

≤
(

2∆∗(t + 1) + 6R
√

t + 1
)2

.

With (8) we then obtain

cos γt ≥
2∆∗t

2∆∗t + 6R
√

t
≥ 1− 3R/∆∗

√
t

.

Hence,cos γt → 1 and, therefore,γt → 0 for t→∞.

Theorem 3:It exists a t1 ∈ IIN0 such thatVt = XS for
t ≥ t1.

Proof: Since lim
t→∞

γt = 0, Lemma 2 also applies to
DoubleMaxMinOver and there is at0 ∈ IIN0 such that
zmin(t) ∈ ZS for t ≥ t0. Hence, the number of non-
support vectors withinVt and theni of non-support vectors
within Vt will not increase anymore fort ≥ t0. But then
there has to be at′ ∈ IIN0 such thatzmax(t) ∈ ZS for
t ≥ t′. Let us assume that there is a non-support vector

z′ which remains to be an element ofVt. Then there is a
t′′ ∈ IIN0 such thatwtz

′ ≤ wtzmax(t) for all t ≥ t′′.
This, however, is not possible sincelimt→∞ wtz

′ = ∆ and
limt→∞ wtzmax(t) = ∆∗ with ∆ > ∆∗.

Theorem 4:Let ∆t be the margin provided by Double-
MaxMinOver after t iteration steps. Its relative deviation
(∆∗ − ∆t)/∆∗ from the maximum margin∆∗ converges to
zero at least asO(t−1). This bound is tight.

Proof: We introduce

Z̃ := {2z− z′ | z ∈ ZS , z′ ∈ ZS} .

We haveZS ⊆ Z̃. SincewT
∗ z̃ = 2∆∗ for each z̃ ∈ Z̃, the

maximum margin solution for̃Z is equivalent to the maximum
margin solution forZ.
We introduce z̃min(t) := arg min

z̃∈Z̃
wT

t z̃. Because of The-

orem 3, for t ≥ t1 we have Vt = XS and, therefore,
z̃min(t) = 2zmin(t) − zmax(t). The learning step then reads
as wt+1 = wt + z̃min(t). That means that fort ≥ t1
DoubleMaxMinOver onZ is equivalent to DoubleMinOver
on Z̃ and we can apply Theorem 1.

B. DoubleMaxMinOver with kernels

Algorithm 4 Kernel formulation of the DoubleMaxMinOver

algorithm. Withh (xi) = yi

N
∑

j=1

yjnjK(xj ,xi):

ni ← 0 ∀i = 1, . . . , N
for t = 0 to tmax do

xmin+ ← arg min
xi∈X+

h (xi)

xmin− ← arg min
xi∈X−

h (xi)

xmax+ ← arg max
xi∈V+

t

h (xi)

xmax− ← arg max
xi∈V−

t

h (xi)

nmin+ ← nmin+ + 2
nmin− ← nmin− + 2
nmax+ ← nmax+ − 1
nmax− ← nmax− − 1

end for
b← 1

2
(h (xmin+)− h (xmin−)).

In its kernel formulation DoubleMaxMinOver looks as
given in Algorithm 4. As for DoubleMinOver,

∑N
i=1

ni = 2t

and the constraint
∑N

i=1
yini = 0 is always fulfilled. As we

have shown in Theorem 3, after a finite number of iterationsVt

will consist only of support vectors, i.e.,ni will be non-zero
only for support vectors.

In Fig. 3 we show the same example as in Fig. 1, this
time the result achieved with DoubleMaxMinOver in its kernel
formulation. Again, circles indicate those data points for
which ni > 0. Note, this time all these data points are
support vectors. In Fig. 3, also theO(t−1) convergence is
demonstrated.

Fig. 4 shows the same example as in Fig. 2, this time
approached with DoubleMaxMinOver instead of DoubleMin-
Over. As in Fig. 3, we see that at the end only support



9

Fig. 4. The same 2-dimensional dataset as in Fig. 2. The gray area indicates
the class boundary obtained with DoubleMaxMinOver and Gaussian kernels.
Again, data points for whichni > 0 holds are marked by a circle. In contrast
to Fig. 2 data points that are not close to the class boundary are removed
from the solution and only support vectors remain.

Fig. 5. Incremental learning with DMMO. Top left: Initial state obtained by
performing 100 training iterations with 25 training samples.Then successively
25 training samples were added. Each time another 100 trainingiterations
were performed. Initially theni of the added training samples are set to zero
while keeping theni values of the “old” training samples.

vectors determine the solution. In Fig. 5 we applied Double-
MaxMinOver to an incrementally growing training set, i.e,
we successively added 25 training samples to the training set
until 100 data points were reached. Each time training samples
were added we performed another 100 training iterations of
DoubleMaxMinOver. Theni of the new training samples were
initialized by zero while keeping theni of the “old” training
samples. It can be seen how the class boundary adepts to the
enlarged training set. Support vectors that become non-support
vectors by adding further training samples are forgotten.

IV. SOFTDOUBLEMAX M INOVER

So far linear separability of the patterns was required.
Since this is often not fulfilled in practice, the concept of
a ”soft margin” was introduced in [1], [2]. With a soft
margin training patterns are allowed to be misclassified at a
certain cost. Instead of minimizing‖w‖2 under the constraints
yi

(

wT xi − b
)

≥ 1, a certain error represented by so-called
slack variablesξi is allowed.

There are two ways of incorporating these slack variables
into the objective function. In its original form and usually,
the SVM solves the so-called 1-norm soft margin classifica-
tion problem. In this case it minimizes‖w‖2 + C

∑N
i=1

ξi

under the constraintsyi

(

wT xi − b
)

≥ 1 − ξi with ξi ≥ 0.
The scalar parameterC determines the ”hardness” of the
margin. The smallerC, the softer the margin. Note, that
admitting a soft margin is identical to the relaxation of the
Lagrangian, which allows to solve the Quadratic Programming
problem even if the training patterns are not linearly separable.
The second variation is the 2-norm soft margin problem,
where‖w‖2 + C

∑N
i=1

ξ2
i is minimized under the constraints

yi

(

wT xi − b
)

≥ 1 − ξi. Again, the scalar parameterC
determines the ”hardness” of the margin. Compared to the 1-
norm case, slight deviations from the hard margin constraints
are punished less, but large values ofξi contribute much
more to the cost function. Both versions, of course, provide
different solutions, but usually there is hardly a difference in
classification performance. In the following we will show how
DoubleMinOver as well as DoubleMaxMinOver are able to
solve the 2-norm soft margin classification problem.

In Cristianini and Shawe-Taylor [22] it is shown, by con-
verting into the dual and eliminatingξ, that solving the 2-
norm soft margin classification problem within a feature space
implicitly defined by a kernelK(x,x′) is equivalent to solving
the hard margin problem within a feature space defined by the
kernelK̂(xi,xj) = K(xi,xj) + C−1δij for eachxi,xj ∈ X ,
whereδij denotes the Kronecker delta which is1 for i = j
and0 otherwise. Within the feature space defined byK̂(x,x′)
the training data are linearly separable by construction. This
conversion of the soft margin classification problem into a hard
margin problem with modified kernels is not possible in the
1-norm case. This is the reason why we pursue the 2-norm
case.

After conversion of the soft margin problem into a linearly
separable hard margin problem by modifying the kernel we
can directly apply DoubleMinOver as well as DoubleMax-
MinOver. As stated already in Section II, DoubleMinOver as
well as DoubleMaxMinOver are perceptron-like pattern-by-
pattern solvers of the hard-margin SVM-problem. By solving
the hard margin problem formulated with the kernelK̂(x,x′)
we solve the 2-norm soft margin classification problem with
the kernelK(x,x′). With

ĥ (xi) = yi

N
∑

j=1

yjnj

(

K(xj ,xi) +
δij

C

)

= h (xi) +
ni

C

the SoftDoubleMaxMinOver algorithm in its kernel formula-
tion then works as shown in Algorithm 5. Having determined
theni andb via SoftDoubleMaxMinOver, the class assignment



10

Fig. 6. The same 2-dimensional dataset as in Fig. 2 and Fig. 4, this
time approached with SoftDoubleMaxMinOver. Obviously, theresulting class
boundary is smoother now. Again, circles indicate the support vectors for
which ni > 0.

of a new patternx takes place, of course, based on the original
kernel. The decision depends on whether

N
∑

i=1

yiniK(xi,x)− b

is larger or smaller than zero.

Algorithm 5 Kernel formulation of the SoftDoubleMax-

MinOver algorithm. Withh (xi) = yi

N
∑

j=1

yjnjK(xj ,xi):

ni ← 0 ∀i = 1, . . . , N
for t = 0 to tmax do

xmin+ ← arg min
xi∈X+

(

h (xi) + ni

C

)

xmin− ← arg min
xi∈X−

(

h (xi) + ni

C

)

xmax+ ← arg max
xi∈V+

t

(

h (xi) + ni

C

)

xmax− ← arg max
xi∈V−

t

(

h (xi) + ni

C

)

nmin+ ← nmin+ + 2
nmin− ← nmin− + 2
nmax+ ← nmax+ − 1
nmax− ← nmax− − 1

end for
b← 1

2
(h (xmin+)− h (xmin−)) + 1

2C (nmin+ − nmin−)

Fig. 6 shows the result obtained with SoftDoubleMax-
MinOver on the same dataset as in Fig. 2 and Fig. 4. The
hardness parameterC was set to1/2. The class boundary is
smoother now than in Fig. 2 and Fig. 4.

V. EXPERIMENTAL RESULTS ON BENCHMARK PROBLEMS

To validate and compare the performance of SoftDouble-
MaxMinOver2 we tested it on a number of common classi-
fication benchmark problems. The classification benchmarks
stem from the UCI3, DELVE4 and STATLOG [23] collection.
We compare our results with those reported in the SVM-
benchmark repository of the Fraunhofer Institute5 and results
we obtained with the 1-norm-SVM of the OSU-SVM Matlab
Toolbox6 that is based on the SMO-algorithm (in the following
called SMO-SVM) [7].

Each result reported in the benchmark repository of the
Fraunhofer Institute is based on 100 different partitionings
of the respective benchmark data into training and test sets
(except for the splice and image benchmark results which stem
from 20 partitionings). For classification they used the standard
1-norm-SVM with RBF-kernels. The reported classification
result is the average and standard deviation over all 100
realizations. Each partitioning is available from this repository.

Table I lists the average classification errors we obtained
with SoftDoubleMaxMinOver and the SMO-SVM on the
different benchmark problems. We used the default parame-
ter settings of the OSU-SVM Toolbox. Like the Fraunhofer
Institute we used RBF-kernels, and we took their kernel
widths γ. The C values in SoftDoubleMaxMinOver and the
SMO-SVM where chosen such that the error is minimized.
On all benchmarks the simple SoftDoubleMaxMinOver is
as fast as and achieves results comparable to those of the
SMO-SVM and those reported in the Fraunhofer benchmark
repository. Only a few training steps are necessary. On the
ringnorm, the imageand thesplicebenchmark both the SMO-
SVM as well as SoftDoubleMaxMinOver are worse than the
Fraunhofer reference. Since convergence is guaranteed, by
either performing more iterations for SoftDoubleMaxMinOver
or tweaking the parameters of the SMO-SVM, one can, of
course, obtain comparable results for these benchmarks, too.
This assumes that on these benchmarks it does not make a
significant difference using the 2-norm instead of the 1-norm
soft margin.

VI. CONCLUSIONS

The well-known MinOver algorithm as a perceptron-like
procedure for obtaining maximum margin hyperplanes without
a bias was extended to the so-called DoubleMinOver algorithm
which yields the maximum margin hyperplane with a bias.
In its kernel formulation DoubleMinOver learns by iteratively
selecting patterns from the training set. The computational
effort increases likeO(N) with the number of training patterns
N . We proved anO(t−1/2) convergence, and based on this
proof we could show that even anO(t−1) convergence can be
expected, witht as the number of iteration steps.

2A SoftDoubleMinOver package is available at
http://www.inb.uni-luebeck.de/maxminover

3UCI Repository: http://www.ics.uci.edu/∼mlearn/MLRepository.html
4DELVE Datasets: http://www.cs.utoronto.ca/∼delve/index.html
5Benchmark Repository: http://ida.first.fraunhofer.de/
projects/bench/benchmarks.htm

6OSU SVM Classifier Toolbox: http://sourceforge.net/projects/svm/



11

SoftDoubleMaxMinOver SMO-SVM Reference
Benchmark #TR #TE Seconds/Iter. ERR(%) Seconds ERR(%) ERRREF (%)
banana 400 4900 0.030/200 11.6 ± 0.83 0.031 10.4 ± 0.46 12.0 ± 0.66
br-cancer 200 77 0.019/100 27.1 ± 4.96 0.012 28.2 ± 4.62 26.0 ± 4.74
diabetis 468 300 0.060/300 23.3 ± 1.78 0.065 23.1 ± 1.82 24.0 ± 1.73
fl-solar 666 400 0.148/300 32.4 ± 1.80 0.229 32.3 ± 1.82 32.0 ± 1.82
german 700 300 0.142/200 24.1 ± 2.67 0.177 24.0 ± 2.17 24.0 ± 2.07
heart 170 100 0.010/100 15.5 ± 3.22 0.006 15.2 ± 3.21 16.0 ± 3.26
image 1300 1010 0.811/2000 13.1 ± 4.33 0.812 9.8 ± 0.62 3.0 ± 0.60
ringnorm 400 7000 0.030/300 2.6 ± 0.41 0.021 2.5 ± 0.38 1.7 ± 0.12
splice 1000 2175 0.615/500 16.1 ± 0.65 0.654 14.9 ± 0.78 11.0 ± 0.66
titanic 150 2051 0.034/1500 22.4 ± 0.96 0.013 22.3 ± 1.04 22.0 ± 1.02
waveform 400 4600 0.047/300 11.4 ± 0.59 0.045 10.7 ± 0.53 10.0 ± 0.43
thyroid 140 75 0.004/200 4.2 ± 2.40 0.003 4.1 ± 2.42 4.8 ± 2.19
twonorm 400 7000 0.057/200 2.4 ± 0.13 0.033 2.4 ± 0.14 3.0 ± 0.23

#Tr : number of training data, #Te : number of test data

TABLE I
CLASSIFICATION RESULTS OBTAINED WITHSOFTDOUBLEMAX M INOVER ON STANDARD BENCHMARKS. FOR COMPARISON THE RESULTS OBTAINED

WITH THE SMO ALGORITHM (USING THE OSU-SVM TOOLBOX) AND THOSE REPORTED IN THEFRAUNHOFER BENCHMARK REPOSITORY(LAST

COLUMN) ARE LISTED.

Since DoubleMinOver does not use only support vectors
for its solution, we extended DoubleMinOver to DoubleMax-
MinOver. DoubleMaxMinOver learns not only by iteratively
selecting patterns from the training set, but also by removing
patterns which have been used for learning before. We proved
that the computational effort and convergence remain the same
as for DoubleMinOver, but now the final result is based solely
on support vectors.

We showed a way of extending DoubleMaxMinOver to 2-
norm soft margins. This is achieved by using DoubleMax-
MinOver with an appropriately modified kernel. Hence,
SoftDoubleMaxMinOver remains as simple as Double-
MaxMinOver and obeys the same convergence characteristics.
With SoftDoubleMaxMinOver which is closely related to the
perceptron algorithm a complete pattern-by-pattern SVM is
realized. In experiments on common benchmark problems the
SoftDoubleMaxMinOver algorithm provided the same classifi-
cation performance as common state-of-the-art SVM-software.

VII. A CKNOWLEDGEMENT

The authors would like to thank Tom Binder for valuable
suggestions and improving the notation. We are grateful to the
anonymous reviewers for their helpful comments which lead
to significant improvements of the manuscript.

REFERENCES

[1] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Mach.
Learn., 20(3):273–297, 1995.

[2] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

[3] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker,
H. Drucker, I. Guyon, U. Muller, E. Sackinger, P. Simard, and V. Vapnik.
Comparison of learning algorithms for handwritten digit recognition.
Int.Conf.on Artificial Neural Networks, pages 53–60, 1995.

[4] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an
application to face detection.CVPR’97, pages 130–136, 1997.

[5] Bernhard Scḧolkopf. Support Vector Learning. PhD thesis, Technische
Universiẗat Berlin, 1997. Published by: R. Oldenbourg Verlag, Munich.

[6] T.T. Friess, N. Cristianini, and C. Campbell. The kernel adatron
algorithm: a fast and simple learning procedure for support vector
machine. Proc. 15th International Conference on Machine Learning,
1998.

[7] J.C. Platt. Advances in Kernel Methods - Support Vector Learning,
chapter Fast Training of Support Vector Machines using Sequential
Minimal Optimization, pages 185–208. MIT Press, 1999.

[8] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.
A Fast Iterative Nearest Point Algorithm for Support VectorMachine
Classifier Design.IEEE-NN, 11(1):124–136, January 2000.

[9] A. Kowalczyk. Advances in Large Margin Classifiers, chapter Maximal
margin perceptron, pages 61–100. MIT Press, 2000.

[10] Gert Cauwenberghs and Tomaso Poggio. Incremental and Decremental
Support Vector Machine Learning. InNIPS, pages 409–415, 2000.

[11] Y. Li and P.M. Long. The Relaxed Online Maximum Margin Algorithm.
Machine Learning, 46(1-3):361–387, 2002.

[12] S. V. N. Vishwanathan, Alex J. Smola, and M. Narasimha Murty. Simple
SVM. In ICML, pages 760–767, 2003.

[13] Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core Vector
Machines: Fast SVM Training on Very Large Data Sets.J. Mach. Learn.
Res., 6:363–392, 2005.

[14] W. Krauth and M. Mezard. Learning algorithms with optimalstability
in neural networks.J.Phys.A, 20:745–752, 1987.

[15] J. K. Anlauf and M. Biehl. The AdaTron: an adaptive perceptron
algorithm. Europhys. Lett., 10:687–692, 1989.

[16] W. Kinzel. Statistical mechanics of the perceptron withmaximal
stability. Lecture Notes in Physics, 368:175–188, 1990.

[17] H.D. Navone and T. Downs. Variations on a Kernel-Adatron Theme.
VII Internacional Congress on Information Engineering, Buenos Aires,
2001.

[18] H. Kim, B. Drake, and H. Park. Adaptive nonlinear discriminant
analysis by regularized minimum squared errors.IEEE Transactions
on Knowledge and Data Engineering, 18(5):603–612, 2006.

[19] H. Kim and H. Park. Incremental and decremental least squares support
vector machine and its application to drug design. InProceedings of
the 2004 IEEE Computational Systems Bioinformatics Conference (CSB
2004), pages 656–657, 2004.

[20] T. Martinetz. MaxMinOver: A simple incremental learningprocedure
for support vector classification. InProc. of the International Joint
Conference on Neural Networks, pages 2065–2070. IEEE Press, 2004.

[21] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[22] Nello Cristianini and John Shawe-Taylor.An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[23] R. King, C. Feng, and A. Shutherland. STATLOG: comparison of
classification algorithms on large real-world problems.Applied Artificial
Intelligence, 9(3):259–287, May/June 1995.



12

Thomas Martinetz is full professor of computer science and
the director of the Institute for Neuro- and Bioinformatics at the
University of Lübeck. He studied Physics at the TU München
and obtained his doctoral degree in Biophysics at the Beckman
Institute for Advanced Science and Technology of the University of
Illinois at Urbana-Champaign. From 1991 to 1996 he led the project
Neural Networks for automation control at the Corporate Research
Laboratories of the Siemens AG in Munich. From 1996 to 1999
he was Professor for Neural Computation at the Ruhr-University
of Bochum and head of the Center for Neuroinformatics. Thomas
Martinetz is Chairman of the German Chapter of the European Neural
Network Society.

Kai Labusch studied computer science at the University of
Lübeck, where he graduated 2004. He now works as research assistant
at the Institute for Neuro- and Bioinformatics of the University of
Lübeck, where he pursues a PhD degree. He works in the field
of Blind Source Separation, Sparse Coding and Support Vector
Machines.

Daniel Schneegaßstudied computer science from 2000 to 2005
and graduated from the University of Lübeck as Diplom-Informatiker
in 2005. Since 2005 he has been working on his Ph.D. thesis
as research associate at the Learning Systems Department of the
Siemens AG, Corporate Technology, Information & Communications
in Munich. His main research interests include Reinforcement Learn-
ing, Kernel Machines and Support Vector Machines, Neural Networks
as well as Dynamical Systems and Recurrent Neural Networks.


