
Sparse Coding Neural Gas: Learning of

Overcomplete Data Representations

Kai Labusch, Erhardt Barth and Thomas Martinetz

University of Lübeck - Institute for Neuro- and Bioinformatics
Ratzeburger Allee 160 – 23538 Lübeck – Germany

Abstract

We consider the problem of learning an unknown (overcomplete) basis from data
that are generated from unknown and sparse linear combinations. Introducing the
Sparse Coding Neural Gas algorithm, we show how to employ a combination of the
original Neural Gas algorithm and Oja’s rule in order to learn a simple sparse code
that represents each training sample by only one scaled basis vector. We generalize
this algorithm by using Orthogonal Matching Pursuit in order to learn a sparse
code where each training sample is represented by a linear combination of up to
k basis elements. We evaluate the influence of additive noise and the coherence
of the original basis on the performance with respect to the reconstruction of the
original basis and compare the new method to other state of the art methods. For
this analysis, we use artificial data where the original basis is known. Furthermore,
we employ our method to learn an overcomplete representation for natural images
and obtain an appealing set of basis functions that resemble the receptive fields
of neurons in the primary visual cortex. An important result is that the algorithm
converges even with a high degree of overcompleteness. A reference implementation
of the methods is provided 1 .

Key words: Sparse Coding, Vector Quantization, Matching Pursuit, Unsupervised
Learning

1 Introduction

In the last few years there has been an increased interest in sparse coding. On
the one hand, sparse coding is closely connected to independent component
analysis (ICA), in particular to overcomplete and noisy ICA [20, 13, 36]. On
the other hand, there is evidence that sparse coding is a principle employed

1 http://www.inb.uni-luebeck.de/tools-demos/scng

Article published in Neurocomputing 72, 2009, pp. 1547–1555
doi:10.1016/j.neucom.2008.11.027

by biological systems for signal processing [27, 29]; sparse models have been
successfully used to mimic properties of simple cells in the primary visual cor-
tex [7, 28, 2, 34]. More recent research has studied overcomplete sparse codes
[22, 1, 19]. It has been shown that sparse codes possess favorable properties
with respect to noise resistance at the reconstruction [37, 38] and representa-
tion level [5]. Applications for sparse coding range from compression [21] over
denoising [9] to feature extraction [25, 33, 17].

Mathematically, the problem of sparse coding is to estimate a possibly over-
complete basis from given training samples X = (x1, . . . ,xL), xi ∈ R

N that
have been generated from an unknown sparse linear combination. Without
loss of generality, we require X to have zero mean. We measure the quality of
the basis by the mean square of the representation error:

E =
1

L

L
∑

i=1

‖xi − Cai‖2
2 . (1)

C = (c1, . . . , cM), cj ∈ R
N denotes a matrix containing the basis elements.

ai ∈ R
M denotes a set of sparse coefficients that have been chosen optimally

for given xi and C. The number of basis elements M is a free model param-
eter. In the case of overcomplete bases, M > N holds. By imposing different
constraints on the basis C or the choice of the coefficients ai, the structure of
the learned basis can be controlled.

A number of methods that have been proposed consider a probabilistic setting
that leads to the minimization of (1) under sparseness constraints with respect
to the coefficients ai. These methods propose a data model where each given
sample xi is generated according to the following probabilistic model:

xi = Ca + ǫ . (2)

The a are hidden variables that are sparsely distributed according to P (a),
which may for instance be a Laplacian. The residual ǫ is assumed to be Gaus-
sian. One wants to determine those model parameters C that maximize the
probability of obtaining the observed data, i.e., that maximize the data like-
lihood:

max
C

P (x1, . . . ,xL|C) (3)

with

P (x1, . . . ,xL|C) =
L

∏

i=1

∫

a

P (xi|a, C)P (a)da . (4)

The well-known Sparsenet algorithm of Olshausen and Field [28, 29] and the
algorithm proposed by Lewicki and Sejnowski [22] belong to the group of
methods that consider such a probabilistic setting. These two algorithms dif-
fer in the way they deal with the intractable integration over a in (4). The
related approach proposed by Kreutz-Delgado et al. [14] jointly maximizes the

2

posterior probabilities of the model parameters C and a:

max
C,a1,...,aL

P (C, a1, . . . , aL|x1, . . . ,xL) (5)

which is equivalent to

max
C,a1,...,aL

P (x1, . . . ,xL|C, a1, . . . , aL)P (a1, . . . , aL)P (C) . (6)

The problematic integration with respect to a in (4) is avoided. Furthermore,
the introduction of a prior with respect to C allows to directly incorporate
constraints on the basis into the probabilistic setting.

ICA considers a setting that is very similar to (2). Assuming that the hidden
variables a = (a1, ..., aM) are statistically independent, ICA looks for model
parameters C that maximize the statistical independence of these hidden vari-
ables [13]. Statistical independence can be measured by non-Gaussianity, and
maximization of non-Gaussianity leads to the sparsification of the hidden vari-
ables a in some cases [13]. Standard ICA considers the noise-free case where
‖ǫ‖ = 0 [13], but ICA methods that allow for additive noise have also been
proposed [10]. Overcomplete ICA allows more underlying independent com-
ponents C, i.e., hidden variables a, than observed variables xi [11, 20, 36, 3].

Given a fixed basis C, methods such as Matching Pursuit [35], Orthogonal
Matching Pursuit [30] and Optimized Orthogonal Matching Pursuit [31] can
be used to approximate those coefficients ai that minimize (1) restricted to a
maximum number of non-zero entries of the ai, i.e., these methods provide an
approximation to the solution of the following optimization problem:

min
a

‖xi − Ca‖ subject to ‖a‖0 ≤ k . (7)

Here, ‖a‖0 denotes the number of non-zero coefficients in a. Methods such as
the MOD algorithm [6] and the K-SVD algorithm [1] have been proposed to
learn the basis C by employing these pursuit methods. The pursuit method is
used to determine a1, . . . , aL. Then, in order to update C with respect to (1),
a1, . . . , aL are considered fixed.

In this paper, we wish to show that sparse coding is also closely connected
to the large field of vector quantization methods. We show how to learn an
overcomplete sparse code under the presence of noise using an algorithm that
is derived from the Neural Gas (NG) method [24, 23]. This method, the Sparse
Coding Neural Gas algorithm, was first introduced in [16] and has already been
applied to nuclear magnetic resonance data [32] and to the problem of blind
separation of noisy overcomplete sources [18].

3

2 Sparse Coding Neural Gas

Let us start by considering a simple well-known approach for data represen-
tation: vector quantization. Vector quantization is based on a set of so-called
codebook vectors. Each sample is encoded by the closest codebook vector.
Therefore, for the coefficients ai, we have

aik = 1, aij = 0 ∀j 6= k where k = arg min
j
‖cj − xi‖2

2 . (8)

Vector quantization aims to find a set of codebook vectors that minimize
(1) under the constraints posed by (8). The well-known k-means algorithm
[8] is one of the methods that try to solve this optimization problem. But
k-means can lead to a sub-optimal utilization of the codebook vectors with
respect to (1), i.e., bad quantization, due to the hard-competitive nature of its
learning scheme. Furthermore, the k-means algorithm is initialization-sensitive
and exhibits slow convergence. The Neural Gas algorithm [23] remedies these
deficiencies by using a soft-competitive learning scheme that facilitates robust
convergence to close to optimal distributions of the codebook vectors over the
data manifold to be learned.

Here, we do not want to perform vector quantization but make a step towards
a more flexible coding scheme, i.e., a coding scheme that in some cases may
better resemble the structure of the data. We drop one constraint on the coeffi-
cients ai to allow a representation in terms of an arbitrarily scaled single code-
book vector. In other words, we are now looking for a set of one-dimensional
subspaces that cover the data. This can be understood as considering a set
of data directions instead of data modes. Due to the added flexibility of the
coefficients, we require ‖cj‖2

2 = 1 without loss of generality. This leads to
the following optimization problem, which can be understood as a model of
maximum sparseness:

min
c1,...,cM

L
∑

i=1

‖xi − Cai‖2
2 subject to ‖ai‖0 ≤ 1 and ‖cj‖2

2 = 1 . (9)

First consider the marginal case of (9), where only one codebook vector is
available, i.e, M = 1. Now (9) becomes:

min
c

L
∑

i=1

‖xi − cai‖2
2 =

L
∑

i=1

xT
i xi − 2aic

Txi + a2
i subject to ‖c‖2

2 = 1 . (10)

When xi and c are fixed, (10) becomes minimal by choosing ai = cTxi. As the
final optimization problem, one obtains:

max
c

L
∑

i=1

(cTxi)
2 subject to ‖c‖2

2 = 1 . (11)

4

Hence, in this marginal case, the problem of finding the codebook vector that
minimizes (10) boils down to finding the direction of maximum variance. A
well-known learning rule that solves (11), i.e., that finds the direction of max-
imum variance, is called Oja’s rule [26]:

∆c = α y (x − y c) (12)

with y = cTx and learning rate α.

Now consider the general case, where M > 1 holds. In this case, the optimiza-
tion problem (11) turns into

max
c1,...,cM

L
∑

i=1

max
l

(cT
l xi)

2 subject to ‖cl‖2
2 = 1 . (13)

We can generalize to this case by first determining the codebook vector that
has maximum overlap with respect to the training data:

lwin = arg max
l

(cT
l x)2 . (14)

In order to minimize (9), we then update this codebook vector clwin
accord-

ing to Oja’s rule. However, this approach suffers from the same problem as
the k-means algorithm. Due to hard-competitive selection of the codebook
vector to be updated, it may happen that the codebook vectors will be dis-
tributed sub-optimally with respect to the target function (see also Figure 1
in the experiments section). To prevent this, we modify the original Neural
Gas algorithm (see Algorithm 1) to solve the general case of (9).

In the Neural Gas algorithm, soft-competitive learning is achieved by con-
trolling the update of each codebook vector by its rank in the sequence of
distances of all codebook vectors with respect to a given sample. These dis-
tances are computed within the sample space (see Algorithm 1, steps 4 and
5). We replace the distance measure and now consider the following sequence
of distances (see Algorithm 2, step 4):

−
(

cT
l0
x

)2 ≤ · · · ≤ −
(

cT
lk
x

)2 ≤ · · · ≤ −
(

cT
lM−1

x
)2

. (15)

The modified distance measure requires a new update rule to minimize the
distances between the codebook vectors and the current training sample x. By
combining Oja’s rule with the soft-competitive update of the NG algorithm,
we obtain (see Algorithm 2, step 5):

∆clk = αte
−k/λty (x − yclk) . (16)

Here, αt is the learning rate, and λt is the neighbourhood size at time t:

αt = α0 (αfinal/α0)
t/tmax , (17)

5

λt = λ0 (λfinal/λ0)
t/tmax . (18)

For t → tmax, one obtains equation (12) as the update rule. Because of the
optimization constraint ‖cj‖ = 1, we normalize the codebook vectors in each
learning step. The complete Sparse Coding Neural Gas algorithm is shown in
Algorithm 2.

3 On the convergence of Sparse Coding Neural Gas

Consider the following maximization problem:

max
c1,...,cM

L
∑

i=1

M
∑

l=1

hλt
(k(cl,xi))(c

T
l xi)

2 subject to ‖cl‖2
2 = 1, (19)

with hλt
(v) = e−v/λt . Let k(cl,x) denote the number of basis elements cj with

(cT
j x)2 > (cT

l x)2. Note that for λt → 0 this optimization problem is equivalent
to the optimization problem defined by (13). In order to maximize (19), we
consider the Lagrangian

L =
L

∑

i=1

M
∑

l=1

hλt
(k(cl,xi))(c

T
l xi)

2 − βl(c
2
l − 1), (20)

where we have introduced the Lagrangian multipliers βl. We obtain

∂L

∂cj

= 2
L

∑

i=1

hλt
(k(cj,xi))(c

T
j xi)xi − 2βjcj + Rj (21)

with

Rj =
L

∑

i=1

M
∑

l=1

h
′

λt
(k(cl,xi))

∂k(cl,xi)

∂cj

(cT
l xi)

2 (22)

and h
′

λt
(v) =

∂hλt
(v)

∂v
. Due to the arguments presented in [23], Rj = 0 holds.

At the maximum we have

∂L

∂cj

= 0 ⇔ βj =
L

∑

i=1

hλt
(k(cj,xi))(c

T
j xi)

2 . (23)

Using this, we finally obtain the gradient

∂L

∂cj

= 2
L

∑

i=1

hλt
(k(cj,xi))(c

T
j xi)xi − (cT

j xi)
2cj . (24)

Hence, for a randomly chosen x ∈ (x1, . . . ,xL) at time t with learning rate αt,
the update

6

∆cj = αthλt
(k(cj,x))

(

(cT
j x)x − (cT

j x)2cj

)

(25)

= αte
−k(cj ,x)/λty (x − ycj) (26)

performs a stochastic gradient descent with respect to (19) [15]. Note that
multiplying a basis element cl by −1 does not change (19), therefore the sign
of the basis elements cannot be recovered by minimizing (19).

Algorithm 1 The Neural Gas algorithm
1 initialize C = (c1, . . . , cM) using uniform random values

for t = 1 to tmax do

2 select random sample x out of X
3 calculate current size of neighbourhood and learning rate:

λt = λ0 (λfinal/λ0)
t/tmax

αt = α0 (αfinal/α0)
t/tmax

4 determine the sequence l0, . . . , lM−1 with:

‖x − cl0‖ ≤ · · · ≤ ‖x − clk‖ ≤ · · · ≤ ‖x − clM−1
‖

for k = 0 to M − 1 do

5 update clk according to clk = clk + αte
−k/λt (x − clk)

end for

end for

Algorithm 2 The Sparse Coding Neural Gas algorithm.
1 initialize C = (c1, . . . , cM) using uniform random values

for t = 1 to tmax do

2 select random sample x out of X
3 set c1, . . . , cM to unit length
4 calculate current size of neighbourhood and learning rate:

λt = λ0 (λfinal/λ0)
t/tmax

αt = α0 (αfinal/α0)
t/tmax

determine l0, . . . , lM−1 with:

−(cT
l0x)2 ≤ · · · ≤ −(cT

lk
x)2 ≤ · · · ≤ −(cT

lM−1
x)2

for k = 0 to M − 1 do

5 with y = c
T
lk
x, update clk according to clk = clk + αte

−k/λty(x − yclk)
end for

end for

7

4 Generalized Sparse Coding Neural Gas

The Generalized Sparse Coding Neural Gas (GSCNG) algorithm uses a linear
combination of k elements of C to represent a given sample xi. It considers
the following optimization problem:

min
c1,...,cM

L
∑

i=1

‖xi − Cai‖2
2 subject to ‖ai‖0 ≤ k and ‖cj‖2

2 = 1 . (27)

Even if the optimal basis C is known, we still have to solve the following
optimization problem:

a
opt
i = arg min

ai

‖xi − Cai‖ subject to ‖ai‖0 ≤ k, i = 1, . . . , L . (28)

Here, xopt
i = Ca

opt
i is the best k-term representation of xi in terms of the given

basis C.

In general, (28) is a combinatorial problem that is NP-hard [4]. A number
of approximation methods have been proposed that tackle the problem of
finding optimal coefficients ai constrained by ‖ai‖0 ≤ k given fixed C and xi.
We here consider a class of greedy methods, the so-called pursuit algorithms,
that iteratively construct the vector xi out of the columns of the matrix C.

4.1 Matching Pursuit (MP)

We start with a simple approach and consider the Matching Pursuit algorithm
(MP). Let CaMP

i denote the current approximation of xi in MP, and let ǫi =
xi − CaMP

i denote the current residual that still has to be encoded. Initially,
aMP

i = 0 and ǫi = xi. MP iteratively selects k columns of C by performing
the following steps:

(1) Select clwin
by clwin

= arg maxcl
(cT

l ǫi)

(2) Set (aMP
i)lwin

= (aMP
i)lwin

+ (cT
lwin

ǫi)

(3) Obtain new residual ǫi = xi − CaMP
i

(4) Continue with step 1 until k iterations have been performed

Even if we perform N iterations of MP, i.e., if we select as many basis vectors
as there are dimensions, it is not guaranteed that we will obtain CaMP

i = xi

and ǫi = 0, though the asymptotical convergence of MP for k → ∞ has been
proven [35].

8

4.2 Orthogonal Matching Pursuit (OMP)

Let CaOMP
i denote the current approximation of xi in Orthogonal Matching

Pursuit. In contrast to MP, this approximation fulfills CaOMP
i = xi and ǫi = 0

after k ≤ N iterations [30]. Let U denote the set of indices of those columns
of C that already have been used during Orthogonal Matching Pursuit. The
number of elements in U , i.e., |U |, equals the number of iterations that have
been performed so far. The columns of C that are indexed by U are denoted
by CU . Initially, aOMP

i = 0, ǫi = xi and U = ∅. OMP works as follows:

(1) Select clwin
by clwin

= arg max
cl,l /∈U(cT

l ǫi)

(2) Set U = U ∪ lwin

(3) Solve the optimization problem aOMP
i = arg mina ‖xi − CUa‖2

2

(4) Obtain current residual ǫi = xi − CaOMP
i

(5) Continue with step 1 until k iterations have been performed

An important property of the basis C that has an impact on the quality of
the approximation provided by the OMP algorithm is the mutual coherence
H(C) of the basis C:

H(C) = max
1≤i,j≤M,i6=j

|cT
i cj| . (29)

It has been shown that OMP yields an xOMP
i = CaOMP

i with

‖xi − xOMP
i ‖ ≤

√
1 + 6k ‖xi − x

opt
i ‖ (30)

if the mutual coherence of C is small enough [37].

4.3 Optimized Orthogonal Matching Pursuit (OOMP)

An improved variant of the OMP algorithm is Optimized Orthogonal Matching
Pursuit (OOMP) [31]. In general, the columns of C are not pairwise orthog-
onal. Hence, the criterion of OMP that selects the column clwin

, lwin /∈ U of
C that is added to U is not optimal with respect to the minimization of the
residual that is obtained after the column clwin

has been added. Therefore,
Optimized Orthogonal Matching Pursuit uses a selection criterion that is op-
timal with respect to the minimization of the norm of the residual obtained:
the algorithms runs through all columns of C that have not been used so far
and selects the one that yields the smallest residual. Optimized Orthogonal
Matching Pursuit works as follows:

(1) Select clwin
such that clwin

= arg min
cl,l /∈U mina ‖x − CU∪la‖

9

(2) Set U = U ∪ lwin

(3) Solve the optimization problem aOMP
i = arg mina ‖xi − CUa‖2

2

(4) Obtain current residual ǫi = xi − CaOMP
i

(5) Continue with step 1 until k iterations have been performed

The selection criterion of the OOMP algorithm (step 1) involves M − |U |
minimization problems, one for each column of C that has not been used so
far. In order to reduce the computational complexity of this step, we use an
implementation of the OOMP algorithm that employs a temporary matrix R
that has been orthogonalized with respect to CU . R is obtained by removing
the projection of the columns of C onto the subspace spanned by CU from C
and setting the norm of the residuals rl to one. The residual ǫ

U
i is obtained

in the same way, i.e., the projection of xi to the subspace spanned by CU is
removed from xi. Initially, R = (r1, . . . , rl, . . . , rM) = C and ǫ

U
i = xi. In each

iteration, the algorithm determines the column rl of R with l /∈ U that has
maximum overlap with respect to the current residual ǫ

U
i :

lwin = arg max
l,l /∈U

(rT
l ǫ

U
i)2 . (31)

Then, in the construction step, the orthogonal projection with respect to rlwin

is removed from the columns of R and ǫ
U
i :

rl = rl − (rT
lwin

rl)rlwin
, (32)

ǫ
U
i = ǫ

U
i − (rT

lwin
ǫ

U
i)rlwin

. (33)

After the projection has been removed, lwin is added to U , i.e., U = U ∪ lwin.
The columns rl with l /∈ U may be selected in the subsequent iterations of the
algorithm. The norm of these columns is set to unit length. If the stopping
criterion |U | = k has been reached, the final entries of aOMP

i can be obtained
by recursively collecting the contribution of each column of C during the
construction process, taking into account the normalization of the columns of
R in each iteration.

4.4 Learning the basis C

So far, we have considered the case where the optimal basis C is given. The
Generalized Sparse Coding Neural Gas algorithm shall learn the optimal basis,
i.e., we now consider the problem of learning the basis C = (c1, . . . , cM) from
the training data xi provided that we know the number of basis elements M
and the dimension k of the subspaces that cover the training data. We use
OOMP to realize this generalization of SCNG: In each iteration of GSCNG,
the OOMP algorithm is performed. In order to minimize (27), we perform an
update of R and C prior to the construction step (32) and (33) in each of the

10

k iterations of OOMP. The update step reduces the norm of the residual that
is obtained in the current iteration. The norm of the residual becomes small
if

(rT
lwin

ǫ
U
i)2 (34)

is large. Hence, we have to consider the optimization problem

max
r1,...,rM−|U|

L
∑

i=1

max
l,l /∈U

(rT
l ǫ

U
i)2 subject to ‖rl‖ = 1 . (35)

The optimization problem (35) is very similar to (13), but now we consider
the data ǫ

U
i as well as the codebook vectors rl that have been orthogonalized

with respect to those codebook vectors CU that have already been used during
OOMP. As before, an optimization of (35) can be achieved by using Oja’s rule.
Instead of updating only the winning column of R, i.e, rlwin

, we again employ
the soft-competitive learning approach of the NG algorithm in order to update
each column of R that may be selected in the next iteration of the OOMP
algorithm. Again, we determine a sequence of distances of the current training
sample to the current codebook vectors. But now, we only consider distances
in the subspace that is orthogonal to CU (see Algorithm 3, step 3):

−
(

rT
l0
ǫ

U
i

)2 ≤ · · · ≤ −
(

rT
lk
ǫ

U
i

)2 ≤ · · · ≤ −
(

rT
lM−|U|−1

ǫ
U
i

)2
, lk /∈ U . (36)

As before, we combine Oja’s rule and the soft-competitive update of the NG
algorithm, but the update is now orthogonal to the subspace spanned by CU .
On the one hand, we apply the update to the temporary basis R; on the
other hand, we accumulate the updates of all subsequent OOMP iterations
in the learned mixing matrix C. Due to the orthogonal projection (32) and
(33) performed in each iteration, these updates are pairwise orthogonal (see
Algorithm 3, step 4):

∆rlk = ∆clk = αte
−k/λty

(

ǫ
U
i − y rlk

)

. (37)

This update rule corresponds to a stochastic gradient descent with respect to
(35) because the arguments provided in Section 3 can be applied in the same
way.

4.5 Computational time complexity

We do not provide an in-depth analysis of the time complexity of the algorithm
but give a rough estimation.

Each update step can be split into the following tasks:

11

• M −|U | distances with respect to the current residual have to be computed.
The time complexity of this operation is O(MN).

• The distances have to be sorted and the winning basis vector has to be deter-
mined. This can be accomplished with a time complexity of O(M log(M)).

• The winning basis vector as well as those M − |U | basis vectors that may
be used in the subsequent steps have to be updated using the learning rule.
This can be performed in O(MN) operations.

• The residual and M − |U | remaining basis vectors of size N have to be or-
thogonalized with respect to the winning basis vector. The time complexity
of this operation is O(MN).

Therefore, each update step has a computational time complexity of O(MN +
M log(M)). Each iteration of the Generalized Sparse Coding Neural Gas algo-
rithm performs k update steps, i.e., each iteration has a computational time
complexity of O(k(MN +M log(M))). Overall, tmax iterations are performed,
therefore the overall time complexity of the algorithm is O(tmaxk(MN +
M log(M))).

The entire Generalized Sparse Coding Neural Gas method is shown in Algo-
rithm 3.

5 Experiments

First, we test the Sparse Coding Neural Gas algorithm on artificially generated
sparse linear combinations. We do not consider the task of determining M
and k, i.e., the size of the basis that was used to generate the samples and the
number of non-zero coefficients in each linear combination; instead, we assume
M and k to be known.

The basis vectors and coefficients used to generate training samples are cho-
sen from a uniform distribution. In order to study the impact of the mutual
coherence (29) of the basis on the reconstruction performance, we vary the
mutual coherence of the basis. We obtain a random basis with coherence z
by repeatedly choosing a matrix from a uniform distribution in [−1, 1] until
⌈100H(C)⌉ = ⌈100z⌉. Then, the norm of the columns of the basis matrix is set
to unit length. The mean variance of the training samples is set to 1. A certain
amount of uniformly distributed noise is added to the training samples.

First, we consider a two-dimensional toy example, where each training sample
is a multiple of one of five basis vectors, i.e., M = 5, k = 1, N = 2. The variance
of the additive noise is set to 0.01. Figure 1 shows the training samples, the
original basis Corig (dashed lines) and the basis C learn that was learned from
the data (solid lines). The left part of the figure shows the result obtained by

12

Algorithm 3 The Generalized Sparse Coding Neural Gas algorithm.
initialize C = (c1, . . . , cM) using uniform random values
for t = 1 to tmax do

1 select random sample x out of X
2 set c1, . . . , cM to unit length

calculate current size of neighbourhood: λt = λ0 (λfinal/λ0)
t/tmax

calculate current learning rate: αt = α0 (αfinal/α0)
t/tmax

set U = ∅, ǫ
U = x and R = (r1, . . . , rM) = C = (c1, . . . , cM)

for h = 0 to K − 1 do

3 determine l0, . . . , lk, . . . , lM−h−1 with lk /∈ U :

−(rT
l0ǫ

U)2 ≤ · · · ≤ −(rT
lk

ǫ
U)2 ≤ · · · ≤ −(rT

lM−h−1
ǫ
U)2

for k = 0 to M − h − 1 do

4 with y = r
T
lk

ǫ
U , update clk = clk + ∆lk and rlk = rlk + ∆lk with

∆lk = αte
−k/λty(ǫU − yrlk)

set rlk to unit length
end for

5 determine lwin = arg max
l /∈U

(rT
l ǫ

U)2

6 remove projection to rlwin
from ǫ

U and R:

ǫ
U = ǫ

U − (rT
lwin

ǫ
U)rlwin

rl = rl − (rT
lwin

rl)rlwin
, l = 1, . . . , M ∧ l /∈ U

7 set U = U ∪ lwin

end for

end for

hard-competitive learning, i.e., λ0 = λfinal = 0. Note that some of the original
basis vectors are not learned correctly due to the sub-optimal distribution of
the learned basis with respect to the given training data. The right part shows
the result obtained using soft-competitive learning, i.e., λ0 = 5/2, λfinal = 0.01.
Note that the original basis is obtained except for the sign of the basis vectors.

In a second experiment, a basis Corig ∈ R
40×100 is generated, consisting of

M = 100 basis vectors of dimension 40. Linear combinations x1, . . . ,x10000 of
k basis vectors are computed using uniformly distributed coefficients in [−1, 1].
We generate different bases with mutual coherence H(C) = 0.3, 0.4, 0.5, 0.6.
The learned basis C learn is compared to the original basis Corig that was used
to generate the samples. This is done by taking the maximum overlap of each
original basis vector c

orig
j and the learned basis vectors, i.e., maxi |clearn

i c
orig
j |.

To assess how many of the learned basis vectors can be assigned unambigu-

13

Fig. 1. A two-dimensional toy example where each sample is a multiple of one
of five basis vectors plus additive noise. Left: hard-competitive learning, i.e.,
λ0 = λfinal = 0. Some of the original basis vectors (dashed lines) are not learned
correctly. Right: soft-competitive learning λ0 = 5/2, λfinal = 0.01. The original basis
is obtained except for the sign of the basis vectors. Note that though the data is ra-
dially arranged around the center of gravity in this toy example, this is not required
for the method to work.

ously to the original basis, we consider |Ĉ learn|, which is the size of the set

Ĉ learn = {clearn
k : k = arg max

i
|clearn

i c
orig
j |, j = 1, . . . ,M} . (38)

All experiments were repeated 10 times.

Figure 2 shows the impact of the mutual coherence of the basis on the mean
maximum overlap and on the mean of |Ĉ learn| for k = 1, . . . , 15. It can be seen
that the smaller the mutual coherence of the underlying basis is, the better
the reconstruction performance. The amplitude of the additive noise was set
to 0.1. Figure 3 shows the impact of the variance of the additive noise on the
mean maximum overlap and on the mean of |Ĉ learn|. An increasing noise level
leads to decreasing performance, as expected. Figure 2 and Figure 3 show that
the less sparse the coefficients are (the larger k is), the lower the quality of
the dictionary reconstruction (see also [37, 5]).

In the third experiment, we fix k = 9 and evaluate the reconstruction error (1)
during the learning process while varying the noise amplitude and the mutual
coherence of the basis. The coefficients used for reconstruction are determined
by Optimized Orthogonal Matching Pursuit with k steps. Figure 4 shows that
the reconstruction error decreases over time. The smaller the noise level is,
the smaller the remaining reconstruction error. The mutual coherence of the
basis has only slight influence on the remaining reconstruction error.

Finally, in order to compare the performance of the algorithm to other meth-
ods, we repeat the experiment described in [1]. A basis Corig ∈ R

20×50 is gener-
ated, consisting of M = 50 basis vectors of dimension 20. Linear combinations
x1, . . . ,x1500 of k = 3 basis vectors are computed using uniformly distributed
coefficients. We add Gaussian noise to obtain data with varying SNR. We ob-

14

2 4 6 8 10 12 14

80

85

90

95

100

k

|Ĉ
le

a
rn
|

mutual coherence of basis : 0.3

mutual coherence of basis : 0.4

mutual coherence of basis : 0.5

mutual coherence of basis : 0.6

2 4 6 8 10 12 14

0.7

0.8

0.9

1

k

1 M

∑
j
m

a
x

i
|c

o
ri

g
j

c
le

a
rn

i
|

mutual coherence of basis: 0.3

mutual coherence of basis: 0.4

mutual coherence of basis: 0.5

mutual coherence of basis: 0.6

Fig. 2. The impact of the mutual coherence H(C) on the performance of Sparse
Coding Neural Gas. We used M = 100 basis vectors of dimension 40. Left: mean
size of Ĉ learn. Right: mean maximum overlap between original and learned basis. The
larger the mutual coherence of the basis is and the less sparse the linear combinations
are, the more the performance decreases. Sparse Coding Neural Gas parameters
used: λ0 = M/2, λfinal = 0.01, α0 = 0.1, αfinal = 0.0001, tmax = 10 ∗ 10000. The noise
variance was set to 0.1.

tain the learned basis by applying the Sparse Coding Neural Gas algorithm
to the data. In [1], the number of learning iterations was set to 80, where each
learning iteration uses the entire data. Therefore, we set tmax = 80 ∗ 1500. As
in [1] we compare the learned basis to the original basis using the maximum
overlap between each original basis vector and the learned basis, i.e, whenever

max
j

(

1 − |corig
i clearn

j |
)

(39)

is smaller than 0.01, we count this as a success. We repeat this experiment
50 times with a varying SNR of 10dB, 20dB and 30dB as well as zero noise.
As in [1], for each noise level we sort the 50 trials according to the number
of successfully learned basis elements and order them in groups of ten experi-
ments. Figure 5 shows the mean number of successfully detected basis vectors
for each of the ten groups for each noise level. For comparison, the results for
the MOD method [6], the method of Kreutz-Delgado (MAP) [14] and for the
K-SVD method [1], taken from [1], are shown in Figure 5.

It can be seen that the Sparse Coding Neural Gas method outperforms the
MAP method for all noise levels and performs as good as MOD for the 20dB
and 30dB SNR and noise-free settings. Surprisingly, the performance of SCNG
degrades at the 10dB SNR setting; this has to be investigated further. K-SVD
outperforms Sparse Coding Neural Gas. It should be noted that K-SVD and
MOD are batch methods that use the entire data in order to obtain the next
update of the basis C in each learning iteration, whereas Sparse Coding Neural
Gas is a pattern-by-pattern online method that only uses one data sample at
a time. The development of a batch version of SCNG will be future work.

15

2 4 6 8 10 12 14

75

80

85

90

95

100

k

|Ĉ
le

a
rn
|

no noise

noise variance : 0.1

noise variance : 0.2

noise variance : 0.3

2 4 6 8 10 12 14

0.6

0.7

0.8

0.9

1

k

1 M

∑
j
m

a
x

i
|c

o
ri

g
j

c
le

a
rn

i
|

no noise

noise variance : 0.1

noise variance : 0.2

noise variance : 0.3

Fig. 3. The impact of the noise level on the performance of Sparse Coding Neu-
ral Gas. We used M = 100 basis vectors of dimension 40. Left: mean size
of Ĉ learn. Right: mean maximum overlap between original and learned basis.
The more noise is present and the less sparse the linear combinations are, the
more the performance decreases. Sparse Coding Neural Gas parameters used:
λ0 = M/2, λfinal = 0.01, α0 = 0.1, αfinal = 0.0001, tmax = 10 ∗ 10000. The coher-
ence of the basis was set to 0.4.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

t

1 L

∑
i
‖x

j
-
C

a
j
‖2 2

noise variance: 0

noise variance: 0.1

noise variance: 0.2

noise variance: 0.3

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

t

1 L

∑
i
‖x

j
-
C

a
j
‖2 2

mutual coherence of basis: 0.3

mutual coherence of basis: 0.4

mutual coherence of basis: 0.5

mutual coherence of basis: 0.6

Fig. 4. Mean reconstruction error over time. We used M = 100 basis vectors of
dimension 40 and set k = 9. Left: Impact of different noise levels on the reconstruc-
tion performance. The mutual coherence of the basis was set to 0.4. Right: Impact
of the mutual coherence of the basis on the reconstruction performance. The noise
variance was set to 0.1. The more noise is present, the larger the remaining recon-
struction error. The mutual coherence has only slight influence on the remaining
reconstruction error.

6 Experiments on natural image data

We used the SCNG algorithm to learn an overcomplete representation of ran-
dom patches of natural images. The image patches of size 8 × 8 pixels were
chosen randomly out of a number of landscape photographs published by Ol-
shausen together with the Sparsenet algorithm. In order to reduce the influ-
ence of low frequencies on the reconstruction error, the images were bandpass
filtered as described in [28]. The learned representation is 6.25 times overcom-
plete, i.e., it consists of 400 basis vectors of size 8 × 8 = 64. k, the number of
non-zero entries per linear combination, was set to 30.

16

10 20 30 no noise
15

20

25

30

35

40

45

50

SNR(dB)

de
te

ct
ed

 b
as

is
 e

le
m

en
ts

K−SVD

MOD

MAP

GSCNG

Fig. 5. Comparison of the performance of Generalized Sparse Coding Neural Gas
(GSCNG) with respect to the reconstruction of the original basis on artificial data.
The performance of MOD, K-SVD,MAP and GSCNG in the same setting are shown.
The results for MOD, K-SVD and MAP were taken from [1]. GSCNG outperforms
MAP and performs as good as MOD except on the 10dB SNR setting. K-SVD
outperforms GSCNG.

Fig. 6. A 6.25-times overcomplete basis of patches of natural images of size 8 × 8
pixels that was obtained by applying Sparse Coding Neural Gas to natural image
data. The basis functions were arranged by mapping the basis vectors to a 2D grid
using a Kohonen map.

Similar experiments have been performed by a number of researchers. They
report the emergence of basis elements that, like Gabor wavelets, resemble
properties of simple cells in the visual cortex, i.e., they obtain bandpass-
like basis functions that are localized in space and orientiation [28, 2, 12].
An overcomplete basis of these patches of natural images obtained using the
Sparse Coding Neural Gas algorithm is shown in Figure 6. It can be seen that
the results reported by other researchers can be reproduced, i.e., we obtain
bandpass-like structures ranging over different scales and localized in space
and orientation.

17

7 Conclusion

We have described a new method, the Sparse Coding Neural Gas algorithm, to
learn an overcomplete basis for the sparse encoding of a given data set. We used
artificial data that was actually generated from a sparse linear combination of
some original basis to assess the performance of our method with respect to
the reconstruction of the original basis. We evaluated the influence of additive
noise, and the mutual coherence of the original basis on reconstruction perfor-
mance. Our experiments show that the performance obtained depends on the
sparsity of the linear combinations, the strength of the additive noise and on
the mutual coherence (degree of non-orthogonality) of the underlying basis.
The sparser the linear combinations, the smaller the mutual coherence, and
the lower the noise level the better the performance becomes. On an artificial
data set that has been used by others as a performance measure, our method
yields similar results to other state-of-the-art methods. Though it is an online
method that learns pattern-by-pattern, it performs as well as state-of-the art
batch methods which use the entire data in each learning iteration.

When applying the Sparse Coding Neural Gas algorithm to natural image
data, we obtain bandpass-like basis elements localized in space and orienta-
tion. This reproduces results that have been reported by others for the sparse
coding of natural images and shows that the Sparse Coding Neural Gas al-
gorithm works robustly on real data. Moreover, the Kohonen mapping of the
obtained “receptive fields” reveals, that a more natural sampling of the rele-
vant parameter space is achieved. A further benefit of the algorithm is that it
converges even in the case of highly overcomplete bases. Sparse coding gener-
ates favorable features for pattern recognition, as, e.g., demonstrated in [17].
We expect SCNG to be a very efficient method for constructing these sparse
coding features. Another interesting application of the Sparse Coding Neural
Gas method, the online learning of time-varying overcomplete sparse codes,
will be pursued as future work, as well as the development of a batch version.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Design-
ing Overcomplete Dictionaries for Sparse Representation. Signal Processing,
IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], 54(11):4311–4322, 2006.

[2] A. J. Bell and T. J. Sejnowski. The ”independent components” of natural
scenes are edge filters. Vision Res, 37(23):3327–3338, December 1997.

[3] M. Davies and N. Mitianoudis. Simple mixture model for sparse overcomplete
ICA. IEEE Proceedings on Vision, Image and Signal Processing, 151(1):35–43,
2004.

18

[4] G. Davis, S. Mallat, and M. Avellaneda. Greedy adaptive approximation. J.
Constr. Approx., 13:57–89, 1997.

[5] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. Stable recovery
of sparse overcomplete representations in the presence of noise. IEEE Trans-
actions on Information Theory, 52(1):6–18, 2006.

[6] Kjersti Engan, Sven Ole Aase, and John Hrakon Husøy. Multi-frame compres-
sion: theory and design. Signal Process., 80(10):2121–2140, 2000.

[7] David J. Field. What is the goal of sensory coding? Neural Computation,
6(4):559–601, 1994.

[8] J. A. Hartigan and M. A. Wong. A K-means Clustering Algorithm. Applied
Statistics, 28:100–108, 1979.

[9] Patrik Hoyer and Erkki Oja. Image denoising by sparse code shrinkage. In
Intelligent Signal Processing. IEEE Press, 2000.

[10] A. Hyvärinen. Gaussian moments for noisy independent component analysis.
IEEE Signal Processing Letters, 6(6):145–147, 1999.

[11] A. Hyvarinen, R. Cristescu, and E. Oja. A fast algorithm for estimating over-
complete ICA bases for image windows. Proceedings of the International Joint
Conference on Neural Networks, IJCNN’99, 2:894–899, 1999.

[12] Aapo Hyvärinen and Patrik Hoyer. Emergence of Phase- and Shift-Invariant
Features by Decomposition of Natural Images into Independent Feature Sub-
spaces. Neural Comput., 12(7):1705–1720, 2000.

[13] Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. Independent Component
Analysis. Wiley-Interscience, May 2001.

[14] Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan,
Te-Won Lee, and Terrence J. Sejnowski. Dictionary learning algorithms for
sparse representation. Neural Comput., 15(2):349–396, 2003.

[15] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Con-
strained and Unconstrained Systems. Springer, 1978.

[16] Kai Labusch, Erhardt Barth, and Thomas Martinetz. Learning data repre-
sentations with Sparse Coding Neural Gas. In Michel Verleysen, editor, Pro-
ceedings of the 16th European Symposium on Artificial Neural Networks, pages
233–238. D-Side Publishers, 2008.

[17] Kai Labusch, Erhardt Barth, and Thomas Martinetz. Simple Method for High-
Performance Digit Recognition Based on Sparse Coding. IEEE Transactions
on Neural Networks, 19(11):1985–1989, 2008.

[18] Kai Labusch, Erhardt Barth, and Thomas Martinetz. Sparse Coding Neural
Gas for the Separation of Noisy Overcomplete Sources. In Vera Kurková,
Roman Neruda, and Jan Koutńık, editors, Artificial Neural Networks - ICANN
2008, 18th International Conference, Prague, Czech Republic, September 3-6,
2008, Proceedings, Part II, volume 5163 of Lecture Notes in Computer Science,
pages 788–797. Springer, 2008.

[19] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse
coding algorithms. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19, pages 801–808. MIT Press, Cam-
bridge, MA, 2007.

[20] Te-Won Lee, M.S. Lewicki, M. Girolami, and T.J. Sejnowski. Blind source
separation of more sources than mixtures using overcomplete representations.

19

IEEE Signal Processing Letters, 6(4):87–90, 1999.
[21] Michael S. Lewicki and Bruno A. Olshausen. Probabilistic framework for the

adaptation and comparison of image codes. J. Opt. Soc. Am. A, 16(7):1587–
1601, 1999.

[22] Michael S. Lewicki and Terrence J. Sejnowski. Learning Overcomplete Repre-
sentations. Neural Computation, 12(2):337–365, 2000.

[23] T. Martinetz, S. Berkovich, and K. Schulten. “Neural-gas” Network for
Vector Quantization and its Application to Time-Series Prediction. IEEE-
Transactions on Neural Networks, 4(4):558–569, 1993.

[24] T. Martinetz and K. Schulten. A ”Neural-Gas Network” Learns Topologies.
Artificial Neural Networks, I:397–402, 1991.

[25] Jim Mutch and David G. Lowe. Multiclass Object Recognition with Sparse,
Localized Features. In CVPR ’06: Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 11–
18, Washington, DC, USA, 2006. IEEE Computer Society.

[26] E. Oja. A simplified neuron model as a principal component analyzer. J. Math.
Biol., 15:267–273, 1982.

[27] B. Olshausen and D. Field. Sparse coding of natural images produces localized,
oriented, bandpass receptive fields. Technical Report CCN-110-95, Department
of Psychology, Cornell University, Ithaca, New York 14853, 1995.

[28] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, (381):607–609,
1996.

[29] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete
basis set: a strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

[30] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal Matching Pursuit: Re-
cursive Function Approximation with Applications to Wavelet Decomposition.
Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems,,
November 1993.

[31] L. Rebollo-Neira and D. Lowe. Optimized orthogonal matching pursuit ap-
proach. IEEE Signal Processing Letters, 9(4):137–140, 2002.

[32] Frank-Michael Schleif, Matthias Ongyerth, and Thomas Villmann. Sparse Cod-
ing Neural Gas for Analysis of Nuclear Magnetic Resonance Spectroscopy. In
CBMS, pages 620–625. IEEE Computer Society, 2008.

[33] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and
Tomaso Poggio. Robust Object Recognition with Cortex-Like Mechanisms.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):411–
426, 2007.

[34] Eero P. Simoncelli and Bruno A. Olshausen. Natural image statistics and
neural representation. Annual Review of Neuroscience, 24:1193–1216, 2001.

[35] S.Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.
IEEE Transactions on Signal Processing, 41:3397–3415, 1993.

[36] F. Theis, E. Lang, and C. Puntonet. A Geometric Algorithm for Overcomplete
Linear ICA. Neurocomputing, 56:381–398, 2004.

[37] J. A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

[38] J. A. Tropp and A. C. Gilbert. Signal Recovery From Random Measurements

20

Via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory,
53(12):4655–4666, 2007.

21

