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Abstract— We propose a method of feature extraction for digit
recognition that is inspired by vision research: a sparse-coding
strategy and a local maximum operation. We show that our
method, despite its simplicity, yields state-of-the-art classification
results on a highly competitive digit-recognition benchmark. We
first employ the unsupervised Sparsenet algorithm to learn a
basis for representing patches of handwritten digit images. We
then use this basis to extract local coefficients. In a second step,
we apply a local maximum operation in order to implement
local shift invariance. Finally, we train a Support-Vector-Machine
on the resulting feature vectors and obtain state-of-the-art
classification performance in the digit recognition task defined by
the MNIST benchmark. We compare the different classification
performances obtained with sparse coding, Gabor wavelets, and
principle component analysis. We conclude that the learning of
a sparse representation of local image patches combined with a
local maximum operation for feature extraction can significantly
improve recognition performance.

I. I NTRODUCTION

A common approach to solve a visual pattern recognition
problem such as digit recognition is to divide the solution
into the two parts of feature extraction and classification.A
preliminary preprocessing step may be regarded as part of
the feature extraction. In general it is not clear how learning
methods can be used to obtain features that are optimal for
a given task. Hence, methods for feature extraction are often
selected according to heuristic principles based on experience
and problem-specific knowledge.

In order to tackle the problem of object recognition one can
match the unknown object against some reference [1]. The
matching result is then used to perform the recognition task.
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Though matching methods perform well in a number of tasks
they are often complex and associated with a number of diffi-
culties. For example they require to solve the computationally
expensive correspondence problem [1].

Principal-Component-Analysis (PCA) [2] or Gabor wavelets
[3] belong to another group of feature extraction methods.
These methods do not perform an explicit matching but
provide a new representation of the data. It is assumed
that the new representation is advantageous with respect to
recognition tasks. Based on the new representation a classifier
is trained. However, it is not clear that the new representation
is advantageous, since it is not guaranteed that it provides
invariances adapted to the recognition problem.

In vision research theoptimal-coding hypothesisproposes
that the human visual system has adapted to the statistical
properties of natural images [4], [5], [6], [7]. Different sta-
tistical models of image synthesis have been proposed, such
as the independent component analysis (ICA) [8], [9] and
Sparse Coding [10], [11]. These models have been successfully
employed to mimic properties of simple cells in the primary
visual cortex [12], [13]. In addition, advanced models of the
visual system postulate that the output of simple cells is fed
to a class of neurons which exhibit a maximum-selection
behaviour [14], [15].

Is there a convenient, i.e, simple, way for practitioners
to employ findings from vision research to actually solve
a technical problem? An example of a complex multi-stage
recognition system being inspired by the neurosciences can
be found in [16].

Though the problem of digit recognition has been inten-
sively investigated [17], [18], [19], the improvement of digit
recognition performance is still a major issue in a number of
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industrial applications, e.g. parcel sorting. We here describe a
novel method for digit recognition that employs biologically
inspired principles, i.e. a learned sparse representationand a
local maximum operation. We evaluate the performance of
our method for handwritten-digit recognition on the MNIST
data set, being a very competitive benchmark for which many
different methods already have been evaluated [20]. In the
same framework, we compare our results using a sparse code
that was learned by the Sparsenet algorithm [13] against those
obtained with more common feature-extraction methods such
as PCA and Gabor wavelets. The goal of this paper is to show
that our way of combining unsupervised learning of a sparse
code with a local maximum operation leads to features that
allow for highly competitive recognition performance without
the need for heuristic features and problem specific knowledge.

The paper is structured as follows: In section II we first
describe how to obtain the preprocessed image patch vectors
the feature extraction method operates on. How a new repre-
sentation of the image patch vectors in terms of coefficientsof
basis functions can be learned from the data is then explained
in section II-A. In section II-B Gabor wavelets are defined.
In section II-C we describe how to obtain a set of coefficient
images from the preprocessed image patch vectors. A local
minmax-operation that is used to obtain the final feature
vectors for the classifiers is described in section II-D. The
experiments, i.e. learning of the basis functions and training
SVM-classifiers on the final feature vectors can be found in
section III. The results together with references to related work
are presented in section IV followed by a discussion in section
V.

II. FEATURE EXTRACTION

Often vision systems that are inspired by the neurosciences
tend to become quite complex. We here propose a simple
two-stage model of feature extraction. Firstly, a number of
coefficient images are computed by using a learned basis, and
secondly, a local maximum operation is performed (see figure
1). We do not operate on the raw pixel values but apply
a preprocessing to the image patches. This is required for
the PCA and to improve the convergence of the Sparsenet
algorithm. In the following,I denotes an entire image, whereas
for an odd numberN P̂ (x, y) denotes an vector containing
all N2 pixel values of an image patch of sizeN ×N centered
at position (x, y) arranged in an appropriate scheme. For a
P̂ (x, y) the mean value of the pixel entries of this vector is

denoted byP̂ (x, y). Removing the mean pixel value of the
patch vector leads to

P̃ (x, y) = P̂ (x, y) − P̂ (x, y) . (1)

With P we refer to the mean of a large number of suchP̃ (x, y)
that were obtained from many training images with̃P (x, y)
placed at random positions. By removingP we finally obtain
the centered vectorsP (x, y):

P (x, y) = P̃ (x, y) − P . (2)

The first stage of the feature extraction is based on a set of
basis functions~wj of sizeN2 which are applied to each patch
vectorP (x, y) of a given imageI.

A. Learning the basis functions

We want to learn basis functions that represent the centered
patch vectorsP (x, y) such that these can be reconstructed
from the basis functions. This leads to the interpretation of
PCA and sparse coding as generative image-patch models.
The underlying model defines which basis functions are se-
lected and either postulates perfect reconstruction or allows
for reconstruction errors (noise). Applying PCA and sparse
coding to a large number of random image-patch vectors can
be interpreted as parameter determination for the underlying
model. In case of PCA and sparse coding the underlying
models are closely related. In both cases, a patch vector
P (x, y) is obtained from a linear combination of the basis
functions ~wj with coefficients~a that lead to the features we
are going to use for classification. An additive error term~ǫ may
be allowed, which corresponds to assuming a certain amount
of noise.K, the number of basis functions, is a free model
parameter.

P (x, y) =

K∑

j=1

~wjaj + ~ǫ = W~a + ~ǫ . (3)

1) PCA: Equation (3) can be seen as a generative model us-
ing principal components. If the number of~wj , i.e. K, equals
N2, ‖~ǫ‖ = 0 is assumed. Theaj are pairwise uncorrelated,
i.e. the ~wj form an orthogonal basis of theP (x, y). The ~w

can be obtained as the eigenvectors of the covariance matrix
C = E

(
P (x, y)P (x, y)T

)
of the distribution of theP (x, y).

(hereE() denotes the expectation which is approximated by
averaging in practice)

2) Sparse Coding:Within the Sparse Coding approach,
equation (3) postulates an image-patch generation model
where theaj stem from sparse (leptocurtic) distributions.
Hence, the primary goal of sparse coding is the maximization
of the sparsity of the coefficientsaj . The reconstruction
error (noise) is assumed to be Gaussian. The model now
allows for balancing the reconstruction error‖~ǫ‖ against the
sparsity of the coefficientsaj . There are different sparse-
coding approaches available, see for example [13], [21], [22].
Here we use the Sparsenet algorithm [13] which solves the
following optimization problem:

min
W

E

(
min

~a
(‖P (x, y) − W~a‖ + λS(~a))

)
. (4)

The additive regularization termS(~a) favors model parameters
W that lead to sparse coefficients~a. The parameterλ allows
to balance the reconstruction error~ǫ against the sparseness of
the coefficients.

B. Gabor wavelets as basis functions

Many models of the visual system employ Gabor wavelets
to model the receptive fields of simple cells in area V1. We
include Gabor wavelets in our experiments to compare the
performance of this well-known feature extraction method
against our Sparsenet approach, a V1-like representation that
was obtained by unsupervised learning from the data.
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Fig. 1. A schematic view of the feature extraction method that is proposed in this paper. First, the coefficients are extracted either by convolution of the input
image with the basis functions or by minimization of the objective function of the Sparsenet algorithm. Coefficients are computed for each pixel and each
basis function. Second, each coefficient image is divided into regular non-overlapping regions, and for each region the minimal and maximal entry (indicated
by the circles) are selected. These extrema are the features for the subsequent classification step.

A two-dimensional Gabor wavelet~wj is determined by its
orientationαj , wavelengthλj , bandwidthbj , phaseφj , and
center~cj :

~wj = e

−

‖Rαj
(~x−~cj)‖

2∗

 

λj
π

r

( log(2)
2 ) 2

bj +1

2
bj −1

!2

∗ (5)

cos

(
2 ∗ π

(
Rαj

(~x − ~cj)
)

λj

+ φjπ

)
.

With Rαj
we refer to a two-dimensional rotation of degree

αj .

C. Obtaining the coefficient images

We now describe how the system works with given basis
functions ~wj that either were obtained from the training data
by the Sparsenet algorithm (section II-A.2) or PCA (section
II-A.1), or that were given by the Gabor wavelets (section
II-B).

The coefficient imagesFj contain the coefficientsaj of
the basis functions~wj for all patches of the input image. In
order to obtain coefficient images that have the same size as
the initial imageI, it is is required to enlargeI by setting
the value of pixels outside the image to a fixed value. The
method of obtaining these coefficient images differs depending
on the method that was used to learn the corresponding basis
functions. In case of PCA and Gabor wavelets the coefficient
images are obtained by a convolution operation, i.e. for each
centered patch vectorP (x, y) of the input imageI we compute

Fj(x, y) =
P (x, y)T ~wj

‖~wj‖
, j = 1, . . . ,K. (6)

The Sparsenet coefficients are obtained by minimizing the

objective function that was used to learn the basis:

~F (x, y) = (F1(x, y), . . . , FK(x, y)) (7)

= arg min
~a

(‖P (x, y) −

K∑

j=1

~wjaj‖ + λS(~a))(8)

As in the Sparsenet algorithm the minimization of the objective
function is performed via gradient descent.

D. Local maximum operation

The basis functions represent relevant attributes of the
image patches they were learned from since it is possible
to reconstruct the image patches by a linear combination of
only few basis functions. In case of sparse linear combinations
only few basis functions are required to “explain” a certain
image patch. A certain attribute is present at a certain location
if the coefficient of the basis function that represents the
attribute has a large absolute value. The absolute value of the
coefficient can be interpreted as the similarity of the imageat
a certain position with respect to the basis function. Due tothe
nature of the digit images some uncertainty with respect to the
exact localisation of important attributes in the image remains.
Hence, we would like to allow for some spatial uncertainty
to obtain local shift invariance. Assuming that those basis
functions that are highly expressed, i.e. have large absolute
coefficient values, are important, computing the maximum, as
well as the minimum, in a local region localises the important
attributes and achieves the desired local shift invariance. The
attributes are considered independent, i.e. the positionswhere
the minimum and maximum values are obtained differ for each
basis function.

We implement this principle in a very simple way. Thereby
we divide the input image into a set of regular, non-
overlapping regionsRi, i = 1, ...,M2 and take as local
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features the maximum and minimum of each region with
respect to each coefficient image(see Figure 1):

Fmax
j (Ri) = max

x,y∈Ri

Fj(x, y) . (9)

Fmin
j (Ri) = min

x,y∈Ri

Fj(x, y) . (10)

There is some experimental evidence that the behaviour of
complex cells in the visual cortex can be described by a local
maximum operation [15], and that human observers might
account for position uncertainty by using the same princi-
ple [23]. The principle has been used recently in technical
applications [16].

The final feature vector (that is given as input to the
classifier) of each input image consists of the maximum and
minimum values of all regions with respect to all coefficient
images:

fI = (Fmax
1

(R1), . . . , F
max
1

(RM2), . . . , (11)

Fmax
K (R1), . . . , F

max
K (RM2),

Fmin
1

(R1), . . . , F
min
1

(RM2), . . . ,

Fmin
K (R1), . . . , F

min
K (RM2)) .

Note, that in general the final feature vectorfI is not sparse.
The coefficients of each patch are sparse but due to the
maximum and minimum operation large positive or negative
values are accumulated in the final feature vector.

III. E XPERIMENTS

We test Sparsenet, PCA, and Gabor basis functions on the
well-known MNIST benchmark of handwritten digit images.
It consists of 60000 training and 10000 test images of hand-
written digits of size28 × 28 pixels.

The PCA and Sparsenet basis functions~wj are obtained by
determining the parameters of the underlying image patch gen-
eration model with respect to the image-patch vectorsP (x, y).
The patch vectors are extracted at random positions from
randomly chosen training images. The noise level parameter
(λ) of the Sparsenet algorithm is chosen such that the best
mean validation error is obtained. Additionally, as mentioned
before, the performance of a simple set of Gabor wavelets as
basis functions is evaluated. We do not optimize the parameters
of the Gabors explicitly but take the best parameters out of a
limited set we experimented with.

We obtain the features for the classifier as described in
section II-C and II-D. The size of the basis functions is
13 × 13 pixels. Though the number of basis functions may
be optimized with respect to recognition performance, for
simplicity we choose as many basis functions as the number
of pixels in the image patches considered, i.e.169. The set
of Gabor wavelets that provided the best results on the digit
benchmark in our experiments consists of160 filters, which is
close to the number of basis functions used in the Sparsenet
and PCA setting (We also tried larger Gabor sets). We use
a layout of 9 minmax-operator regions of size9 × 9 pixels
as shown in Figure (1). Since the size of the coefficient
imagesFj equals the size of the input images, we do not
select entries from the bottom row and the last column of the

coefficient images, which corresponds to dropping the last row
and column of each digit image.

As classifier we use a standard 2-norm soft margin Support-
Vector-Machine (SVM) with Gaussian kernels [24], [25]. In
order to train the SVM the SoftDoubleMinOver learning algo-
rithm which was introduced in [26] is used. We normalize the
training data such that the mean norm of the feature vectorsfI

is set to one. The hyperparameters of the SVM are optimised
using a validation scheme where seven realisations of test and
training data are used. In each realisation the training and
test set are disjoint and consist of 10000 samples that were
randomly chosen from the entire training set. We take the
hyperparameters providing the best mean classification error
on the validation test sets in a grid search over the trade-
off parameterC and the Gaussian kernel parameterγ. The
search uses a logarithmic grid and proceeds recursively from a
coarse meshed grid to a small meshed grid. The start range was
[1, 104] for C and [1, 103] for the parameterγ of the gaussian
kernelK(x, z) = exp(−γ‖x−z‖2). The best hyperparameters
are shown in table II. Using the best hyperparameters, the final

γ C
raw data 21.5 1291.5
PCA 5.5 31.5
Gabors 5.5 75
Sparsenet 2.5 93

TABLE II

THE BESTSVM HYPERPARAMETERS.

classifier is trained on the entire set of feature vectors of all
training samples.

Due to the multiple minmax-regions and basis functions the
dimensionality of the data increases from784 to 9×169×2 =
3042 resp.9 × 160 × 2 = 2880 feature dimensions. We need
to solve a ten-class problem since we have to differentiate
ten digit classes (0-9). To accomplish this task using a SVM
we trained 45 two-class classifiers, each of which separates
two different digits (one against one). The decisions of all
the two-class classifiers are then counted and finally the class
with the majority of votes is selected. We used the same
hyperparameters for the 45 two-class classifiers.

IV. RESULTS

The data set is quite popular and results of many state-
of-the-art methods are available for comparison [17], [18],
[19]. Currently, the best results reported on the MNIST data
set were obtained with convolutional neural networks plus
elastic distortions (0.4% error rate [19]) and Virtual SVM
with deskewing and jittering preprocessing (0.56% error rate
[18]). A recent approach that uses sparse representations and
elastic distortions obtains an error rate of 0.39% [27]. In [28] a
method is proposed where a LeNet5 is used to train a feature
extraction layer that is fed to a set of SVMs. Using elastic
distortions these authors report an error rate of 0.54%.

We consider the use of an extended training set that was
generated using a problem specific distortion model as data
specific knowledge. Our method belongs to the class of meth-
ods that do not use such additional knowledge. In an evaluation
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Fig. 2. Subset of basis functions used on the digit benchmark.From top to bottom: PCA basis functions, Gabor wavelets, sparse basis functions trained on
digit images.

mean
validation
error rate

#SVs per digit class
error rate
on MNIST
test set

0 1 2 3 4 5 6 7 8 9
raw data 2.95%(±0.17) 9785 5994 13241 13244 10976 12989 9842 10429 14015 12033 1.42%
PCA 1.29%(±0.08) 3293 2293 4580 4731 4041 4223 3676 3747 5246 4930 0.80%
Gabors 1.24%(±0.10) 4298 2970 5959 5690 4647 5371 4527 4986 6582 5630 0.71%
Sparsenet 1.00%(±0.09) 2698 1812 3667 3650 2833 3505 2770 3089 4216 3610 0.59%

TABLE I

SVM RESULTS: THE SECOND COLUMN OF THE TABLE SHOWS MEAN AND STANDARD DEVIATION OF THE TEST ERROR OF THE BEST HYPERPARAMETERS

DETERMINED BY VALIDATION ON THE 7 REALISATIONS OF10000TRAINING AND 10000TEST SAMPLES. THE REMAINING COLUMNS REFER TO THE

CLASSIFIERS THAT WERE OBTAINED BY USING THESE HYPERPARAMETERS TO TRAIN A SVM ON THE COMPLETEMNIST TRAINING SET CONSISTING OF

60000SAMPLES. THE NUMBER OFSVS OF ALL CLASSIFIERS OF A RESPECTIVE DIGIT CLASS AS WELL AS THEERROR ONMNIST TEST SET ARE SHOWN.

of several matching methods that also belong to this class of
methods an error rate of 0.52% is obtained [1]. In [29] an error
rate of 0.63% is reported using a shape matching approach.
In [30] the authors report a positive influence of sparsenessto
recognition performance on the MNIST set though they cannot
obtain state-of-the-art performance.

The different types of basis functions obtained from and
used on the MNIST set of handwritten digits are shown in
figure 2. Table I shows the mean validation error of the
best hyperparameter combination. Referring to the final result
obtained by using the best hyperparameters on the entire
MNIST training set, it shows the number of support vectors
(SVs) that are used by the classifiers of each digit class as
well as the error rate of the SVM on the MNIST test set (note
that we use a one-against-one scheme, therefore we have 9
classifiers per digit class and the number of support vectorsis
the sum over all 9 SVMs). The mean validation error is worse
than the final test error, since only 10000 instead of 60000
training samples were used for training.

All methods significantly outperform the direct classifi-
cation of the raw data. Gabor Wavelets clearly outperform
PCA. In the PCA experiment all basis functions were used.
This means that for each image-patch vector an error free
representation is obtained. The PCA result shows on the one
hand that some performance gain can be attributed to the
minimum and maximum operation since without it error free
PCA yields the same result as on raw data. On the other

hand the Gabor and Sparsenet results show that a sparse
representation further improves performance.

The result using a learned sparse code is significantly better
than the results obtained with Gabor wavelets and PCA. The
number of support vectors of the best method using a learned
sparse code is reduced by about a factor of three compared to
the result on raw data, indicating that the feature extraction we
perform successfully implements invariances of the problem of
handwritten digit recognition. Also compared to earlier SVM
results, for instance, the virtual SVM reported in [18], our
method uses significantly less support vectors (about a factor
four).

In case of sparse coding, the proposed feature extraction
requires to solve the optimization problem of equation (8)
via gradient descent for each patch of a given input im-
age. Therefore PCA and Gabor wavelet feature extraction
is more efficient from a computational complexity point of
view. However, a number of more recent algorithms that
learn sparse codes are available, see for example [21], [22].
New results also indicate that an efficient computation of the
coefficients via orthogonal matching pursuit [31] is possible
under certain conditions [32]. Here, we do not aim to evaluate
the properties of different sparse coding approaches but want
to demonstrate that the principle of sparse coding provides
significant performance improvements in a real world problem
on a competitive benchmark.
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V. CONCLUSIONS

We proposed a method for digit recognition based on
unsupervised learning of sparse basis functions. From the
sparse coefficients in that basis, a new representation of the
digits is obtained by applying a minmax-operation to these
coefficients. The new representation incorporates invariances
of handwritten digits as can be seen from the reduced number
of support vectors. The performance gain is significant even
though the final feature vector used for classification is not
sparse in general and the dimensionality of the data increases.
We compared a representation based on a learned sparse code
with more traditional representations based on PCA and Gabor
wavelets. Gabor wavelets can be seen as sparse basis of natural
images. For digits a better performance can be achieved by
using a sparse code that is obtained by unsupervised learning
from the data.

Despite its simplicity, our approach performs as well as
state-of-the-art methods that do not use prior knowledge
specific to the handwritten digit recognition problem (a com-
prehensive list of results can be found on the internet [20]).
Our method provides comparable performance to the image
matching methods as evaluated in [1]. For example, methods
proposed in [18], [19], [27], [28] employ an elastic defor-
mation modell for digits to boost their performance, while
our method implicitly extracts deformation invariances bythe
unsupervised learning of a sparse code.

We have shown that a sparse feature representation, com-
bined with biologically plausible max-operations, leads to
highly competitive classification performance. We suggestthat
the method, being quite general, simple, and straightforward,
may be applied to a broad range of visual pattern recognition
problems. In cases where a specific image distribution is given
that deviates significantly from natural images, the specific
learned sparse feature representation which arises may lead to
a significant increase in classification performance.
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