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Abstract— We propose a method of feature extraction for digit Though matching methods perform well in a number of tasks
recognition that is inspired by vision research: a sparse-coding they are often complex and associated with a number of diffi-

strategy and a local maximum operation. We show that our ¢ ties. For example they require to solve the computatipna
method, despite its simplicity, yields state-of-the-art classificatio . d bl 1
results on a highly competitive digit-recognition benchmark. We expensive correspondence problem [1].

first employ the unsupervised Sparsenet algorithm to leam a  Principal-Component-Analysis (PCA) [2] or Gabor wavelets
basis for representing patches of handwritten digit images. We [3] belong to another group of feature extraction methods.
then use this basis to extract local coefficients. In a second step These methods do not perform an explicit matching but
we apply a local maximum operation in order to implement ,oide g new representation of the data. It is assumed
local shift invariance. Finally, we train a Support-Vector-Machine . . .

on the resulting feature vectors and obtain state-of-the-art that th(_e_new representation is advantageous W'th re_spec'F to
classification performance in the digit recognition task defined by recognition tasks. Based on the new representation a fodaissi
the MNIST benchmark. We compare the different classification is trained. However, it is not clear that the new represantat
performances obtained with sparse coding, Gabor wavelets, and js advantageous, since it is not guaranteed that it provides
principle component analysis. We conclude that the learning of invariances adapted to the recognition problem.

a sparse .representatio.n of local image patqhes comlbin.e.d with a In vision research theptimal-coding hypothesiproposes

local maximum operation for feature extraction can significantly ) 2

improve recognition performance. that the human V|Sua| SyStem haS adapted to the Stat|St|CaI
properties of natural images [4], [5], [6], [7]. Differentas
tistical models of image synthesis have been proposed, such

|. INTRODUCTION as the independent component analysis (ICA) [8], [9] and
A common approach to solve a visual pattern recognitiopP@rse Coding [10], [11]. These models have been succlgssiul
problem such as digit recognition is to divide the solutioRMPIoyed to mimic properties of simple cells in the primary
into the two parts of feature extraction and classificatian, visual cortex [12], [13]. In addition, advanced models o¢ th
preliminary preprocessing step may be regarded as partVtﬁua| system postulate thqt the oqtput of smple cells i fe
the feature extraction. In general it is not clear how laagni 10 @ class of neurons which exhibit a maximum-selection
methods can be used to obtain features that are optimal Rghaviour [14], [15]. o N
a given task. Hence, methods for feature extraction araofte IS there a convenient, i.e, simple, way for practitioners
selected according to heuristic principles based on espegi to employ findings from vision research to actually solve
and problem-specific knowledge. a technical problem? An example of a complex multi-stage

In order to tackle the problem of object recognition one cdf§cognition system being inspired by the neurosciences can
match the unknown object against some reference [1]. TRE found in [16].

matching result is then used to perform the recognition.task 1hough the problem of digit recognition has been inten-
sively investigated [17], [18], [19], the improvement ofydi

http://www.inb.uni-luebeck.de recognition performance is still a major issue in a number of



industrial applications, e.g. parcel sorting. We here des@a A. Learning the basis functions
novel method for digit recognition that employs biologlgal
inspired principles, i.e. a learned sparse representaticha
local maximum operation. We evaluate the performance 1?}
P

our method.for handwritten—digit recognition on the.MNIS CA and sparse coding as generative image-patch models.
gf"‘ffta se’;, beltnhg 3 verly cc;mpr:atltlvebbenchm?rktfo(; w2h(|)ch Ima;%e underlying model defines which basis functions are se-
: ere? me oks aready have been ﬁva uate [20]. In Té ted and either postulates perfect reconstruction awall
Same framework, We compare our resutts using a sparse CQe o qnstryction errors (noise). Applying PCA and sparse
that was learned by the Sparsenet algorithm [13] agamsbth% ding to a large number of random image-patch vectors can
obtained with more common feature-extraction methods su E interpreted as parameter determination for the undeylyi
as PCA and Gabor wavelets. The goal of this paper is to Sh%del. In case of PCA and sparse coding the underlying

that our way of combining unsupervised leaming of a SPAREhdels are closely related. In both cases, a patch vector
code with a local maximum operation leads to features thlg '

llow for hiahl o i ; it t(ar:,y) is obtained from a linear combination of the basis

?how 0(; f Ighy cprpp;—z ' |tve recog(;jnl IOB| per OFmﬁF‘CE vo dfunctionswj with coefficientsa that lead to the features we
€ need for heuristic reatures and problem Specitic ncgde_ are going to use for classification. An additive error termay
The paper is structured as follows: In section Il we fir

i . ; e allowed, which corresponds to assuming a certain amount
describe how to obtain the preprocessed image patch VeCtgfr%oise K the number of basis functions. is a free model
the feature extraction method operates on. How a new rep{)%—r am etér ' '
sentation of the image patch vectors in terms of coefficiefits ’
basis functions can be learned from the data is then explaine K
in section II-A. In section 1I-B Gabor wavelets are defined. P(z,y)=>» wja;,+€=Wa+¢€. (3)
In section II-C we describe how to obtain a set of coefficient j=1

images from the preprocessed image patch vectors. A Iocah) PCA: Equation (3) can be seen as a generative model us-
minmax-operation that is used to obtain the final feature '

vectors for the classifiers is described in section II-D. Thmg principal components. If the ”“mbef‘ﬁ?' l.e. K, equals
, |l€]l = 0 is assumed. The; are pairwise uncorrelated,

experiments, i.e. learning of the basis functions and itngin ie. thed, form an orthogonal basis of th&(z, y). The @

SVM-classifiers on the final feature vectors can be found I . . . .
. . can be obtained as the eigenvectors of the covariance matrix
section Ill. The results together with references to relaterk

. : . 0 C = E (P(z,y)P(z,y)") of the distribution of theP(z,y).
3re presented in section IV followed by a discussion in eacti (here E() denotes the expectation which is approximated by
' averaging in practice)
Il. FEATURE EXTRACTION 2) Sparse Coding:Within the Sparse Coding approach,

Often vision systems that are inspired by the neuroscien&Uation (3) postulates an image-patch generation model
tend to become quite complex. We here propose a simﬁYQere thea; stem from sparse (Iept.ocu_rtlc) dlstr|t_1ut_|on§.
two-stage model of feature extraction. Firstly, a number &f€nce. the primary goal of sparse coding is the maximization
coefficient images are computed by using a learned basis, hdthe sparsity of the coefficients;. The reconstruction
secondly, a local maximum operation is performed (see figlfgOr (noise) is assumed to be Gaussian. The model now
1). We do not operate on the raw pixel values but appRﬂOWS_ for balancing t_h_e reconstruction em@_?ﬂ against the
a preprocessing to the image patches. This is required RRarsity of the coefficients,;. There are different sparse-
the PCA and to improve the convergence of the Sparsef@Hing approaches available, see for example [13], [22]. [2
algorithm. In the following,/ denotes an entire image, whereak/é"® We use the Sparsenet algorithm [13] which solves the
for an odd numbetN P(z,y) denotes an vector containing!lowing optimization problem:
all N2 pixel values of an image patch of si2éx N centered
at position (z,y) arranged in an appropriate scheme. For a min B (mﬁin(HP(m,y) - Wwa| + )\5(5))) : 4

We want to learn basis functions that represent the centered
tch vectorsP(x,y) such that these can be reconstructed
m the basis functions. This leads to the interpretatibn o

~

P(z,y) the mean value of the pixel entries of this vector is
denoted byﬁ(m,y). Removing the mean pixel value of thelhe additive regularization teri$i(a) favors model parameters

patch vector leads to W that lead to sparse coefficienis The parametei allows
~ ~ —_— to balance the reconstruction errdagainst the sparseness of
P(z,y) = P(z,y) — P(z,y) . (1) the coefficients.

With P we refer to the mean of a large number of s@m, y)
that were obtained from many training images witz, y)
placed at random positions. By removifiywe finally obtain
the centered vectorB(z, y): Many models of the visual system employ Gabor wavelets
~ — to model the receptive fields of simple cells in area V1. We
P(z,y) = P(z,y) - P. ) include Gabor wavelets in our experiments to compare the
The first stage of the feature extraction is based on a setpafrfformance of this well-known feature extraction method
basis functionss; of size N2 which are applied to each patchagainst our Sparsenet approach, a V1-like representdtan t
vector P(z,y) of a given imagel. was obtained by unsupervised learning from the data.

B. Gabor wavelets as basis functions



coefficients subject to minmax

- basis functions (27 x 27)
MNIST image (13 x 13) oTe .

(28 x 28) = |
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Fig. 1. A schematic view of the feature extraction method thairoposed in this paper. First, the coefficients are extdaeither by convolution of the input
image with the basis functions or by minimization of the objextiunction of the Sparsenet algorithm. Coefficients are caetpéor each pixel and each
basis function. Second, each coefficient image is dividea iegjular non-overlapping regions, and for each region themal and maximal entry (indicated
by the circles) are selected. These extrema are the featuréisef subsequent classification step.

A two-dimensional Gabor wavelef; is determined by its objective function that was used to learn the basis:

orientation«,;, wavelength);, bandwidthb;, phase¢,, and .
L imeeen = argmin(||P(z,y) — Y @a;]| + AS(@))(8)
an( i [(Tog@) 2% 41 @ —
w, = e B ( 2 )217.771 * 5) /
! L As in the Sparsenet algorithm the minimization of the oliject
cos (2 * T (Ra): (T —¢&)) n ¢j7r> _ function is performed via gradient descent.
j

With R, we refer to a two-dimensional rotation of degreg - Local maximum operation
. The basis functions represent relevant attributes of the
image patches they were learned from since it is possible
to reconstruct the image patches by a linear combination of
C. Obtaining the coefficient images only few basis functions. In case of sparse linear comhinati
We now describe how the system works with given bas%qIy few basis functi_ons are reguired to “explain” a _certain
functionsi; that either were obtained from the training dat age patch. A certain attnbuFe 's present at a certaintioca
if the coefficient of the basis function that represents the

by the Sparsenet algorithm (section II-A.2) or PCA (section .
A1), or that were given by the Gabor wavelets (sectioﬁtt”bme has a large absolute value. The absolute valuleeof t

coefficient can be interpreted as the similarity of the image
I-B). a certain position with respect to the basis function. Dugéo
The coefficient imaged; contain the coefficients;; of P P '

the basis functiongs; for all patches of the input image. |pnature of the digit images some uncertainty with respedtdo t

. _ . .__exact localisation of important attributes in the image aes.
order to obtain coefficient images that have the same size as . . .
o L . . ence, we would like to allow for some spatial uncertainty
the initial imagel, it is is required to enlargd by setting

the value of pixels outside the image to a fixed value. Tég obtain local shift invariance. Assuming that those basis

method of obtaining these coefficient images differs dejpend unct_|o_ns that are h|ghly expressed, €. have Iarge_ atsolu
; coefficient values, are important, computing the maximusn, a

on the method that was used to learn the corresponding basi - : . 4 .
. . - Well as the minimum, in a local region localises the impadrtan
functions. In case of PCA and Gabor wavelets the coefficient . . . o .
: . . o attributes and achieves the desired local shift invariafbe
images are obtained by a convolution operation, i.e. foheac

centered patch vectd?(z, ) of the input image we compute attributes are considered independent, i.e. the positidrese
P 4 P 9 b the minimum and maximum values are obtained differ for each

Pz, y)Tw; basis function.

J=1... K. (6) We implement this principle in a very simple way. Thereby
we divide the input image into a set of regular, non-

The Sparsenet coefficients are obtained by minimizing tleserlapping regionsR;,i = 1,..,M? and take as local

Fj(m>y) =

il



features the maximum and minimum of each region wittoefficient images, which corresponds to dropping the tast r

respect to each coefficient image(see Figure 1): and column of each digit image.
- As classifier we use a standard 2-norm soft margin Support-
F(Ri) = mfﬂ?’éi}?f(x’y) : ) Vector-Machine (SVM) with Gaussian kernels [24], [25]. In
. ) order to train the SVM the SoftDoubleMinOver learning algo-
F(Ri) = zglé%iFj(xvy) : (20)  rithm which was introduced in [26] is used. We normalize the

tra*ining data such that the mean norm of the feature vegjors
| lis in the visual be d ibed by a | i€'set to one. The hyperparameters of the SVM are optimised
complex cells In the visual cortex can be described by a lo ing a validation scheme where seven realisations of hekt a

maximum operation [15], and that human observers mi Bining data are used. In each realisation the training and

account for position uncertainty by using the same p”ncfpjst set are disjoint and consist of 10000 samples that were

ple [23].' The principle has been used recently in technic ndomly chosen from the entire training set. We take the
applications [16].

There is some experimental evidence that the behaviour

minimum values of all regions with respect to all coeﬂ‘icienée

. arch uses a logarithmic grid and proceeds recursively &o
images: 9 g P ety

coarse meshed grid to a small meshed grid. The start range was
fr = (FM®(Ry),...,F™®(Ryp),..., (11) [1,10%] for C and[1,10%] for the parametet; of the gaussian
kernel K (z, z) = exp(—~||z—z||?). The best hyperparameters

FR(Ry),..., FE(Re), : . ;
_ , are shown in table Il. Using the best hyperparameters, thé fin
F"™(Ry), ..., F{"(Rpy2), .- .,
FP(Ry), ..., FR ™ (Ry2)) . gl c
(B s FRT (Ba)) raw data  21.5 12915
Note, that in general the final feature vectris not sparse. PCA 5.5 315
The coefficients of each patch are sparse but due to the ga:g:net 52'55 7953
maximum and minimum operation large positive or negative P '
TABLE I

values are accumulated in the final feature vector.
THE BESTSVM HYPERPARAMETERS.

IIl. EXPERIMENTS

We test Sparsenet, PCA, and Gabor basis functions on tiassifier is trained on the entire set of feature vectorsllof a
well-known MNIST benchmark of handwritten digit imagestraining samples.
It consists of 60000 training and 10000 test images of hand-Due to the multiple minmax-regions and basis functions the
written digits of size28 x 28 pixels. dimensionality of the data increases fr@8y to 9 x 169 x 2 =

The PCA and Sparsenet basis functiafisare obtained by 3042 resp.9 x 160 x 2 = 2880 feature dimensions. We need
determining the parameters of the underlying image patoh géo solve a ten-class problem since we have to differentiate
eration model with respect to the image-patch vecfofs,y). ten digit classes (0-9). To accomplish this task using a SVM
The patch vectors are extracted at random positions frome trained 45 two-class classifiers, each of which separates
randomly chosen training images. The noise level parameteo different digits (one against one). The decisions of all
(\) of the Sparsenet algorithm is chosen such that the b#3 two-class classifiers are then counted and finally trescla
mean validation error is obtained. Additionally, as mem¢éid Wwith the majority of votes is selected. We used the same
before, the performance of a simple set of Gabor wavelets lygperparameters for the 45 two-class classifiers.
basis functions is evaluated. We do not optimize the paramet
of the Gabors explicitly but take the best parameters out of a IV. RESULTS
limited set we experimented with. The data set is quite popular and results of many state-

We obtain the features for the classifier as described df-the-art methods are available for comparison [17], [18]
section 1I-C and II-D. The size of the basis functions if19]. Currently, the best results reported on the MNIST data
13 x 13 pixels. Though the number of basis functions maget were obtained with convolutional neural networks plus
be optimized with respect to recognition performance, falastic distortions (0.4% error rate [19]) and Virtual SVM
simplicity we choose as many basis functions as the numhweith deskewing and jittering preprocessing (0.56% errd¢e ra
of pixels in the image patches considered, i.69. The set [18]). A recent approach that uses sparse representatimhs a
of Gabor wavelets that provided the best results on the digitastic distortions obtains an error rate of 0.39% [27].28][a
benchmark in our experiments consistsl 60 filters, which is method is proposed where a LeNet5 is used to train a feature
close to the number of basis functions used in the Sparseegtraction layer that is fed to a set of SVMs. Using elastic
and PCA setting (We also tried larger Gabor sets). We udistortions these authors report an error rate of 0.54%.
a layout of 9 minmax-operator regions of size x 9 pixels We consider the use of an extended training set that was
as shown in Figure (1). Since the size of the coefficiegenerated using a problem specific distortion model as data
images F; equals the size of the input images, we do naipecific knowledge. Our method belongs to the class of meth-
select entries from the bottom row and the last column of tleals that do not use such additional knowledge. In an evaluati
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Fig. 2. Subset of basis functions used on the digit benchnfadm top to bottom: PCA basis functions, Gabor wavelets,sgphasis functions trained on
digit images.

me.an. error rate

validation #SVs per digit class on MNIST

error rate test set

0 1 2 3 4 5 6 7 8 9

raw data  2.95%t0.17) 9785 5994 13241 13244 10976 12989 9842 10429 14015 12033 1.42%
PCA 1.29%+0.08) 3293 2293 4580 4731 4041 4223 3676 3747 5246 4930 0.80%
Gabors 1.24%+0.10) 4298 2970 5959 5690 4647 5371 4527 4986 6582 5630 0.71%
Sparsenet  1.0004:0.09) 2698 1812 3667 3650 2833 3505 2770 3089 4216 3610 0.59%

TABLE |
SVM RESULTS THE SECOND COLUMN OF THE TABLE SHOWS MEAN AND STANDARD DEVIATON OF THE TEST ERROR OF THE BEST HYPERPARAMETERS
DETERMINED BY VALIDATION ON THE 7 REALISATIONS OF 10000TRAINING AND 10000TEST SAMPLES THE REMAINING COLUMNS REFER TO THE
CLASSIFIERS THAT WERE OBTAINED BY USING THESE HYPERPARAMEHRS TO TRAIN ASVM ON THE COMPLETEMNIST TRAINING SET CONSISTING OF
60000SAMPLES. THE NUMBER OFSVS OF ALL CLASSIFIERS OF A RESPECTIVE DIGIT CLASS AS WELL AS THERROR ONMNIST TEST SET ARE SHOWN

of several matching methods that also belong to this classhand the Gabor and Sparsenet results show that a sparse
methods an error rate of 0.52% is obtained [1]. In [29] anrerreepresentation further improves performance.

rate of 0.63% is reported using a shape matching approac . S
In [30] the authors report a positive influence of sparsetss hLThe result using a learned sparse code is significantlyrbette

recognition performance on the MNIST set though they canntg'tan the results obtained with Gabor wavelets and PCA. The

obtain state-of-the-art performance. number of support vectors of the best method using a learned

The different types of basis functions obtained from ar‘lts%)arse code is reduced by about a factor of three compared to

used on the MNIST set of handwritten digits are shown ne result on raw dat"’?’ indicating t_hat t_he feature exivactie
. I erform successfully implements invariances of the prolbé
figure 2. Table | shows the mean validation error of th%

o . : andwritten digit recognition. Also compared to earlierNbV
best hyperparameter combination. Referring to the finallres . : ;
obtained by using the best hyperparameters on the en{i?eSUItS’ for ms'Fan_c_e, the virtual SVM reported in [18], our

2 . meéthod uses significantly less support vectors (about arfact

MNIST training set, it shows the number of support vector,
(SVs) that are used by the classifiers of each digit class as ")
well as the error rate of the SVM on the MNIST test set (note In case of sparse coding, the proposed feature extraction
that we use a one-against-one scheme, therefore we haveduires to solve the optimization problem of equation (8)
classifiers per digit class and the number of support vedtorsvia gradient descent for each patch of a given input im-
the sum over all 9 SVMs). The mean validation error is worsgge. Therefore PCA and Gabor wavelet feature extraction
than the final test error, since only 10000 instead of 600@9 more efficient from a computational complexity point of
training samples were used for training. view. However, a number of more recent algorithms that

All methods significantly outperform the direct classifilearn sparse codes are available, see for example [21], [22]
cation of the raw data. Gabor Wavelets clearly outperforidew results also indicate that an efficient computation ef th
PCA. In the PCA experiment all basis functions were usedoefficients via orthogonal matching pursuit [31] is poksib
This means that for each image-patch vector an error freeder certain conditions [32]. Here, we do not aim to evauat
representation is obtained. The PCA result shows on the dhe properties of different sparse coding approaches bot wa
hand that some performance gain can be attributed to tiledemonstrate that the principle of sparse coding provides
minimum and maximum operation since without it error fresignificant performance improvements in a real world proble
PCA vyields the same result as on raw data. On the othmt a competitive benchmark.



V. CONCLUSIONS [10]

We proposed a method for digit recognition based on
unsupervised learning of sparse basis functions. From fhdl
sparse coefficients in that basis, a new representationeof th
digits is obtained by applying a minmax-operation to these
coefficients. The new representation incorporates innaes (12
of handwritten digits as can be seen from the reduced number
of support vectors. The performance gain is significant evrs]
though the final feature vector used for classification is not
sparse in general and the dimensionality of the data ineseag; 4
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wavelets. Gabor wavelets can be seen as sparse basis @fl natur
images. For digits a better performance can be achieved by
using a sparse code that is obtained by unsupervised Igarr{ﬁ?]
from the data.

Despite its simplicity, our approach performs as well as
state-of-the-art methods that do not use prior knowledéfg
specific to the handwritten digit recognition problem (a eom
prehensive list of results can be found on the internet [20]}8]
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