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Abstract. We consider the problem of separating noisy overcomplete
sources from linear mixtures, i.e., we observe N mixtures of M > N
sparse sources. We show that the “Sparse Coding Neural Gas” (SCNG)
algorithm [1] can be employed in order to estimate the mixing matrix.
Based on the learned mixing matrix the sources are obtained by orthog-
onal matching pursuit. Using artificially generated data, we evaluate the
influence of (i) the coherence of the mixing matrix, (ii) the noise level,
and (iii) the sparseness of the sources with respect to the performance
that can be achieved on the representation level. Our results show that
if the coherence of the mixing matrix and the noise level are sufficiently
small and the underlying sources are sufficiently sparse, the sources can
be estimated from the observed mixtures.

1 Introduction

Suppose we are given a number of observations X = (x1, . . . ,xL), xj ∈ IRN

that are a linear mixture of a number of sparse sources S = (s1, . . . , sM )T =
(a1, . . . ,aL), si ∈ IRL and aj ∈ IRM :

xj = Caj + εj ‖εj‖ ≤ δ . (1)

Here C = (c1, . . . , cM ), cj ∈ IRN denotes the mixing matrix. We require ‖cj‖ = 1
without loss of generality. The vector aj = (s1,j , . . . , sM,j)T contains the con-
tribution of the sources si to the mixture xj . Additionally a certain amount of
additive noise εj is present. Is it possible to estimate the sources si only from
the mixtures xj without knowing the mixing matrix C? In the past, a number of
methods have been proposed that can be used to estimate the si and C knowing
only the mixtures xj assuming ‖εj‖ = 0 and M = N [2]. Some methods assume
that the sources are statistically independent [3]. More recently the problem of
estimating an overcomplete set of sources has been studied which arises if M is
larger than the number of observed mixtures N [4,5,6,7]. Fewer approaches have
been proposed for source separation under the presence of noise [8]. An overview
of the broad field of blind source separation and independent component analysis
(ICA) can be found in [9].

In [1] we have proposed the “Sparse Coding Neural Gas” (SCNG) algorithm
in order to learn sparse overcomplete data representations under the presence
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of additive noise. Here we show how a slightly modified version of the same
algorithm can be employed to tackle the problem of source separation in a noisy
overcomplete setting. We do not make assumptions regarding the type of noise
but our method requires that the underlying sources si are sufficiently sparse,
in particular, it requires that the aj have to be sparse and that the noise level δ
as well as the number of sources M is known.

1.1 Source Separation and Orthogonal Matching Pursuit

Recently some properties of the orthogonal matching pursuit algorithm (OMP)
[10] with respect to the obtained performance on the representation level have
been shown [11]. These results provide the theoretical foundation that allows us
to apply OMP to the problem of source separation. We here briefly discuss the
most important aspects with respect to our work.

Our method does not require that the sources si are independent but it re-
quires that only few sources contribute to each mixture xj , i.e, that the aj are
sparse. However, an important observation is that if the underlying components
si are sparse and independent, for a given mixture xj the vector aj will be
sparse too.

In order to apply the OMP algorithm to problem (1) let us assume that we
know the mixing matrix C. Let us further assume that we know the noise level
δ. Let aj be the vector containing a small number k of non-zero entries such
that

xj = Caj + εj ‖εj‖ ≤ δ (2)

holds for a given observation xj . OMP can be used to estimate aj by solving

‖xj − CaOMP
j ‖ ≤ δ . (3)

It can be shown that
‖aOMP

j − aj‖ ≤ ΛOMP δ (4)

holds if the smallest entry in aj is sufficiently large and the number of non-zero
entries in aj is sufficiently small. Let

H(C) = max
1≤i,j≤M,i�=j

|cT
i cj | (5)

be the mutual coherence H of the mixing matrix C. The smaller H(C), N/M
and k are, the smaller ΛOMP becomes and the smaller min(aj) is allowed to be
[11]. Since (4) only holds if the smallest entry in aj is sufficiently large, OMP
has the property of local stability with respect to (4) [11]. Furthermore it can be
shown that under the same conditions aOMP

j contains only non-zeros that also
appear in aj [11]. An even globally stable approximation of aj can be obtained
by methods such as basis pursuit [11,12].
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1.2 Optimised Orthogonal Matching Pursuit

TheSCNGalgorithm is based on anapproximation technique that is closely related
to OMP and called “Optimised Orthogonal Matching Pursuit” (OOMP) [13].

Given an observed mixture xj the algorithm iteratively constructs xj out
of the columns of the mixing matrix C. The indices of the columns of C that
have been used already are collected in the set U . Initially U = ∅. The number of
elements in U , i.e, |U |, equals the number of iterations that have been performed
so far by the OOMP algorithm. The columns of C that are indexed by U are
denoted by CU . We obtain the approximation of the noise term εj , i.e., the
residual εU

j , by removing the projection of xj to the subspace spanned by CU

from xj . The residual is initialized with εU
j = xj . The algorithm runs until

‖εU
j ‖ ≤ δ. A temporary mixing matrix R is used whose columns are orthogonal

to the subspace spanned by CU . Initially R = (r1, . . . , rl, . . . , rM ) = C. Note
that R can be obtained by removing the projection of the columns of C to the
subspace spanned CU from C and setting the norm of the residuals rl to one. In
each iteration the algorithm determines the column rl of R with l /∈ U that has
maximum overlap with respect to the current residual εU

j

lwin = arg max
l,l/∈U

(rT
l εU

j )2 . (6)

Then, in the construction step, the orthogonal projection with respect to rlwin

is removed from the columns of R and εU
j

rl = rl − (rT
lwin

rl)rlwin (7)

εU
j = εU

j − (rT
lwin

εU
j )rlwin . (8)

After the projection has been removed lwin is added to U , i.e., U = U ∪ lwin.
The columns rl with l /∈ U might be selected in the subsequent iterations of
the algorithm. The norm of these columns is set to unit length. If the stopping
criterion ‖εU

j ‖ ≤ δ has been reached, the final entries of aOOMP
j can be obtained

by recursively collecting the contribution of of each column of C during the
construction process taking into account the normalization of the columns of R
in each iteration.

Due to the normalization of the columns of R after the orthogonal projection
has been performed, the selection criterion (6) ensures that the norm of the
residual εU

j obtained by (8) is minimal. Hence, the OOMP algorithm can provide
an approximation of aj containing even less non-zeros than the approximation
provided by OMP.

2 Learning the Mixing Matrix

We now consider the problem of estimating the mixing matrix C = (c1, . . . , cM )
from the mixtures xj provided that we know the noise level δ and the number
of underlying sources M . As a consequence of the sparseness of the underlying
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sources si, we are looking for a mixing matrix C that minimizes the number
of non-zero entries of aOOMP

j , i.e., the number of iteration steps of the OOMP
algorithm, given a noise level of δ

min
C

1
L

L∑

j=1

‖aOOMP
j ‖0 subject to ∀j : ‖xj − CaOOMP

j ‖ ≤ δ . (9)

Here ‖aOOMP
j ‖0 denotes the number of non-zero entries in aOOMP

j . In order to
minimize (9), we perform an update of R and C prior to the construction step
(7) and (8) in each iteration of the OOMP algorithm. In order to reduce the
total number of iterations, this update step minimizes the norm of the residual
that is going to be obtained in the current iteration. The norm of the residual
becomes small if

(rT
lwin

εU
j )2 (10)

is large. Hence, we have to consider the optimization problem

max
rlwin

L∑

j=1

(rT
lwin

εU
j )2 subject to ‖rlwin‖ = 1. (11)

An optimization of (11) can be achieved by using Oja’s rule [14], which is

rlwin = rlwin + α y(εU
j − y rlwin) (12)

with y = rT
lwin

εU
j and learning rate α. Instead of updating only the winning

column of R, i.e, rlwin , we employ the soft competitive learning approach of the
“Neural Gas” (NG) algorithm [15] in order to update each column of R that
might be selected in the next iteration. We determine the sequence

−
(
rT

l0ε
U
j

)2 ≤ . . . ≤ −
(
rT

lk
εU
j

)2 ≤ . . . ≤ −
(
rT

lM−|U|
εU
j

)2
, lk /∈ U . (13)

Combining Oja’s rule with the soft-competitive update of the NG algorithm, we
obtain

Δrlk = Δclk = αte
−k/λty

(
εU
j − y rlk

)
(14)

Here αt and λt are the learning rate resp. neighbourhood size at time t:

λt = λ0 (λfinal/λ0)
t/tmax (15)

αt = α0 (αfinal/α0)
t/tmax . (16)

Equation (14) corresponds to the update of the NG algorithm with the distance
measure

D(a, b) = ‖a − b‖ (17)

in the input space replaced by

D(a, b) =
〈a, b〉

‖a‖‖b‖ (18)
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for determining the rank in the sequence (13). For t → tmax one obtains equation
(12) as update rule. Note that (14) accumulates the updates of all iterations
in the learned mixing matrix C. Due to the orthogonal projection (7) and (8)
performed in each iteration, these updates are pairwise orthogonal. Furthermore,
note that the columns of the original matrix emerge in random order in the
learned mixing matrix and due to Oja’s rule the learned columns might be
multiplied by −1. The entire SCNG method is shown in Algorithm 1.

Algorithm 1. The sparse coding neural gas algorithm for source separation
initialize C = (c1, . . . , cM ) using uniform random values
for t = 0 to tmax do

select random sample x out of X
set c1, . . . , cM to unit length
calculate current size of neighbourhood: λt = λ0 (λfinal/λ0)t/tmax

calculate current learning rate: αt = α0 (αfinal/α0)t/tmax

set U = ∅, εU = x and R = (r1, . . . , rM ) = C = (c1, . . . , cM )
while ‖εU‖ > δ do

determine l0, . . . , lk, . . . , lM−|U| with lk /∈ U :

−(rT
l0εU )2 ≤ . . . ≤ −(rT

lk
εU )2 ≤ . . . ≤ −(rT

lM−|U|ε
U )2

for k = 1 to M − |U | do
with y = rT

lk
εU update clk = clk + Δlk and rlk = rlk + Δlk with

Δlk = αte
−k/λty (εU − y rlk )

set rlk to unit length
end for
determine lwin = arg maxl/∈U (rT

l εU )2

remove projection to rlwin from εU and R:

εU = εU − (rT
lwinεU )rlwin

rl = rl − (rT
lwinrl)rlwin , l = 1, . . . , M

set U = U ∪ lwin

end while
end for

3 Experiments

In order to evaluate the performance of the SCNG algorithm with respect to the
reconstruction of the underlying sources, we performed a number of experiments
on artificial data. We generated sparse underlying sources S = (s1, . . . , sM )T =
(a1, . . . ,aL), si ∈ IRL,aj ∈ IRM . This was done by setting up to k entries of the
aj to uniformly distributed random values in [−1, 1]. For each aj the number
of non-zero entries was obtained from a uniform distribution in [0, k]. The noise
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Fig. 1. The figure shows the convergence of the SCNG algorithm. Top left: The mean
norm of the residual εU

j of the last iteration of the OOMP algorithm. Middle: Mean
number of iterations performed by the OOMP algorithm until εU

j ≤ δ. Right: Loga-
rithmic plot of the mean squared distance between the estimated sources sOOMP

i and
the true sources si. We used M = 100, N = 50, NR = 0.01, H(C) = 0.4, k = 15 and
δ = 0.7.

was generated by adding E = (n1, . . . ,nM )T = (e1, . . . , eL),ni ∈ IRL, ej ∈ IRM

containing small uniformly distributed random values in [−1, 1] such that

xi = C(aj + ej) = Caj + εj . (19)

The noise parameter δ was obtained as

δ =
1
L

L∑

j=1

‖εj‖ . (20)

We scaled the S and thereby the aj so that var(CS) = 1. The amplitude of the
values in E was chosen such that

var(CE)
var(CS)

= NR . (21)

In order to obtain a random mixture matrix C ∈ IRN×M with coherence z, we
repeatedly chose a matrix from a uniform distribution in [−1, 1] until H(C) = z.
Then, the norm of the columns of the mixture matrix was set to unit length.

In our experiments, we study the error on the representatition level. This
means that for each observation xj , we evaluate the difference between the orig-
inal contributions of the underlying sources, i.e., aj to xj , and the contributions
aOOMP

j that were estimated by the OOMP algorithm on the basis of the mixing
matrix C that was learned by the SCNG algorithm

1
L

L∑

j=1

‖aj − aOOMP
j ‖2

2 =
1
L

M∑

i=1

‖si − sOOMP
i ‖2

2. (22)
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Here SOOMP = (sOOMP
1 , . . . , sOOMP

M )T = (aOOMP
1 , . . . ,aOOMP

L ) are the underly-
ing sources obtained from the OOMP algorithm. In order to evaluate (22) we
have to assign the entries in aOOMP

j to the entries in aj which is equivalent to
assigning the original sources si to the estimated sources sOOMP

i . This problem
arises due to the random order in which the columns of the original mixing ma-
trix appear in the learned mixing matrix. For the assignment we perform the
following procedure:

1. Set Iorig : {1, . . . , M} and Ilearned : {1, . . . , M}.
2. Find and assign si and sOOMP

j with i ∈ Iorig, j ∈ Ilearned such that

|sOOMP
j sT

i |
‖si‖‖sOOMP

j ‖ is maximal.

3. Remove i from Iorig and j from Ilearned.
4. If sOOMP

j sT
i < 0 set sOOMP

j = −sOOMP
j .

5. Proceed with (2) until Iorig = Ilearned = ∅.

For all experiments we used L = 10000 and α0 = 0.1, αfinal = 0.0001 for the
learing rate as well as λ0 = M/2 and λfinal = 0.01 for the neighbourhood size.
We repeated all experiments 10 times and report the mean result over the 10
runs. The number of learning iterations of the SCNG algorithm was set to tmax =
15 ∗ 10000.

In our first experiment, we evaluated the convergence of the SCNG algorithm
over time in case of N = 50 observations of M = 100 underlying sources with
up to k = 15 non-zero entries. The result is shown in Figure 1. The norm of the
residual of the final iteration εU

j of the OOMP algorithm converges to δ. The
number of iterations of the OOMP algorithm converges to the mean number of
non-zero entries. At the same time also the error on the representation level is
minimized. The 3 underlying sources that were estimated best as well as 3 of
the mixtures from which they were obtained are shown in Figure 2.

In the next experiment, we set N = 20, M = 40 and NR = 0.1 and var-
ied the coherence H(C) of the mixing matrix as well as the sparseness k of
the underlying components. The result is shown in Figure 3. The sparser the
sources are and the smaller the coherence of the mixing matrix is, the better
the obtained performance is. Then, we fixed H(C) = 0.6 and k = 5 and varied
the overcompleteness by setting M = 20, . . . , 80. From Figure 3 it can be seen
that only slightly varying performance is obtained though the overcompleteness
strongly increases. Furthermore we varied N from 10 to 50 and set M = 2N as
well as k = �N/10. Figure 3 shows that almost the same performance is ob-
tained, i.e., the obtained performance does not depend on the number of sources
and observations if the fraction N/M as well as the sparseness of the sources is
constant.

The result of the next experiment is shown in Figure 4. We set N = 20,
M = 40 and H(C) = 0.6 and varied the noise level as well as the sparseness of
the sources. As expected, the more noise is present and the less sparse the sources
are, the lower the obtained performance is. In a last experiment, we took the



Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources 795

Fig. 2. The upper part of the figure shows the 3 out of M = 100 underlying sources
that were reconstructed best from the N = 50 mixtures observed. 3 examples of the
observations are shown in the lower part. In the upper part the solid line depicts
si + ni whereas the crosses depict sOOMP

i that were obtained by applying the OOMP
to the mixtures using the mixing matrix that was learned by the SCNG algorithm.
The coherence of the mixture matrix was set to H(C) = 0.4. The data was generated
using k = 15, NR = 0.01. We used δ = 0.7.
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Fig. 3. Top left: The influence of decreasing sparseness and increasing coherence of the
mixing matrix with respect to the reconstruction error is shown. We used N = 20, M =
40 and NR = 0.1. Bottom left: The obtained reconstruction error using M = 20, . . . , 80
and k = 5. Bottom right: The obtained reconstruction error for N = 10, . . . , 50 with
M = 2N and k = �N/10�.

same parameters, set k = 5 and studied the obtained reconstruction performance
depending on the coherence of the mixing matrix and the noise level. The re-
sult is also shown in Figure 4. It can be seen that in our experimental setting the
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Fig. 4. Left: We used N = 20, M = 40. The coherence of the mixing matrix was set
to 0.6. The reconstruction performance depending on the noise level as well as on the
sparseness is shown. Right: The sparseness parameter k was set to 5. The obtained
reconstruction error depending on the noise level and the coherence of the mixing
matrix is shown.

noise level has an strong impact on the performance. The influence of the noise
cannot be compensated by the coherence of the mixing matrix.

4 Conclusion

We introduced the SCNG algorithm in order to tackle the difficult problem of
estimating the underlying sources of a linear mixture in a noisy overcomplete
setting. Our model does not make assumptions regarding the distribution of the
sources or the distribution of the noise. However, the method requires that the
sources are sparse and that the noise level as well as the number of the underlying
sources are known or can be estimated.

Based on the mixing matrix that was learned by the SCNG algorithm, we
evaluated the performance on the representation level by employing the OOMP
algorithm in order to obtain the sources from the observations. We analyzed
the performance with respect to the reconstruction of the original sources that
can be achieved. We studied the influence of the coherence of the mixing ma-
trix, the noise level and the sparseness of the underlying sources. If the sources
are sufficiently sparse and the coherence of the mixing matrix and the noise
level are sufficiently small, the SCNG algorithm is able to learn the mixing
matrix and the sources can be reconstructed. We also evaluated the influence
of the overcompleteness with respect to the obtained performance. Our results
show that sufficiently sparse sources can be reconstructed even in highly over-
complete settings. In order to improve the performance on the representation
level computationally more demanding methods such as basis pursuit might be
used.



Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources 797

References

1. Labusch, K., Barth, E., Martinetz, T.: Learning Data Representations with Sparse
Coding Neural Gas. In: Verleysen, M. (ed.) Proceedings of the 16th European
Symposium on Artificial Neural Networks, pp. 233–238. D-Side Publishers (2008)

2. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind sepa-
ration and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)

3. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

4. Hyvarinen, A., Cristescu, R., Oja, E.: A fast algorithm for estimating overcomplete
ica bases for image windows. In: Proceedings of the International Joint Conference
on Neural Networks, IJCNN 1999, vol. 2, pp. 894–899 (1999)

5. Lee, T.W., Lewicki, M., Girolami, M., Sejnowski, T.: Blind source separation
of more sources than mixtures using overcomplete representations. IEEE Signal
Processing Letters 6(4), 87–90 (1999)

6. Lewicki, M.S., Sejnowski, T.J.: Learning Overcomplete Representations. Neural
Computation 12(2), 337–365 (2000)

7. Theis, F., Lang, E., Puntonet, C.: A geometric algorithm for overcomplete linear
ICA. Neurocomputing 56, 381–398 (2004)

8. Hyvärinen, A.: Gaussian moments for noisy independent component analysis. IEEE
Signal Processing Letters 6(6), 145–147 (1999)

9. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-
Interscience, Chichester (2001)

10. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition. In: Proceed-
ings of the 27 th Annual Asilomar Conference on Signals, Systems (November
1993)

11. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Transactions on Information The-
ory 52(1), 6–18 (2006)

12. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

13. Rebollo-Neira, L., Lowe, D.: Optimized orthogonal matching pursuit approach.
IEEE Signal Processing Letters 9(4), 137–140 (2002)

14. Oja, E.: A simplified neuron model as a principal component analyzer. J. Math.
Biol. 15, 267–273 (1982)

15. Martinetz, T., Berkovich, S., Schulten, K.: “Neural-gas” Network for Vector Quan-
tization and its Application to Time-Series Prediction. IEEE-Transactions on
Neural Networks 4(4), 558–569 (1993)


	Introduction
	Source Separation and Orthogonal Matching Pursuit
	Optimised Orthogonal Matching Pursuit

	Learning the Mixing Matrix
	Experiments
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


